
Chapter 12

Virtualization

Virtualization…

• …is used in many contexts in computer systems
• In Operating Systems (already covered in the lecture):

• Virtualization of memory
• Virtualization of block devices (or I/O devices in general)
• Virtualization of processors
• …
• Virtualization of whole machines  topic of this lecture

• Focus of this lecture:

Virtualization of whole machines in the sense that the user can
access some (or many) instances of possibly different
operating systems on one physical machine, i.e., getting the
illusion of some (or many) different machines with possibly
different operating systems.

12-2 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Virtualization

• Not focus of this lecture:

• Everything mentioned above except virtual machines
• Virtual execution environments such as Java VM
• Market overview for virtualization products

12-3 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Motivation (Examples)

• Access to more than one OS on one machine
• Consolidation of servers in computation centers, with additional

features such as improved fault tolerance and load balancing
• Isolation of different administrative domains (e.g., in hosting

business)
• Execution environment for legacy software
• Execution environment for future software
• Teaching
• Debugging, Testing, Fault injection
• OS development
• Network programming
• Secure test environment
• Migration of virtual machines is much simpler than migration of

individual applications
• Cloud computing, especially infrastructure as a service (IaaS)

12-4 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Goals

• “There are three properties of interest when any arbitrary program is
run while the control program (VMM, virtual machine monitor) is
resident: efficiency, resource control, and equivalence.
• The efficiency property. All innocuous instructions are executed by the

hardware directly, with no intervention at all on the part of the control
program.

• The resource control property. It must be impossible for that arbitrary
program to affect the system resources, i.e. memory, available to it; the
allocator of the control program is to be invoked upon any attempt.

• The equivalence property. Any program K executing with a control
program resident, with two possible exceptions, performs in a manner
indistinguishable from the case when the control program did not exist
and K had whatever freedom of access to privileged instructions that the
programmer had intended.”

• Popek und Goldberg 1974:

“Formal Requirements for Virtualizable Third Generation
Architectures”
Communications of the ACM 17 (7): 412-421.

 12-5 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Terminology

• VMM Virtual Machine Monitor,
 provides execution
 environment for guest and
 manages it. Also called
 “hypervisor”.

12-6 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

• “VM” and “guest” are used as
synonyms in this lecture

Example Architecture

Host Hardware

 Host OS

Guest HW

Guest OS

Guest App.

VMM

Guest HW

Guest OS

Guest App.

Host App.
VMM

History

• Virtualization was not invented by VMware, Intel or some other
company in recent time.

• Virtualization is part of IBM mainframe systems since 1972!
• First predecessors in 1966
• First release of “hypervisor” was VM/370

(Virtual Machine Facility/370) for System/370)
in 1972

• Current version: z/VM
• Can execute all other mainframe OS as guest

(including Linux today)
• x86 virtualization is more complicated due to the instruction set and

its limitations.
• Software solutions appeared in the late 90s and early 2000s
• Hardware support was introduced in 2005/2006
• Today many alternative solutions available and widely used

• Currently: Virtualization solutions for mobile systems such as smart

phones

 12-7 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Image: Wikipedia

Dimensions of consideration

12-8 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Simulation of machine elements
(CPU, memory, I/O)

Different architectures
at host side

Different requirements
for guest OS

These dimensions
are not orthogonal!

Simulating a von-Neumann Machine

We need simulation of
• Processor
• Memory
• Input and Output

 realized in

• Software
• Software with

different levels
of hardware support

12-9 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Processor: Different Instruction Set

• Implementing a “processor simulator” in user space: Emulator
• Fetch-execute cycle is easy to implement
• Case-statement to implement individual opcodes
• Register etc. as variables

• Problem: Poor performance

• Software does not allow effective implementations of hardware
mechanisms such as interrupts (theoretically, check for interrupt is
necessary after each instruction).

• Each guest instruction is executed by several host instructions.

• Popek and Goldberg:
 [..] is efficiency. It demands that a statistically dominant subset of
the virtual processor's instructions be executed directly by the real
processor, with no software intervention by the VMM. This statement
rules out traditional emulators and complete software interpreters
(simulators) from the virtual machine umbrella.

12-10 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Processor: Different Instruction Set

• Possible optimizations
• Just in time compilation (JIT) similar to JIT in JVM

• Guest code is on the fly compiled to host code
• Problematic code is still emulated
• Cache for reusing already compiled parts

• Compilation from guest to host code
• Considerations for “same instruction set” apply

• Check for interrupts only “once in a while”

12-11 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Processor: Same Instruction Set

• Emulation is possible but not wise: Why realize one instruction
by many instructions of the same instruction set?

• Instead of emulation, use the host processor directly: VM
becomes process on host, host processor executes its
instructions.

• Problem: Some instructions may affect the host (e.g.,
blocking IRQ)

• Under which conditions is this possible in a simple way?

 Popek and Goldberg 1974:
“Formal Requirements for Virtualizable Third Generation
Architectures”. Communications of the ACM 17 (7): 412 –421.

12-12 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Popek and Goldberg 1974

• The set O = P ∪ S ∪ I of instructions of an instruction set can
be separated into
• P – Privileged instructions: Execution in system mode is possible,

execution in user mode traps
• S – Sensitive instructions S = C ∪ B with

• C – Control sensitive instructions: Change configuration of system
resources

• B – Behavior sensitive instructions: Behavior depends on
configuration of system resources

• I – Insensitive instructions: All remaining instructions

• Theorem of Popek and Goldberg (slightly adapted):
 The construction of an (efficient) virtual machine monitor is

possible if S ⊆ P applies for a computer

12-13 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

O P S

Processor: Same Instruction Set

• If Popek and Goldberg criterion is met: “Trap and emulate”
• Execute VM in user mode
• Sensitive (and privileged) instructions trap
• Emulate them by an appropriate handler in VMM, then return to

VM
• VMM maintains data structures representing state of VM
• This way, virtual system mode is realized in real user mode

• On machines not fulfilling the criterion, this simple approach

does not work

• Attention!
The criterion contains an implication, not an equivalence!
 S ⊆ P  Construction of VMM is possible

12-14 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Processor: Same Instruction Set

• Some instruction sets do not meet the criterion S ⊆ P .
• x86: 17 instructions are sensitive but not privileged (ISA: P54C)
• Code example ARMv4: Return from context switch

; save process state onto stack

STMFD SP!, {r14} ; link register for interrupt

STMFD SP!, {r0-r14}^ ; user registers

MRS r2, spsr ; saved CPU state into R2

STMFD SP!, {r2} ; and then to stack

STR SP, [r0] ; pcb->cpu_state = SP

; switch to other process

LDR SP, [r1] ; SP = next_pcb->cpu_state

; restore context

LDMFD SP!, {r2} ; CPU state to R2

MSR spsr, r2 ; and then into saved state

LDMFD SP!, {r0-r14}^ ; user registers

LDMFD SP!, {pc}^ ; link register for return

 ; from interrupt

12-15 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Behavior sensitive but
not privileged!

The instruction set contains
more of such instructions
(altogether, 24 sensitive but
not privileged instructions)

Processor: Same Instruction Set

• If Popek and Goldberg criterion is not met, i.e.,
D = {i ∈ O | i ∈ S, i ∉ P} ≠ ∅

• Different approaches are possible, selection:
• Approach by Popek and Goldberg: “Hybrid VM”

• Basic idea: Instructions may be sensitive in user and/or system mode
• If the set of user sensitive instructions is a subset of privileged

instructions, a “hybrid virtual machine monitor” can be constructed
• This leaves the problem of sensitive instructions in virtual system

mode
• Solution: Instructions in system mode are always emulated
 Not very efficient but better than a pure emulator

• Adapt VM in a way that no instructions from D are executed
• Adapt hardware in a way that it fulfills the criterion

12-16 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

O P
S

D

Processor: Same Instruction Set

• If Popek and Goldberg criterion is not met, i.e.,
D = {i ∈ O | i ∈ S, i ∉ P} ≠ ∅

• Different approaches are possible, selection:
• Approach by Popek and Goldberg: “Hybrid VM”
• Adapt VM in a way that no instructions from D are executed

• Instructions are replaced by VMM at runtime (binary translation)
• Instructions are replaced before runtime
• Adapting the guest OS (paravirtualization)

• Adapt hardware in a way that it fulfills the criterion
• Hardware becomes virtualization-aware

• Add new instructions for virtualization
• Add new mode for virtualization

- Orthogonal to traditional modes or
- New mode “above” system mode (even more privileged)

• Example: AMD-V, Intel VT-x, ARM Virtualization Extensions as an
extension of ARMv7

12-17 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

O P
S

D

Examples

• Intel VT-x and AMD-V

12-18 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

• ARMv7-A Virtualization
Extensions

Guest App

Guest OS

Guest App

Guest OS

Virtual Machine Monitor

Ri
ng

 0

 R
in

g
3

Ro
ot

 M
od

e

Gu

es
t M

od
e

VM exit VM enter

Guest App

Guest OS

Guest app

Guest OS

Virtual Machine Monitor

User Mode
(non privileged)

Supervisor Mode
(privileged)

Hyp Mode
(more privileged)

Examples: VT-x and AMD-V in Linux

• Intel Xeon X3470
 $ cat /proc/cpuinfo | grep flags | head -1

 flags : fpu vme de pse tsc msr pae mce cx8 apic sep
mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss
ht tm pbe syscall nx rdtscp lm constant_tsc arch_perfmon pebs bts
rep_good nopl xtopology nonstop_tsc aperfmperf pni dtes64 monitor
ds_cpl vmx smx est tm2 ssse3 cx16 xtpr pdcm sse4_1 sse4_2 popcnt
lahf_lm ida dtherm tpr_shadow vnmi flexpriority ept vpid

• AMD Opteron 8435
 $ cat /proc/cpuinfo | grep flags | head -1

 flags : fpu vme de pse tsc msr pae mce cx8 apic sep
mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall
nx mmxext fxsr_opt pdpe1gb rdtscp lm 3dnowext 3dnow constant_tsc
rep_good nopl nonstop_tsc extd_apicid pni monitor cx16 popcnt
lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse
3dnowprefetch osvw ibs skinit wdt npt lbrv svm_lock nrip_save
pausefilter

12-19 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Simulating a von-Neumann Machine

12-20 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

We need simulation of
• Processor
• Memory
• Input and Output

 realized in

• Software
• Software with

different levels
of hardware support

Memory

• Memory of the VM is just a large memory region of the host.
• Instructions of VM access this memory
• MMU of host can be used for address mapping

• Problem: Virtual memory and memory protection inside the VM
• Directly accessing the MMU by the VM would influence the host
• Pure Software solution

• MMU behavior is emulated for the VM
• Guest page tables are data structure of VMM
• VMM creates shadow page tables for host MMU
• High overhead due VMM interventions

• Hardware support: Second Level Address Translation (SLAT)
• Separating memory management of VM and VMM in hardware
• Guest can change its page tables without VMM intervention
• Virtualization-aware TLB important for performance
• Supported by the second generation of AMD-V and Intel VT-x, called

rapid virtualization indexing (formerly nested pagetables) (AMD) or
extended pagetables (Intel).

 12-21 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Second Level Address Translation

12-22 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Guest 1

Guest 2

Control by guest OS Control by VMM

Virt. Memory guest 1

Virt. Memory guest 2

“Phys.” memory guest 1

“Phys.” memory guest 2

Phys. memory host

Who deals with page faults?

Examples: VT-x and AMD-V in Linux

• Intel Xeon X3470
 $ cat /proc/cpuinfo | grep flags | head -1

 flags : fpu vme de pse tsc msr pae mce cx8 apic sep
mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss
ht tm pbe syscall nx rdtscp lm constant_tsc arch_perfmon pebs bts
rep_good nopl xtopology nonstop_tsc aperfmperf pni dtes64 monitor
ds_cpl vmx smx est tm2 ssse3 cx16 xtpr pdcm sse4_1 sse4_2 popcnt
lahf_lm ida dtherm tpr_shadow vnmi flexpriority ept vpid

• AMD Opteron 8435
 $ cat /proc/cpuinfo | grep flags | head -1

 flags : fpu vme de pse tsc msr pae mce cx8 apic sep
mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall
nx mmxext fxsr_opt pdpe1gb rdtscp lm 3dnowext 3dnow constant_tsc
rep_good nopl nonstop_tsc extd_apicid pni monitor cx16 popcnt
lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse
3dnowprefetch osvw ibs skinit wdt npt lbrv svm_lock nrip_save
pausefilter

12-23 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Simulating a von-Neumann Machine

12-24 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

We need simulation of
• Processor
• Memory
• Input and Output

 realized in

• Software
• Software with

different levels
of hardware support

Input/Output: Emulation

• Devices are emulated with all functionality
• Busses
• Interrupt mechanisms
• Memory mappings
• …

• Allows arbitrary devices

independent from physical
 host hardware

• Virtualization software maps accesses

to real devices

12-25 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Guest app.
Guest OS

Guest driver

Host driver
Device

Emulation

Guest app.
Guest OS

Guest driver

Emulation

Input/Output: Paravirtualization

• Avoiding the overhead of simulation by saving
“translations”

• VMM offers VM a special device
• Maps I/O operations directly to host I/O
• VM has special drivers for device,

usually much simpler than
driver for real hardware

• Most often used for
• Network
• Mass storage
• Graphics

• Additionally special functions for interaction with VMM
• Dynamic changes of memory size of VM

 12-26 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Guest app.
Guest OS

Guest driver

Host driver
Device

Guest app.
Guest OS

Guest driver

Input/Output:
Access to Host Devices

• Devices of host are mapped exclusively into a VM

• Needs hardware support for mapping
of memory locations and interrupts (IOMMU)
• Intel: VT-d
• AMD: AMD-Vi

• Native device drivers are used
 by VM

• Host should not access the device

12-27 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Guest app.
Guest OS

Guest driver

Device

Guest app..
Guest OS

Guest driver

Input/Output: Access to Virtualizable
Devices of Host

• As before, but
• Device is virtualizable and offers multiple instances that

can be mapped into different VM
• Guest accesses its instance by

appropriate drivers
• Cooperation of instances is

managed by device, sometimes
with help of driver at host

• Currently used for
• Professional network cards (multiple

HW queues are mapped into VM)
• Graphic boards for GPGPU or desktop

virtualization

12-28 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Guest app.
Guest OS

Guest driver

Device

Guest app.
Guest OS

Guest driver

Linux KVM, Guest View to PCI

lspci

 00:00.0 Host bridge: Intel Corporation 440FX - 82441FX PMC [Natoma] (rev 02)

 00:01.0 ISA bridge: Intel Corporation 82371SB PIIX3 ISA [Natoma/Triton II]

 00:01.1 IDE interface: Intel Corporation 82371SB PIIX3 IDE [Natoma/Triton II]

 00:01.3 Bridge: Intel Corporation 82371AB/EB/MB PIIX4 ACPI (rev 03)

 00:02.0 VGA compatible controller: Cirrus Logic GD 5446

 00:03.0 Ethernet controller: Intel Corporation 82540EM Gigabit Ethernet
Controller (rev 03)

 00:04.0 Ethernet controller: Red Hat, Inc Virtio network device

 00:05.0 Unclassified device [00ff]: Red Hat, Inc Virtio memory balloon

 00:06.0 SCSI storage controller: Red Hat, Inc Virtio block device

 emulated / paravirtualized / Interaction with VMM

12-29 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

VMware ESX, Guest View to PCI

lspci

 00:00.0 Host bridge: Intel Corporation 440BX/ZX/DX - 82443BX/ZX/DX Host bridge
(rev 01)

 00:01.0 PCI bridge: Intel Corporation 440BX/ZX/DX - 82443BX/ZX/DX AGP bridge
(rev 01)

 00:07.0 ISA bridge: Intel Corporation 82371AB/EB/MB PIIX4 ISA (rev 08)

 00:07.1 IDE interface: Intel Corporation 82371AB/EB/MB PIIX4 IDE (rev 01)

 00:07.3 Bridge: Intel Corporation 82371AB/EB/MB PIIX4 ACPI (rev 08)

 00:07.7 System peripheral: VMware Virtual Machine Communication Interface (rev
10)

 00:0f.0 VGA compatible controller: VMware SVGA II Adapter

 00:11.0 PCI bridge: VMware PCI bridge (rev 02)

 00:15.0 PCI bridge: VMware PCI Express Root Port (rev 01)

[…]

 02:01.0 Ethernet controller: Intel Corporation 82545EM Gigabit Ethernet
Controller (Copper)

 03:00.0 Serial Attached SCSI controller: VMware PVSCSI SCSI Controller (rev
02)

 0b:00.0 Ethernet controller: VMware VMXNET3 Ethernet Controller (rev 01)

 emulated / paravirtualized / Interaction with VMM

 12-30 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Dimensions of Consideration

12-31 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Simulation of machine elements
(CPU, memory, I/O)

Different architectures
at host side

Different requirements
for guest OS

These dimensions
are not orthogonal!

VM as Userland Process of Host OS

• No special kernel support
• Suitable for emulators
• Problematic for hardware-supported solutions because

privileged mode requires OS intervention
• VM is subject to usual CPU scheduling
• Example: QEMU, Frodo, …

12-32 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Host Hardware
Host OS

Guest HW
Guest OS

Guest Userland

Host Userland

VM as Userland Process of Host OS
with VMM in Kernel

• Management of VM inside kernel (integrated hypervisor)
• Kernel driver for privileged components
• Suitable for hardware-supported virtualization both without and

with special instruction sets
• Kernel driver for virtualization extensions in the latter case

• VM is subject to usual CPU scheduling
• Also called “Type 2 hypervisor”
• Example: Virtualbox, VMware Player and Workstation, KVM, …

12-33 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Host Hardware
Host OS

Guest HW
Guest OS

Guest Userland

Host Userland
VMM

Dedicated OS only for Execution of
VMs (hypervisor)

• Hypervisor runs natively on the machine (as a kind of OS)
• Virtualization drivers are integrated into hypervisor
• VM are scheduled by special scheduler that is aware of

virtualization
• Also called “Type 1 hypervisor”
• Example: Xen, VMware ESX, Microsoft HyperV, …

12-34 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Host Hardware
Hypervisor / VMM

Guest HW
Guest OS

Guest Userland

Guest HW
Guest OS

Guest Userland

Dimensions of Consideration

12-35 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Simulation of machine elements
(CPU, memory, I/O)

Different architectures
at host side

Different requirements
for guest OS

These dimensions
are not orthogonal!

Unmodified Guest Operating
Systems

• If the virtualized hardware behaves the same way as
real hardware (with exception of timing and available
resources), an unmodified guest OS can be used.
• Requires emulation of at least some I/O devices  low

performance
• Existing drivers can be used
• Closed source systems run “out of the box”

• Also called “full virtualization” in case that a significant

amount if instructions is not emulated

• Example: Nearly all virtualization products

12-36 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Paravirtualization

• Alternative option: Guest OS is aware of virtual
environment
• No need for emulation because guest accesses real

functionality in a more direct way (mapping to functions of
host OS).

• Paravirtualized OS
• Guest OS is adapted to be aware of virtualization.
• Code that uses problematic instructions is replaced by code

directly accessing the appropriate hypervisor functionality.
• Guest OS is no longer build for the original processor but

specifically for the appropriate hypervisor.
• Example: Xen, KVM (both optional)

• Paravirtualized I/O  slide 26 on input/output
• Paravirtualized device drivers can also be used in an

unmodified guest OS
 12-37 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Containers

• Strictly seen, no “real”
virtualization

• Implementation inside host kernel
to provide necessary functionality,
esp. separation.

• All processes of all guests are
visible to host OS.

• Host kernel is used for host and all
guests.
 only same OS possible

• Guest only has own userland
 e.g., different Linux
distributions

• Separation is done inside host OS
by creating isolated sets of
processes
• Behave similar to the userland of a

real OS.
 12-38 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Host Hardware
Host OS

Guest Userland Host Userland
OS Container

Simulation of machine elements
(CPU, memory, I/O)

Different architectures
at host side

Different requirements
for guest OS

These dimensions
are not orthogonal!

Containers

12-39 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

• Resources belong to the host,
usually limited for individual
guests.
• Number of processes, memory,

CPU shares for scheduling
• Mapping of user IDs to enable root

inside guest.
• I/O is realized by the host kernel

by offering virtualized view to real
I/O.
• Filesystem may be a directory of

host filesystem or just an image
formatted with some filesystem.

• Network access by simple devices
transmitting data to the host
kernel (Linux: e.g., tun/tap
infrastructure).

• Example: Solaris zones, Linux
containers, OpenVZ, …

Host Hardware
Host OS

Guest Userland Host Userland
OS Container

Simulation of machine elements
(CPU, memory, I/O)

Different architectures
at host side

Different requirements
for guest OS

These dimensions
are not orthogonal!

User Mode Virtualization

12-40 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

• Strictly seen, no “real”
virtualization

• Combination of concepts from
paravirtualization and container

• Guest OS…
• does not run on emulated

hardware or special paravirtualized
devices

• runs directly as process on top of
host OS.

• is therefore adapted to use the API
of the host OS instead of accesses
to (real or emulated) hardware.

• is visible as one process to host
OS.

• Example: User mode linux

Host Hardware
Host OS

Guest OS
Guest Userland

Host Userland

Simulation of machine elements
(CPU, memory, I/O)

Different architectures
at host side

Different requirements
for guest OS

These dimensions
are not orthogonal!

Live Migration

• In larger installations with more than one host, migration of VMs is a
useful option for many reasons.
• Load balancing
• Maintenance
• Adaption to changes in requirements (e.g., faster host)
• Energy-awareness (only necessary hosts are powered, dynamic adaption

by starting/stopping hosts)
• Assumptions

• Hosts are sufficiently equal
• Hosts are both up and connected by fast network

• Basic idea
• Copy VM memory from source to target iteratively (watching changes)

while VM is running
• Stop VM on source host, copy last changes and state
• Start VM on target host

12-41 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Live Migration

• Problems

• Access to devices has to be possible from both hosts
• Network storage, same network for VM on both hosts, …

• Direct access to host devices for VM
• Special handling or using emulated devices supporting migration

• Many optimizations are possible
• “Snapshots” are also interesting for other purposes (backup,

experiments, …)

12-42 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Further Aspects

• Multiprocessor VMs
• Basic principle can also be applied to multiple virtual CPU (vCPU)
• Problems

• Violates assumption that a CPU is always present
• Flexible VM vs. detailed knowledge on execution environment
• …

• Solutions
• Improved hardware support
• Adapted scheduling of vCPU by VMM

• Virtual networks

• Virtual network adapters of VM are networked to virtual
infrastructures

• Connection to physical networks

12-43 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Further Aspects

• Recursive Virtualization
• Hypervisor is guest of another hypervisor
• Challenges are identical to those of single level virtualization
• Hardware support usually only supports one layer  Emulation

necessary

• Cloud computing
• “Infrastructure as a service” (IaaS)
• VM as container for applications that can easily be handled
• Resources can be adapted at any time

• Management and Orchestration

• Container
• Docker
• Kubernetes

12-44 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

	Foliennummer 1
	Virtualization…
	Virtualization
	Motivation (Examples)
	Goals
	Terminology
	History
	Dimensions of consideration
	Simulating a von-Neumann Machine
	Processor: Different Instruction Set
	Processor: Different Instruction Set
	Processor: Same Instruction Set
	Popek and Goldberg 1974
	Processor: Same Instruction Set
	Processor: Same Instruction Set
	Processor: Same Instruction Set
	Processor: Same Instruction Set
	Examples
	Examples: VT-x and AMD-V in Linux
	Simulating a von-Neumann Machine
	Memory
	Second Level Address Translation
	Examples: VT-x and AMD-V in Linux
	Simulating a von-Neumann Machine
	Input/Output: Emulation
	Input/Output: Paravirtualization
	Input/Output: �Access to Host Devices
	Input/Output: Access to Virtualizable Devices of Host
	Linux KVM, Guest View to PCI
	VMware ESX, Guest View to PCI
	Dimensions of Consideration
	VM as Userland Process of Host OS
	VM as Userland Process of Host OS with VMM in Kernel
	Dedicated OS only for Execution of VMs (hypervisor)
	Dimensions of Consideration
	Unmodified Guest Operating Systems
	Paravirtualization
	Containers
	Containers
	User Mode Virtualization
	Live Migration
	Live Migration
	Further Aspects
	Further Aspects

