
Chapter 6

Client-Server Structures



• The fundamental structural element in software systems 
(centralized and decentralized) is the client-server relation.

• The whole system is decomposed into functional units (servers) 
that deliver some service. 

• A service consists of one ore more functions (operations, 
methods etc.) that can be called or requested.

• A server is usually implemented as a process (or thread or 
group of threads).

• The services of a server can be used by other processes (or 
threads). They are called clients.

• A process is usually server (i.e. offering a service) as well as 
client (i.e. using other services).  

• A complex software system is therefore represented as a 
network of service relations.
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6.1  Client-Server Paradigm
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How it works

• Looking at a individual service relation two threads are 
involved.

• The client sends a request to a server. 

• The server accepts the requests, processes it and sends 
a result back to the client. Then it waits for the next 
request. 

• Thus, the server is a cyclic thread.

• The communication between client and server takes 
place by using dedicated communication objects 
(channels or ports).

• Usually, we have two channels: 
• An input channel at which the server takes the requests
• A response channel at which the client receives the result.
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The Service relation
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RECEIVE_S(CO,...)
SEND_A(CI,..)

Initialization

RECEIVE_S(CI,...)

SEND_A(CO,..)

CI

CO

Client ServerCommunication objects
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Parameters
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The parameters for the request are packed into a message that 
has to interpreted accordingly (protocol).

SEND_A(CI,Ds)

Initialization

RECEIVE_S(,Dr)
CI

< A,B,C >

< X,Y,Z >
Values or references

Inter-
prets

Client Server
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Comparison 
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The client server relation strongly resembles the conventional 
procedure call with formal and actual input and output 
parameters.

Call(A,B)

(U,V)

.... := U

V := ...Call(X,Y)

Send(..,A) 
Receive(..,B) 

Receive(U)

.... := U

V := ...Send(..,X)
Receive(..,Y) 

Send(V)

Procedure call Service request
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Return channel 
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A service is usually used by many clients. 

All clients can use the same input  channel to submit their requests.

However, if there is only one output or return channel, the result 
messages cannot be assigned to the clients in a unique way.

R

S
?

Clients Server

S
R

S
R

S
R
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Return channel
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Solution:

The client tells the server as part of the request message, at which 
channel it is expecting the result message ("delivery address")

By that, results are delivered correctly.

R(CO,...)
S(CI, <„CO“, ... >)

R(CI, < C-Name, ... >)

S(CB,..)

CI

CO
CB := C-Name

Client Server
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Service hierarchy
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Since server use services of other servers, in many cases we 
have a dynamic multistage service hierarchy.

R

S

R

S

R

S

S
R

S
R

S
R

S
R
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Supporting several operations

• In many cases a server offers several operations that 
can be called by the client.

• A request corresponds to the execution of one of these 
operations.

• Example:
• Memory management: allocate, release
• File system: open, close, read, write
• Name service: resolve, insert, delete

• We can realize these operations within a thread 
(Secretary) or provide for each operation an individual  
thread (Team).
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R(CI, < ..., Op-ID, ... >)

Operation 1 Operation nOperation 2 

S(CO, ... )

Depending on Op-ID we branch into one of these operations.

Op-ID ?
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Server as team of threads
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CI1 R(CI1, ...)

S(CO, ...)

lock

unlock

CIn R(CI1, ...)

S(CO, ...)

shared 
data

Thread for 
Operation 1

Thread for 
Operation n

Each thread is responsible for a specific operation and owns an 
individual entry channel (port).

The selection of the operations is done by selecting the channel (port).

lock

unlock
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The service relation as discussed corresponds to the following time 
diagram:

Client

Server

S

R S

R

time

A section in the client program  
with server call

submit 
request

receive
result

If we submit the request at the earliest point of time and take the result 
at the latest point of time, we achieve an overlap between client and 
server activity:

6.2  Parallelism in the service relation

6.2.1  Parallelism between client and server
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SEND_A(CO,..)

CI

CORECEIVE_S(CO,...)

A

Initialization

RECEIVE_S(CO,...)

SEND_A(CI,..)

SEND_A(CI,..)

B

Client

Server

S

R S

R

time

Total execution time of a request 

submit
request

receive
result

A B

The send operation in the client program has to drift backward, the 
receive operation forward in the program code.

RECEIVE_S(CI,...)

Drift of communication operations
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Conditions for Drifting
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Drift of the communication operation can only be done if no data 
dependencies are violated. Let be 

A the program section across which the send operation 
drifts backward

B the program section across which the receive 
operation drifts forward

RS the set input parameters of the send operation

WR the set output parameters of the receive operation

WA the set of variables written in section A

WB the set of variables written in section B
RB the set of variables read in section B

Then the following must hold:

WA ∩ RS = ∅: No variable written in A must be sent.

(RB ∪ WB) ∩ WR = ∅ : No variable read or written in B must 
be received.
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Parallelism with multiple requests
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Client

SEND_A(CI1,<...>)1

RECEIVE_S (CO1 ,<...>)1

n Server

. . .

A client sends requests to different servers one after another.

RECEIVE_S (CI1 ,<...>)1

SEND_A(CO1,<...>)1

SEND_A(CI2,<...>)2

RECEIVE_S (CO2 ,<...>)2 SEND_A(CO2,<...>)2

RECEIVE_S (CI2 ,<...>)2

SEND_A(CIn,<...>)n

RECEIVE_S (COn ,<...>)n

RECEIVE_S (CIn ,<...>)n

SEND_A(COn,<...>)n
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Parallelization: Fork/Join-Principle
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Client

S_A (CI1 ,<...>)1

n Server

...
...

...

Fork

Join

S_A (CI2 ,<...>)2

S_A (CIn ,<...>)n

R_S (COn ,<...>)n

R_S (CO2 ,<...>)2

R_S (CO1 ,<...>)1

R_S (CI1 ,<...>)1

R_S (CI2 ,<...>)2

R_S (CIn ,<...>)n

S_A (COn ,<...>)n

S_A (CO2 ,<...>)2

S_A (CO1 ,<...>)1
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Buffering between client and server
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In many cases the service is used not only once or occasionally, but 
periodically, i.e. in a loop. 

Example: Output of a large amount of data in many small packets: 

Server (e.g. disk driver) can process only blocks of a specific 
size.

Client (e.g. file server) must break down the data into small 
packets and send a request for each packet. 

Client Server

S_A(KE,<...>)
R_S(KA,<...>)

n times
R_S(KE,<...>)

S_A(KA,<...>)
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Buffering between Client and Server

6-19

Unrolling loop yields: 

S1
R1

R

S

Client Server

S2
R2

Sn
R
n
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Drift of communication operations
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Send operations are pushed forward by p -1 positions, 
(receive operations backwards by p -1 positions)

R

S

Client Server

S1
S2

Sp-1

Sp
R1

Sp+1
R2

Sn
Rn-p+1

Rn
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As loop again (buffering) 
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R

S

Client Server

finish

Start-up

i = p,..,n p:1- channel

requests buffered

Rn-(p-2)

Si
Ri-(p-1)

Sp-1

S2

S1

Rn

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2023/24



Buffering principle 

• Overlapping of client and server activities
• Buffering of requests
• Smoothing differences in service times of requests
• p determines the amount of buffering capability:

Depending on continuity of request arrivals or service 
times a suitable p can be chosen.

• Widespread usage in software system (OS: 
input/output, networks: sliding-window protocol) 
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2-fold buffering 
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Client Server

R_S

R_A

S_A1

R_Si-1

S_A i

R_Sn

i = 2,4,..

Phase A

1 2 buffer

R_S

S_A

S_A1

R_Si-1

S_Ai

R_Sn

i = 3,5,..

Phase B

1 2 buffer

Client Server

Buffer swapping
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6.2.2 Parallelism within a server 

• By overlapping client- and server-activity the processing 
time of a request (response time) can be reduced.

• In addition, we may increase the throughput (requests 
per time unit). 

• This is done by parallelism within the server.
• The server processes many requests simultaneously.

• Mechanisms:
• Reproduction (Cloning)
• Pipelining
• Multiplexing 
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Reproduction 

• The server thread is available as identical copies.
• All these identical threads take requests from a shared 

input port.
• The client does not see the reproduction.
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Client p-fold reproduced server

S_A(CI,...) R_S(CI,...)

S_A(CB,...)

R_S(CI,...)

S_A(CB,...)

. . .CI

R_S(COi ,...)
n:p- Channel

Properties:
• overtaking possible
• up to p requests being processed simultaneously
• easy realization
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Realization of Reproduction 

• Instead of keeping several copies of the program in the 
memory, it is more economic to make it possible that all 
identical threads execute the same copy of the 
program. The program code must be status-free or 
invariant or reentrant. 
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Base register

Thread 1

Thread 2

In memory

Program

Data 1

Data 2
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Pipeline (staged server) 
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R

S





R

S

R

S

R

S

forwarding

forwarding
Cut in pieces, 
make pieces to 
threads

A

B

C

A

B

C

Original Server Pipeline server
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Request processing in the pipeline
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R

S

R

S

Intermediate buffer

requests

processing

processing
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Pipeline 

Properties
• Arbitrary number of requests in pipeline
• No overtaking (if internal channels are FIFO, i.e. order 

preserving)
• Higher transportation overhead (internal channels)
• More difficult to realize
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Working principle (with varying service times) 

Phase 1

Phase 2

Phase 3

1 2 3 4

1

1

2 3

32

4

4

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2023/24



• With complex servers that submit subrequests we may 
have several waiting positions.

• The thread is stuck at a receive operation waiting for 
response, although it could continue at another place.

• Example for a structure of a complex service:
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R

S
R

R

R

S

S

S

wait
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Multiplexing 
(interleaving, event-programming) 



Multiplexing 

• The thread should continue at that place where work is to be 
done. 

• To wait at a place while at another place work is piling up, is 
uneconomic.

• To that end it should wait at all receive channels at the same 
time, to be able to react to all incoming events. 

• We therefore combine all channels to one single (super)channel:
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R_S

S_A S_A S_A

S_Aresult

request

subrequest

Result from
subrequest

type ?
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Multiplexing

Properties
• Only one thread
• Arbitrary number of requests processed simultaneously 
• Difficult to realize

Remark
• A server built according to this multiplexing principle 

operates (on the software level) in the same way as a 
processor at the hardware level.

• If a request (thread) cannot be further processed, since 
it has to wait for something, we simply switch to another 
request (thread).
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Mix of Parallelism forms

All presented forms of parallelism between client and 
server or within a server are independent and can be 
combined.

Example:
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R_S

S_A
. . .

R_S

S_A

R_S

S_A

R_S

S_A

R_S

S_A

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2023/24



Hair dresser's: Cloning
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Hair dresser's: Pipelining
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Hair dresser's: Multiplexing
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Web Server 
(thread based concurrency=cloning)

Matt Welsh, UC Berkeley
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Event Driven Concurrency
(=multiplexing)
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Solution: Staged Server Architecture
(=pipelining)
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Components

Control no. of 
threads
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Control no. of requests
per thread
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Further Reading

• Wettstein,H.: Systemarchitektur, Hanser, 1993
Kapitel 10 (in German)

• Welsh,M. et al.:SEDA: An Architecture for
Well-Conditioned, Scalable Internet 
Services, 
In Proc. 18th Symposium on Operating 
Systems Principles (SOSP-18), Banff, 
Canada, October 2001. 
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