
Chapter 8

I/O Devices

A supercomputer is a machine for turning a 
compute-bound problem into an I/O-bound problem.

- Ken Batcher (US computer architect)



8.1 Input/Output Basics
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Device

Main Memory Processor Controller

Bus

Device

Processor (programmed I/O)
The processor reads or writes data in bytes or words 

from/into a register in the controller.

Direct Memory Access (DMA)
The controller can autonomously access the memory via 

the bus.



Control

• Triggering (How does the controller get the requests?)

• The processor loads the corresponding register in the particular 
controller:
• Type of operation (e.g. read, write)
• Source
• Target
• Status

• Reaction
• After completion of the I/O operation, the processor needs to be 

informed. 
• Two possibilities:

• The processor checks occasionally the controller‘s status register 
(Polling). (In most cases too inefficient.)

• The processor gets informed about the completion by a special signal 
(Interrupt). (Usual approach)
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Interrupts

• There is at least one interrupt wire for the processor.

• After each instruction the processor checks whether there is a 
signal (corresponding voltage level) at this wire.

• If so, it immediately (if interrupts are enabled) jumps to a 
subroutine that evaluates the interrupt and performs or 
triggers the necessary actions. 
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Normal program 
execution

Interrupt handling



Interrupt analysis

• First, we only know the very fact of an interrupt. 

• Therefore, we need to find out,
who (which device) caused the interrupt (source),
why the interrupt has happened (e.g. end of transmission, error).

• Thus, a subroutine for interrupt handling has the following structure:

8-5Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2023/24

 

source ? 
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reason?
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Interrupt processing

• An interrupt can occur at any time and in any situation. 
• Especially also during an interrupt processing!
• Two approaches:

• Sequential  interrupt processing (FCFS)
• Nested interrupt processing

• The interrupt mechanism is also used for processor 
internal (synchronous) events, at which we need 
immediate reaction (division by zero, address violation). 
In that case, it is usually called exception.
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Sequential interrupt processing

• Prevent further interrupts during interrupt processing 
(disable interrupt). 

• The prevention can be limited to specific types of 
interrupts (masking).
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Normal program 
execution

Interrupt handling A

Interrupt handling B

The new interrupt B is processed only when 
the processing of the current interrupt A has 

been completed.



Nested interrupt processing

• Interrupts are classified into different priority 
classes according to their type.

• Interrupts of higher priority may interrupt the 
processing of lower priority interrupts. 
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Nested Interrupts
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Actions during interrupt processing

The first part corresponds to a regular subroutine call:
1. save return address (next instruction, PC+1) to stack
2. load program counter (PC) with entry address of interrupt 

handling routine (from interrupt vector table that contains 
the addresses of all interrupt handlers)

Under control of interrupt handler:
3. save all register contents to stack
4. perform necessary actions according to type of interrupt
5. load register contents from stack
6. return to interrupted program (by loading the return 

address into program counter) 
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8.2 Tasks of I/O

• We deal with that part of the OS that is responsible for the 
operation of I/O-devices, e.g. 
• Keyboard, monitor, mouse
• Hard disks
• Scanner, Printer
• Measuring probes, A/D-transformer
• Network
• …

• To operate an device
• Control positioning of movable parts, set device 

parameters, read status
• Transport copy data from central unit (processor, memory) 

to device (or vice versa)
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Diversity of devices
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Device Purpose Partner Data Rate 
(MB/s) 

Keyboard input human 0.00001 
Mouse input human 0.00004 
Laser printer output human 0.3 
Voice output  output human 0.6 
Network-LAN in-/output machine 10-10000 
Mass storage storage machine 5-600 
Graphic display output human 100-16000 
  

Data rates span several orders of magnitude!


		Device

		Purpose

		Partner

		Data Rate


(MB/s)



		Keyboard

		input

		human

		0.00001



		Mouse

		input

		human

		0.00004



		Laser printer

		output

		human

		0.3



		Voice output 

		output

		human

		0.6



		Network-LAN

		in-/output

		machine

		10-10000



		Mass storage

		storage

		machine

		5-600



		Graphic display

		output

		human

		100-16000







Control

• Examples
• set baud rate
• position read/write head
• perform page feed
• rewind tape
• position tape to EOT label
• extract CD-sledge
• ....
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CPU device
Get device
into specific state



8.3 Interaction between CPU and
device

Portioning
• Data transport usually takes place in smaller portions

• Examples
• Bit

single wire
• Byte (character)

byte serial interface
• Word

word parallel interface
• Record (several bytes)

devices with special geometry (line printer, page printer)
• Block (typical: 512 Byte - 8Kbyte)

between storage devices
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Handling a transport request
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Device activity

e.g.
1000  
bytes

Execute request
Move portion unit by unit

direction, 
source, target
number

indicate

CU device

The relation between the control unit (CU) and the device is 
obviously a service relation.



Transport request: Parameter

• Direction (read or write)?
• Where are the data (source s)?
• Where to move the data (target t)?
• How much data (length L)?
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Data transport request

• We distinguish between
• the transport request (trigger)
• the real data transport

• Depending on the type of device more or less bytes are 
transmitted. 
• If it is only a few bytes, they may be included in the request 

itself:
• „output character X “.
• Transport request and data transport are the same.

• If it is many bytes, the request is of the form:
• „output those bytes that can be found in memory from address 

d_start to d_end.“
• In this case, the transport request is separated from the actual 

data transport.
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Integration of device activity into 
SW service structure

• Problem: How can a device send a message to a thread 
in order to deblock it?
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Modelling device activity

• as procedure  (short activities only)

• as thread (for longer activities)

• The device can be regarded as a processor that executes 
exactly one thread. No switching. Active waiting for requests. 
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Integration of device activity into 
thread interaction

• Solution:
• Device sends interrupt upon completion.
• Processor, busy with any activity, gets interrupted and calls 

the respective interrupt processing routine (IPR). 
• IPR generates respective message and sends it to the 

requesting thread (to the channel, at which the thread is 
waiting).
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Response

Each request processing must be checked. Many things can happen. The 
device provides information. In case of errors we need dedicated error 
processing.

Examples:
• Wrong transport parameter memory address

track number
head number
block number

• Wrong operational states device unknown
no voltage
no storage media
mechanical jam
no formatting

• Transmission error parity error
synchronization error

• Media error destroyed magnetic surface
head crash
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Technical integration

Control  and transport parameter as well as indications and notifications 
need to flow across device boundaries: There are basically two 
possibilities:

• Deposit in memory
• Dedicated memory addresses are used as registers for device 

communication (memory-mapped I/O). They can be read and written by 
the device.

• Deposit in device
• The device disposes of registers that can be read and written by the 

processor using special I/O instructions.

• Independent of the realization we can model these I/O registers e.g. 
in the following way:
struct IO_register {

PARAMETER_OF_REQUEST IOR;
START_SIGNAL IOS;
ERROR_CODE IOE;
FINISHED_INDICATION IOF;

};
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8.4 Driver

• To relieve the programmer of tedious details, all device 
specific activities should be confined to one single 
component.

• This component is called driver.
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Data transport



Realization of a driver

a) as procedure

b) as thread
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Interaction between driver and user
thread

a) Parallelism between user thread and driver

b) Buffering
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Buffering

8-26
Source : Stallings, chap. 11



Coarse structure of a driver thread
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Error handling

• The progress analysis mainly checks, if there were 
errors. If yes, action is taken, if possible. 

• Regarding error handling we can distinguish three types 
of errors:
• Delaying:

Can be fixed by support of user:
Examples: paper tray empty, no media in drive

• Stochastic:
Randomly occurring failures can be cured by repetition.
Examples: parity error, time-out, collision

• Final:
If the error is not fixable, the request must be aborted:
Examples: unknown device address, no voltage
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Progress analysis
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Aggregation / Disaggregation

• For devices operating byte-wise the driver often 
performs aggregation or disaggregation, resp., i.e. a 
larger set of individual characters are aggregated to a 
block or a block is disaggregated into individual 
characters.

• Additionally some other tasks are performed: 
• For output, control characters are inserted (e.g. end of 

record, line feed, block number).
• For input, control characters are filtered out (e.g. delete 

character).
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Aggregation
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8.5 Strategies for mass storage 
drivers

• A driver accepts requests from many different user threads.
• Thus, many requests may line up at its entry channel. 

• Usually, requests are processed in the order of their arrival 
(FCFS, FIFO).

• Exception: mass storage driver
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8.5.1 Hard Disk Drives (HDDs)

• A hard disk consists of one or more platters with magnetizable
surfaces that rotate at high speed (ca. 3000-10000 rpm).

• For each magnetizable surface there is a read-write head that can 
be moved back and forth across the whole surface. The gadget that 
holds the read/write heads is called disk arm. 

• If the disk device consists of more than one platter, the different 
arms are attached to a broom.

• Each surface consists of concentric tracks (1000-20000), on which 
the information is recorded.

• Each track in turn is composed of many sector (50-800).
• Each sector can store a specific amount of data (normally 0.5 or 4 

kByte)
• The entirety of all tracks that can be read/written with the same arm 

position, is called cylinder. (In case of only one surface, cylinder 
and track are the same.)

8-33Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2023/24



Geometry of a hard disk
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Example: Hitachi Travelstar 7K500

• Capacity (formatted) 320 GB
• Bytes per Sector 512 Bytes
• Positioning time (next track) 1 Milliseconds
• Positioning time (average) 12 Milliseconds
• Positioning time (max) 20 Milliseconds
• average latency 4.2 Milliseconds
• rotational speed 7,200 rpm
• Transmission rate (max.) 1245 Mbit per sec
• Internal buffer 16 MB
• Storage density (max.) 370 Gbit/sq.in.
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Parameters

• The service time tserv of a disk request (op, n, s) to read or write from sector s
on track n is additively composed of the following components:
Arm positioning time tpos time needed to move the arm from its 

current position to position n
Latency tlat waiting time until the target sector 

appears under the head (rotational 
waiting time) 

Read/write time tread time for reading /writing the target 
sector

Transfer time ttrans time to transmit the block from or to main 
memory

• In addition to this service time tserv we have to calculate the waiting time twait
to get the total response time tresp :
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Example

• Assume we have a hard disk with the following 
parameters:
• Arm positioning time 10 ms
• Rotational speed 10.000 rpm
• Sector size 512 bytes
• Sector number 320/track

• Read request with following parameters:
• 2560 Sectors, i.e. 1,3 Mbytes

• Question: What is the service time?
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Example

• Case 1:
File is contiguously stored, i.e. it allocates all sectors on 8 
adjacent tracks (8 x 320 = 2560 sectors).

Arm positioning time 10 ms
Latency 3 ms (half rotation)
Reading 320 sectors 6 ms (= 1/ (10.000 / 60) sec)

Total 19 ms for first track

The remaining tracks can be read without additional delay, i.e. 
the average positioning time is neglectable (zero). 
Thus, for each remaining track we get 6+3=9 ms.
In total we calculate a service time*  of 19 + 7x9 = 82 ms

* without transfer time to copy data into main memory
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Example

• Case 2:
File is stored randomly, i.e. it occupies sectors on any tracks. 

Arm positioning time 10 ms
Latency 3 ms
Reading  1 sector 0.01875 ms (6 ms / 320)

Total 13.01875 ms for each sector

Since we have to read 2560 sectors, we get a total service 
time of

2560 x 13.01875 = 33,328 ms = 33.328  Seconds

Lesson learned: Files should occupy contiguous sectors!
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Strategies for hard disks

a) First come first served (FCFS)
Processing requests in the order of their arrival

b) Shortest seek time first (SSTF)
Always select request with the shortest arm 
positioning time

c) Elevator (SCAN)
Like SSTF, but only in one direction

d) Cyclic Elevator strategy (SCAN-C)
Like SCAN, but return to track 0 when reaching 
highest track number
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Example FCFS

• Requests in queue (track number): 98, 183, 37, 122, 14, 124
65, 67

• Current head position: 53

8-41Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2023/24

1991831241229867655337140



Example SSTF

• Requests in queue (track number): 98, 183, 37, 122, 14, 124
65, 67

• Current head position: 53
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Example SCAN (Elevator)

• Requests in queue (track number): 98, 183, 37, 122, 14, 124
65, 67

• Current head position: 53
• Current direction: down
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Example SCAN-C

• Requests in queue (track number): 98, 183, 37, 122, 14, 124
65, 67

• Current head position: 53
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Example
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Source : Stallings, chap. 11



Remarks

• FCFS requires on the average (uniform distribution) moving across 1/3 of the 
tracks. 

• SCAN, SCAN-C, SSTF are advantageous for high load since (in the limit) we 
have to move only one track.

• SCAN and SSTF discriminate against marginal tracks (inmost and outmost).
• SSTF is generally the best. However, it can lead to starvation of request for 

marginal tracks.
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Linux Deadline Scheduler

• The elevator strategy (SCAN) can lead to “starvation”.
• Write accesses are usually asynchronous, read accesses 

synchronous. A stream of write accesses can therefore significantly 
delay a read access. 

• Therefore, each request is furnished with a deadline and additionally 
(besides the SCAN-Queue) inserted into a read or write queue.

• In the normal case the SCAN queue is being processed, unless the 
first request of one of the FIFO queues becomes overdue (deadline 
expired). Then this request (and some more) of the respective FIFO 
queue are processed.
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Realization of non-FCFS strategies

Sorting of requests according to track number can be done:

• In the communication operations at the driver‘s entry channel.
Means special variant of channel (receive).

• In the driver itself,
i.e. all incoming request are admitted to the driver.

Requires parallelism between

• Request acceptance 

• Request processing

Pipeline!
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Driver as Pipeline
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Delay time reduction

• According to the current state of discussion the driver gets blocked if 
it has submitted a request to the device (entering a synchronous 
receive). 

• Deblocking takes place as part of the interrupt handling, when the 
request processing is finished.

• Even if the driver runs at high priority, some time elapses, until the 
driver can submit the next request. 
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Latency Hiding

• At sequential access to disk the time between two successive 
requests should not be longer than the time needed to move across 
a sector or block gap. 

• Otherwise the next sector can be read only after one full rotation.
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• We can reduce this latency if the 
driver prepares the next request 
during the time, when the device is 
processing the current request.  

• To achieve this, the work has to be 
organized such that parallelism 
between device and driver is 
possible.

• The solution is the driver’s decomposition into two phases, where the 
first creates new requests and the second is responsible for progress 
analysis.  
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Two-Phase-Driver

• The access to device specific data (registers) is then a critical section 
that needs to be put under mutual exclusion (locking).

• It is also recommended to give the first driver phase higher priority 
(with preemption) to make sure that after releasing the lock the next 
request can be submitted immediately.
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Read-ahead

• Read more than currently requested
• In assumption the next sectors or blocks will be requested 

soon.
• Reading of next sectors or blocks with small cost.

• Buffering of not yet requested blocks
• Device cache
• Buffer cache in main memory

• Not appropriate for writing!
• Write back caches
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8.5.2 Solid State Drives (SSDs)

• SSDs use integrated circuit assemblies as memory to 
store data persistently

• SSDs do not employ moving mechanical components
• Shock and vibration resistant

• Non-Volatile NAND-based flash memory commonly used, 
however SSDs can be constructed from RAM but need 
additional precautions against power loss

• SSDs are available in the form factor of HDDs in both 
physical appearance and connectivity
• HDDs can be easily replaced by SSDs
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HDDs vs. SSDs
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Property HDD SSD
Random access time 2.9ms to 12ms <0.1ms

Start-up time Several seconds (disk spin-
up)

Almost instantaneous

Read latency time Different for every different 
seek

Generally low

Data transfer rate ~140 MB/s 100-600 MB/s 
(Highest-End several GB/s)

Read performance Depends on required 
number of seeks

Consistent on whole SSD

Fragmentation Problematic due to 
additional seeks

No Problem

Noise Can be significant (almost) none
Cost per capacity <$0.10 per GB >$0.50 per GB

Number of writes ~1010 per sector ~104-106 per block



Physical Assembly of SSDs

• (logical block 
addresses) are mapped 
to flash pages by a 
controller

• Flash pages can be 
reassigned to different 
LBAs

• Only blocks of ~64-128 
pages are erasable
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No Updates In-Place
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Garbage Collection
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Wear leveling

• Flash blocks wear out by writing to them
• Some flash blocks may reach their end of life much 

earlier than others
• Wear leveling distributes all write accesses over the 

medium

• Dynamic wear leveling
• LBAs are initially mapped to a certain flash block
• LBAs are mapped to a different flash block as soon as they 

are rewritten

• Static wear leveling
• Additionally to dynamic wear leveling blocks are relocated 

and remapped when they are not written for a certain time
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Write Amplification

• Write Amplification is a phenomenon where the actual 
amount of physical information written is a multiple of 
the logical information written

• Write Amplification gets increased by
• Wear leveling
• Random writes

• Write Amplification can be reduced by
• Garbage collection
• Over-provisioning
• TRIM
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Sustaining write performance

• Random write performance of an SSD is influenced by
the workload history of the SSD.

• Main factor is the number of available empty pages in the SSD.

• The number of available empty blocks can be increased by
• Spare capacity

• total capacity = spare capacity + usable capacity
• A number of blocks that will never be used
• Enforced by the SSD controller (spare capacity not visible for OS)
• Enforced by the OS (spare capacity not visible for user)

• TRIM
• TRIM is an ATA-Command that informs the device of invalid sectors
• Allows an SSD to garbage collect blocks before their mapped sectors 

are rewritten
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Flash in embedded/mobile devices

• Embedded CPUs are normally equip with or connected to 
flash memory similar to the flash memory in SSDs
• Ranging from several kB e.g. in small 8-Bit controllers
• To several GB e.g. in smart phones

• Flash memory is directly connected to the CPU – No 
controller!

• Most of the tasks of the SSD controller have to be done 
by the OS
• Flash-Page mapping
• Garbage collection
• Wear leveling
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8.6 RAID

• Access time for hard disks did not improve much compared to 
processor cycle times.

• The discrepancy of 6 orders of magnitude (msec vs. nsec) is 
still a significant performance obstacle.

• At the same time capacities have increased and costs 
plummeted. 

• Therefore the questions arises how we can get a performance 
benefit by using parallelism of inexpensive disks.

• RAID (Redundant Array of Independent Disks) is a 
standardized schema to organize file systems on several 
disks.

• Originally, RAID referred to „Redundant Array of Inexpensive
Disks“.
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RAID

• Large numbers of disks mean an increased probability of failures.
• RAID has to be realized in fault-tolerant way.  
• Properties

• RAID is a set of physical hard disks, that appear to the user as one 
device.

• The data is spread across the physical disks. 
• Redundant disk capacity may be used to store parity bits.

• RAID (originally) distinguishes 6 different schemes 
(RAID Level 0-5), later extended (RAID Level 6, combined levels 
such as 1-0 or 0-1)

• Fault model: 
If a block is requested, the disk delivers the correct block (fault free 
case) or an error message (in case of fault). 
RAID does not detect data corruption caused by disk (exception: 
RAID level 2 due to error correcting code) but relies on detection at 
level of disk (usually done by error correcting codes).
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RAID Level 0 („non redundant“)

• Data organized in „Strips“ (e.g. sectors or blocks) 
• Strips are distributed around on the disks.
• An I/O request consisting of different strips can be 

processed in parallel.
• No redundancy!
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RAID Level 1 („mirrored“)

• Fault tolerance by complete mirroring of all data.
• Costly, since double capacity required.
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RAID Level 2 
(„Error Correcting Code“)

• Strips are small compared to RAID-0 or RAID-1.
• Typically bits or bytes.
• Error correcting codes (e.g. Hamming Codes) are 

calculated and stored on redundant disks.
• The number of redundant disks grows logarithmically 

with the number of disks.
• Disks need to be synchronized.
• Never used in commercial application.
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RAID Level 3 
(„bit-interleaved parity“)

• Since we usually do know, which disk device has failed, 
we can use simple parity bits instead of Hamming-
Codes.

• Only one redundant disk to store the parity bits is 
needed.
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RAID Level 4 
(„block-interleaved parity“)

• Like RAID Level 3, but with strips of block size
• Only one redundant disk to store parity bits required.
• Since each write operation needs to access the parity 

disk, there is a danger of a bottleneck.
• No disk synchronization needed.
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RAID Level 5 
(„block distributed parity“)

• Like RAID Level 4, but distribution of parity data across 
all disks

• Avoids bottleneck.
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RAID Level 6 
(„dual redundancy“)

• RAID Level 5 can tolerate one failed disk at most. 
• RAID Level 6 works with two independent checksum 

systems (P,Q) and can tolerate up to two disk failures. 
• Parity information is stored in a distributed way like 

RAID Level 5.
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RAID Comparison
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Source : Stallings, chap. 11
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