If the automobile had followed the same development cycle as the computer, a Rolls-Royce would today cost $100, get a million miles per gallon, and explode once a year, killing everyone inside.

-- Robert X. Cringely

Chapter 1

Historical Background
1.1 Functions and Coarse Structure

Operating system (Definition according DIN 44300)
“The programs of a digital computing system which lay - together with the basic properties of the computing system - the foundation for the possible modes of operation and especially control and monitor the execution of programs."

Main Tasks

- Provision of virtual machine
 - as an abstraction of the computer system
- Resource Management
Tasks

- Adaption of machine structure to user requirements
- Laying the foundation for a controlled concurrency of activities
- Management of data and programs
- Efficient usage of resources
- Support in case of faults and failures
Operating system architecture

- Quotation:
 "The job of a system architect is similar to the one of a witty octopus juggling daily new balls of different size on the back of a jumping dolphin at the shore of Waikiki."

![Diagram showing the relationships between New applications, Operating system, New Hardware, and Market.]

- Quality features:
 - Security
 - Real-time
 - Mobility
 - Energy consumption
 - Dependability
 -
Operating systems for general purpose computers

Operating system: Control

Application

Operating system: Management and operation

Application

Application

Hardware
System architecture

- Complex systems (in all areas) are composed of single components of different types.
- Successful design of a complex system requires the knowledge of different variants of the components and their interplay.

- Example: Buildings (20,000 years of experience)
 - Walls
 - Columns
 - Ceilings
 - Roofs
 - Stairs
 - Doors
 - Windows

<table>
<thead>
<tr>
<th>Material</th>
<th>Form</th>
<th>Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
System architecture

- **Example Electrical Engineering** (ca. 120 years of experience)
 - Resistor
 - Coil
 - Capacitor
 - Diode
 - Tube
 - Transistor

- **Example Operating systems** (ca. 70 years of experience)
 - Process
 - Signal
 - Address space
 - Channel
 - Interrupt
 - Driver
 - File

 Capacity

 Synchronization

 Type of message transfer
1.2 Historical Sketch

The Fifties (Early stages)

- *One* program is being executed by *one* processor.
 - Batch operation
- The Operating system functionality is limited to
 - support of input/output,
 - transformation of number and character representation.
The Sixties (Virtualization)

- The ratio between CPU- and I/O-speed becomes large.
- OS support the interleaving execution of several independent programs (Multiprogramming).
- Real parallelism due to the advent of I/O-processors.
- The notion of a process as a virtual processor is born.
- Also the memory is „virtualized“ (virtual memory).
- The process also becomes an internal mean of structurization for OS.
- Interactive operation by more than one user (Timesharing).
- Prototypes or predecessors of today’s mainframe OS are developed (OS/360, CTSS/Multics, CP67, VMOS/BS2000).
The Seventies (Software Engineering)

- The beginning of the software crisis: OS become large, complex and error prone.
- Unix is built according to the principle „simple is beautiful“ based on simple hardware (PDP-11).
- The quest for structured system design, maintainability, reliability, protection and security comes up.
- Employment of high level programming languages to implement OS.
- Process becomes a protection domain (context) with a private protected address space and access control (rights, capabilities).
- Quest for support of modular programming abstract data types and object orientation.
- Application of these principles to the operating system itself.
The Eighties (Distributed Systems)

- Workstation computers and personal computers come up.
- Increased communication bandwidth: Ethernet, connected systems.
- For efficient implementation of communication software processes are needed.
- Processes are meanwhile complex entities: A process switch costs several thousand machine instructions. Therefore, address space and process are separated allowing for several processes sharing an address space (*lightweight process, thread*).
- Concepts for parallelism are integrated into program languages.
- Distributed (parallel) computing on networks of workstation computers.
- Workstations provide an ideal means for dissemination of UNIX and UNIX becomes sort of a “standard”.
- Necessity for integration generates pressure for standardization (OSI, TCP/IP, NFS, POSIX, OSF, X/OPEN, OMG, ODP).
- OS overcome node boundaries: From communicating computers to distributed systems.
The Nineties

- Due to high production numbers, microprocessors become cheap.
- Connecting thousands of microprocessors achieves (theoretically) higher performance at a lower price compared to super-computer (e.g. Cray).
- New OS-Functionality needed to support parallel processing.
- PCs and GUIs for OSs become mainstream (Windows 3, Linux).
- Multimedia-applications require support for audio- and video data (real-time capabilities).
- Software in *embedded systems* needs OS-support (e.g. Consumer Electronics).
- Birth and rise of the Web leading to distributed systems in heterogeneous environments (e.g. Corba, Web services).
The 2000s and Today

• Computing technology moves into the everyday while becoming increasingly small and invisible.
• OS support for ubiquitous and pervasive computing and intelligent devices (cf. Internet of things)
• OS platforms for mobile phones with multi-touch user interfaces (e.g. iOS and Android OS)
• Thin clients running web-applications within a browser (e.g. Chrome OS)
• Emulation of other OS-interfaces (i.e. several “OS worlds” on the same computer).
• Converged infrastructures, shared services and the renaissance of virtualization are enabling factors for Cloud computing.
Current topics

- Safety and security
- Robustness and dependability
- Virtualization
- Optimization for multi- and many-core processors (scheduling, locking)
- Energy consumption (mobile devices, data centers)
- User interface
- Database support for file systems
- Cluster-, Grid-, and Cloud-Computing
- Small OS (e.g. for sensor networks)
Further Reading

- Hansen, P.B.: Classic Operating Systems
 Springer, New York, 2001

- The Virtual Museum of Computing
 http://vlmp.museophile.com/computing.html

- ACM Special Interest Group on Operating systems:
 http://www.sigops.org
Example: UNIX

- USG/USDL/ATTIS/DSG/USO/USL
 - Bell Laboratories Research (AT&T)
 - Multics
 - (Ken Thompson, Dennis Ritchie, Brian Kernighan)

- 1965

- 1969
 - UNIX First Edition

- 1973
 - Fifth Edition

- 1976
 - Sixth Edition

- 1977
 - PWB, MERT, CB UNIX

- 1978
 - UNIX RT
 - Seventh Edition

- 1979
 - 3.0
 - 3.0.1

- 1980
 - XENIX (Microsoft, SCO)
 - 32V

- 1977
 - 1BSD
 - 2BSD

- 1979
 - 3BSD
 - 4.0BSD
Example: UNIX

- 3.0.1 (1981)
- 4.0.1 (1981)
- 5.0 (1982)
- System III (1982)
- 5.2 (1983)
- System V (1983)
- System V Release 3 (1986)
- Chorus Release 3 (1987)
- Chorus V3 (1989)
- MACH (1984)
- MACH 2.5 (1986)
- NeXT Step (1987)
- SunOS (1984)
- XENIX (Microsoft, SCO) (1982)
- XENIX 5 Ninth Edition (1985)
- 4.0BSD 2BSD (1984)
- 4.1BSD (1985)
- 4.1aBSD (1985)
- 4.1cBSD (1985)
- 2.8BSD (1985)
- 2.9BSD (1986)
- 4.2BSD (1986)
- 4.3BSD (1987)
- 4.3BSD-Tahoe (1987)
- 2.10BSD (1988)
- 2.11BSD (1988)
- NeXT (1988)
- NET/1 (1988)
More information ;-)

- **Halt and Catch Fire**