
Chapter 11

Performance Modeling

11.1 Problem Statement

• Whether a computer system consisting of hard- and
software really achieves the desired performance turns
out during operation at the latest.

• Then, however, it is too late.
• Similar to other areas of engineering (e.g. architecture,

aviation) quantitative issues (performance, capacity)
need to accompany the design process and be
interwoven with it.

• Whereas the performance of hardware components can
be determined relatively easily, the performance of a
complete computer system depends on the complex
interplay of software and hardware components.

• It is the responsibility of the operating system to
organize this interplay in the most efficient way to
achieve the maximum performance.
 11-2 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Impact factors on the performance

• The performance data of the machine (MIPS per
core, number of cores, memory capacity, bus
bandwidth,...) set upper bounds for the
performance of the computer system.

• To what extent this performance capacity can be
exploited depends on the program load that more
or less fits the properties of the machine.

• The operating system tries by using appropriate
strategies and a suitable program mix to provide all
active components with useful work.

11-3 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Impact factors on the performance

• Finally, the user or operator/owner of the
computing system defines the ultimate
performance goals from which particular
performance measures can be derived.

11-4 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Machine
Load

(= Programs +
Input data)

Performance

Operating system
adaptation

Goals

What is performance?

• Depending on the perspective and the application area,
different measures for performance are useful.

• Performance measures are usually based on the intuitive
physical notion of power:

 power (=performance) = work per time

• It is measured

• how long some action takes
 (memory cycle time, block transfer time, response time, program

runtime, packet delay,....)
• how many actions per time unit are performed
 (MIPS, MFLOPS, transactions/sec, Jobs/h, Mbit/sec, SPECmarks…)

• As can be seen from the examples, pure hardware measures
and measures for complete HW/SW systems are used.

11-5 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

How can performance be assessed?

• At the real system
• If the system to be evaluated is at disposal, we can use

measurements.
• A device to measure the system’s behavior is called monitor.
• Monitors can be realized in hardware or in software.

• Hardware monitor
• A monitor device consists of several probes, that are connected at

those places where something is to be measured.
• Typical components :

• Counter counting of specific events
• Logic elements combination of special signals
• Comparer Recognition of particular signal values (e.g.

 specific address)
• Clock To provide logged events with a timestamp
• Disk / Tape recording of signals or events

• Measures hardware quantities, e.g. addresses, instruction
execution times, bus assignment, cache misses, etc.

• High time resolution (nsec), high sampling rate, usually no
performance impact.

 11-6 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

How can performance be assessed?

• Software Monitor
• A program system embedded into an application

system or operating system
• Measures software quantities, e.g. operating system calls,

procedure execution times, working set sizes
• Uses system resources, i.e. influences performance and

may distort measurements to some degree
• Time resolution dependent on system clock
• System specific
• Operation modes

• On-line-operation: Representation of measurements on-line
 during operation

• Off-line-operation: Recording of events (trace) on
 secondary memory for later post-
 processing and evaluation

 11-7 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Monitors

• Monitors are useful for bottleneck analysis and optimization of existent
hard-/software systems.

• If we can measure the call frequencies of particular operating system
modules, we know at which place further code optimization is
profitable.

• If we can measure statistical profile of memory requests, we can
optimize the memory management scheme towards this profile.

• If we know the block access frequencies at the disk storage we tune the
track allocation to minimize head movements and thus access times.

• If we know the behavior of individual programs (e.g. compute bound
vs. I/O-bound), we can achieve high utilization by a suitable program
mix.

• If the performance of a system is poor, it may not be the processor to
be blamed:

• The bottleneck may be
• the memory (too much paging)
• the cache (too low hit ratio)
• the bus (too many bus conflicts)

• All this can be found out using monitors.

 11-8 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Characterizing the Program Load

• Processor performance indicators such as MIPS or MFLOPS are based
on a weighted mix of individual instructions.

• They only tell you something about performance if the processor is
really the bottleneck.

• I/O behavior and possible performance loss due to the operating
system remains unconsidered.

• Example: Gibson Instruction Mix

11-9 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Load and Store 31.2
Fixed-Point Add and Subtract 6.1
Compares 3.8
Branches 16.6
Floating Point Add and Subtract 6.9
Floating Multiply 3.8
Floating Divide 1.5
Fixed-Point Multiply 0.6
Fixed-Point Divide 0.2
Shifting 4.4
Logical, And, Or 1.6
Instructions not using registers 5.3
Indexing

100.0

Instruction type percentage

18.0

Characterizing the Program Load

• Synthetic Programs
• A synthetic program is a special small test program in a

higher programming language that mainly consists of
operating system calls and I/O operations.

• It is supposed to mimic program behavior in a condensed
way.

• It is easily portable and adaptable.
• Effects resulting from multiprogramming and high program

load (paging) cannot be modeled adequately.

• Benchmarks
• To determine the real performance, we have to measure

real programs.
• A benchmark is a program or a set of programs that

represent a typical load profile (workload).

11-10 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Application-specific Benchmarks

• Since the performance requirements are different in different
areas of computing, application specific benchmarks have proven
useful.

• Example
• Linpack

• Dedicated to scientific computing. High fraction of floating point operations.
• Most of the time are spent in BLAS subroutines (Basic Linear Algebra Subpackage).

• Dhrystone
• Specialized for system software. Many procedure calls, many string operations.
• Good for integer performance. I/O- and floating-point performance are not covered.

• Debit-Credit Benchmark
• Dedicated to transaction systems (Banking applications)

• SPEC Benchmark Suite (Systems Performance Evaluation
Cooperative)

• Sort of standard, which leading manufacturers have agreed on.
• Measures primarily CPU performance (integer and floating-point).
• Consists of 10 selected applications from science and engineering.

11-11 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Benchmark Comparison

11-12 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

From: Weicker, R.P.: An Overview of Common Benchmarks. IEEE Computer, Dec. 1990

SPEC-Benchmark

• Original SPEC-Benchmark:

• The current SPEC CPU2017 suite includes applications from

these areas:

11-13 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

AI game theory bioinformatics chemistry compilers

interpreters data compression fluid dynamics physics

speech recognition video processing weather prediction

SPEC-Benchmark

• Meanwhile, SPEC is only the umbrella organization,
under which different groups are developing specific
benchmarks:
• Open Systems Group (OSG)
• High Performance Group (HPC)
• Graphics Performance Group (GPG)

• Currently, SPEC benchmarks are available for:

• CPU, Graphics, MPI/OMP,
• Java Client/Server, Mail Server, NFS,
• Power, SIP, SOA,
• Virtualization, Web Servers, Cloud/IaaS

11-14 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Performance evaluation a priori

• To assess and evaluate strategy variants during the
design phase, we cannot rely on measurements since
the system does not exist yet.

• Frequently, we also want to abstract from machine
details to exclude side effects.

• In this case we have to model the system and its
behavior.

• To do this, we have two alternatives:
• Analytical models

• The system behavior is described by mathematical quantities
and functional relations between them.

• Simulation models
• The computing system with all its components and its

behavior is simulated on the computer.

11-15 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Simulation vs. Analytical Modeling

• Simulation models are almost unlimited concerning their accuracy
and their application areas.

• Modeling can be done with an arbitrary level of detail.
• The cost is correspondingly high:

• The development of the simulation models is costly.
• Carrying out simulations runs is extremely compute intensive.

• To find out the functional relationship between two system
quantities, we need to perform a complete set of simulation runs.

• Analytical models rely on assumptions that in real world are often

not met (e.g. assumptions about distributions).
• The computational overhead is very low compared to simulation.
• Functional relationships can be derived directly from the model.
• The application range is limited due to the mathematical

assumptions.

11-16 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

11.2 Queuing models: Introduction

• Queuing models consist of one or more service stations that are built
in the following way:

• An arrival stream, described by the distribution of the interarrival

time, feeds an input queue with objects that may be customers,
requests, processes, packets etc. depending on the application.

• From there the customers get to one of the identical service stations
or servers, if it is idle.

• The selection from the queue is done according to some given
strategy.

• The time the customer spends at the service station is described by
the probability distribution of the service time.

11-17 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Queue
(Strategy) Server

(service time)

Arrival stream
(Arrival behavior)

. . .

1

c

Characterization of queuing systems

• To describe a given queuing system, the major
parameters are composed in the following characteristic
way (Kendall's notation):

 A | B | c | K | P | S

• The letters have the following meaning:
 A: Distribution of the interarrival time
 B: Distribution of the service time
 c: Number of service stations
 K: Capacity of queue
 P: Size of population (maximum number of customers)
 S: Selection strategy

11-18 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Characterization of queuing systems

A: Distribution of the interarrival time
 Examples:
 D Deterministic
 M Markov (exponential)
 Er Erlang stage r
 Hr Hyperexponential degree r
 G General (unspecified)

B: Distribution of the service time
 Possible specifications as with A

S: Selection strategy
 Examples:
 FCFS First Come First Served
 LCFS Last Come First Served
 PS Processor Sharing

 11-19 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

A | B | c | K | P | S

Characterization of queuing systems

• Usually, the parameters queue size K and
 population P are not limited.
• In those cases the quantities are not indicated.
• If nothing is said about S, the assumption is FCFS (default strategy).

• Typical descriptions are:
 D | D | 1
 M | M | c
 M | M | 1 | K
 Er | M | 1
 M | G | c
 G | G | 1
 M | M | 3 | 20 | 1000 | FCFS

11-20 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

A | B | c | K | P | S

Important quantities

• Number quantities (stochastic variables)
 m number of customers in the queue
 u number of customers currently being served
 n number of customers in the system

11-21 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

. . .

1

3

2

m u
n

Important quantities

• Time quantities (stochastic variables)
 a interarrival time
 w waiting time (time spent in queue)
 b service time (time spent at service station)
 r response time (time spent in the system), a.k.a. residence time

• Rates (Parameter of distribution)
 λ arrival rate (E[a]=1/λ)
 µ service rate (E[b]=1/µ)

 11-22 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

preceding
arrival arrival start of

service
end of

service

w b
r

a time

Elementary relations

• Stability criterion
• If c denotes the number of service stations (or simply:

servers) the following must hold:
 λ < c µ
 "On the average, not more customers may arrive than can

 be processed (= served)"

• Especially in systems with only one server (c = 1) we use
 ρ := λ /µ (traffic intensity)

• We get as stability condition: ρ < 1

11-23 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Elementary relations

• If the stability criterion is violated, we get (in case

of unlimited population and unlimited queue size)
infinite queue lengths (m = ∞).

• By limiting the input buffer (queue), however, the
system remains (mathematically) stable.

• If there is a buffer overflow, customers (requests)
get lost.

11-24 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Elementary relations

• Numbers
• The following holds: m + u = n
• The number of requests in the system is composed of the number

in the queue and the number in service.
• This also holds for the expectations:

 E[m] + E[u] = E[n]

• Times

• The following holds: : w + b = r
• The response time is composed of waiting time and service time.

 E[w] + E[b] = E[r]

• If the service rate is independent of the queue length, the
additive relation is also applicable to the variances:

 var[m] + var[u] = var[n] and var[w] + var[b] = var[r]

11-25 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Little‘s Law

• Relation between numbers and times in arbitrary
(sub)systems

• „Mean number = arrival rate x mean residence time“

• Idea for proof:

• If you look at the system exactly when a requests leaves, then
there are in the system exactly those that have arrived during the
residence time of the leaving request.

• The number of requests in the system is N, and the number of
requests arrived during a period R divided by R is the arrival rate.

• By taking the average we get the above relation.

11-26 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Arrival rate
number

Leaves the system

Little‘s Law

• We observe the system over a long interval [0,T].

• A(t): Number arrivals in [0,t], t<T
• D(t): Number departures in [0,t], t<T

• Due to the stability condition the following approximately holds:
 A(T) = D(T).

• We obtain as arrival rate:
 Arrival rate = A(T) / T = D(T) / T = Departure rate

11-27 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

1 2 3 4 5 6 7 8 0

Arrival
Request 1

Arrival
Request 2

Arrival
Request 3

Departure
Request 1

Departure
Request 2

Departure
Request 3

time

Little‘s Law

• Moreover, we get for the number of requests N(t) in the system:
 N(t) = A(t) – D(t)

• The filled area in both diagrams has the same size. It can be
calculated as

 and indicates the accumulated residence time of all requests in the

system.

 11-28 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

1 2 3 4 5 6 7 8

1

2

3

4

5

time

Arrivals A

Departures D

Request number

1 2 3 4 5 6 7 8

1

2

3
Number in system N

time

() () () () ()dttDdttAdttDtAdttNJ
TTTT

∫∫∫∫ −=−==
0000

Little‘s Law

• J can be obtained also this way (see
diagram at the right):

• Dividing J by the number of arrived

(or departed) requests yields the
mean residence (response) time:

11-29 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

1 2 3

1

2

3

4

request number

response time R
()

∑
=

=
TA

i
iRJ

1

• We obtain as the mean number of requests in the system:

• This last equation is again Little's Law.

()TA
JR =

()

()
()TA
J

T
TA

T
JdttN

T
N

T

×=

== ∫
0

1

Little‘s Law

• Mean number = arrival rate × mean residence time

• The law is applicable

• for the complete queuing station:
 E[n] = λ E[r] number in system = arrival rate × response time

• for the server alone:
 E[u] = λ E[b] number in service = arrival rate × service time

• for the queue:
 E[m] = λ E[w] number in queue = arrival rate × waiting time

11-30 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

11.3 Stochastic Processes

• If we look at a system quantity such as the queue length m at
different times, we will observe different values.

• They can be regarded as stochastic variables over the time.

• Let T be a set and let X(t) be a stochastic variable for each t ∈T .

• The collection of all stochastic variables X(t), t ∈T is called a
stochastic process.

• Types of stochastic processes:
• If the set of values that X(t) can take is finite or countable, the

process is called discrete-state, otherwise continuous-state.

• If the set T is finite or countable, the process is called discrete-
time, otherwise continuous-time.

11-31 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Examples

11-32 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

discrete-state continuous-state

continuous-
time

discrete-
time

time

state

time

state

time

state

time

state

Markov Process

• Definition
• A stochastic process {X(t), t ∈T } is called Markov process, if

for each subset of n+1 values t1< t2< ... < tn+1 of the index set T
and for each set of n+1 states {x1, x2, ... xn+1} the following
holds:

11-33 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

() () () ()[]
() ()[]nnnn

nnnn

xtXxtXP

xtXxtXxtXxtXP

===

====

++

++

11

221111 ,...,,

• That means that for a Markov
process the next state only depends
on the current state independent of
from where we entered that state.

• The complete history of the process
is condensed or summarized in the
current state.

• A discrete-state Markov process is
also called Markov chain.

time

State

Future Past
t n

X(t n)=x n

Markov Chains

• A Markov chain switches states at some times.
• If the probability for the state change does not depend on the

time, the chain is called homogeneous.
• A homogeneous Markov chain can be described by its state

change behavior.
• We denote with qij the transition rate
 from state i into state j.
• The Markov chain can be represented
 as a (possibly infinite) graph with the
 states as vertices and the possible
 transitions as edges.
• Under some assumptions the process shows a so-called

stationary behavior, i.e. for t → ∞ the process exhibits an
"average" behavior that is independent of its initial state.

• Then we can calculate the probability that the process is in
some state i.

 11-34 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

1 2
3

4 5
6

q 12

q 41

q 64

q 42
q 25

q 23

q 36 q 53

q 56

Special Markov Chains

• If in a discrete, one-dimensional state space only transitions between
neighboring states are possible the Markov chain is called birth-and-
death process.

• The birth-and-death (BD) process can be described by the following
state diagram:

• The λi are called birth rates, the µi are death rates.
• Applying BD processes to queuing systems the λi are called arrival

rates, the µi are service rates.
• The state space may be finite or infinite.
• There are also pure birth processes (µi = 0 ∀i) and pure death

processes (λi = 0 ∀i). (In queuing systems: arrival process and
departure process.)

• In many cases the rates are independent of the state, i.e. λi = λ ∀i or
µi = µ ∀i .

 11-35 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

0 1 2 3 4 5 6
λ 0 λ 1 λ 2 λ 3 λ 4 λ 5 λ 6

µ 1 µ 2 µ 3 µ 4 µ 5 µ 6 µ 7

The Poisson Process
(Poisson Stream)

• The pure birth process counts the births or arrivals, respectively, and
is called Poisson Process.

• The following properties hold:
• The probability for an arrival at time t is independent of the time of the

previous arrival (“Memorylessness” or Markov-property).
• The interarrival time is exponentially distributed, i.e.

• The number of arrivals (state of Poisson Process) X(t) in interval [0,t]
follows a Poisson distribution, i.e.

11-36 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Arrivals

0 t Interarrival time A

() tetA λ−−= 1

()[] () t
k

e
k
tktXP λ−λ

==
!

Poisson Streams

• Joint of Poisson Streams
 If several Poisson arrival streams are combined,

the resulting combined process is again a
Poisson process with rate

• Fork of Poisson Streams
 If a Poisson stream forks into several
 substreams with forking probabilities
 , the resulting substreams are also
 of Poisson type and the following holds:

• Departures
 If a M|M|k-Station is fed by a Poisson stream

then the departure stream is also of Poisson
type.

 11-37 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

λ 1

λ k

λ 2
λ

λ 1

λ k

λ 2 λ
p k

p 2

p 1

λ λ

∑
=

λ=λ
k

i
i

1

∑ = 1, ii pp

λλ ii p=

11.4 The M|M|1-Station

• The birth-and-death process exactly describes the behavior of
the most simple service station, the M|M|1-Station.

• The state of the process indicates the number N of requests at

the station.
• The following generally holds for the BD-process:

• The idle probability π0 follows from the normalization condition:

 

 11-38 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

0 1 2 3 4 5 6
λ 0 λ 1 λ 2 λ 3 λ 4 λ 5 λ 6

µ 1 µ 2 µ 3 µ 4 µ 5 µ 6 µ 7

[] 00
1

0

1

21 >⋅⋅⋅===
−

−− kforkNP
k

k

k

k
k π

µ
λ

µ
λ

µ
λπ

1
0

=π∑
∞

=i
i

1

1

1

0 1
0 1

−∞

=

−

= +








µ
λ

+=π ∑ ∏
k

k

i i

i

Steady state probabilities

• If all rates are constant (λi = λ, µi = µ) we get:

 with

• Usually, we set ρ := λ/µ and call ρ traffic intensity. Then we have:

• For stability reasons we require: ρ < 1, i.e. λ < µ .

• Then we get for the state probabilities

• The number of requests in the system in a M|M|1-Station is

therefore geometrically distributed.

11-39 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

0 1 2 3 4 5 6
λ λ λ λ λ λ λ
µ µ µ µ µ µ µ

[] 0π
µ
λ

=π== k

k

kkNP
µ
λ

−=








µ
λ

=








µ
λ

+=π
−

∞

=

−
∞

=
∑∑ 11

1

0

1

1
0

i
k

k

i
k

k

ρ−=π 10

[] ()ρ−ρ=π== 1k
kkNP

Other Quantities

• Once we know the distribution, we can compute many relevant
quantities:
• Mean number of requests in the system:

• Probability that there are at least k requests in the system:

• Mean response time
 Using Little’s formula we obtain the mean response time from the mean
 number of requests:

• Utilization defined as the probability that the system is working:

11-40 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

[]
λ−µ

λ
=

ρ−
ρ

=π== ∑
∞

= 10i
iiNEN

[] () k

ki

i

ki
kkNP ρ=ρ−ρ=π=≥ ∑∑

∞

=

∞

=
1

[] 0system not idle 1Pη π ρ= = − =

() () λ−µ
=

ρ−µ
=

ρ−λ
ρ

=
λ

=⇒λ=
1

1
1

1
NRRN

Quantities as Functions of Utilization

11-41 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

 π k

ρ

ρ

N

ρ

R

Distribution
Mean number

Mean
response
time

[image: image1.wmf]





k

[image: image1.wmf]



N

[image: image1.wmf]



R

Example

• At a gateway arrive on the average 125 packets per second.
• The gateway needs 2 msec to forward a packet.

 a) What is the probability for a packet loss, if the gateway has buffer capacity for
exactly 13 packets?

 b) How many buffer slots do we need if we want to loose at most one out of one
million packets?

• Arrival rate λ = 125 pps
• Service rate µ = 1/0.002 = 500 pps
• Traffic intensity ρ = λ / µ = 0.25
• State probability P[k Packets at gateway] = 0.75 (0.25)k

• Mean number packets at gateway:

• Mean packet residence time at gateway:

• Probability for buffer overflow (Packet loss)

• Limitation of loss probability to 10-6:

 i.e. 10 buffer slots are sufficient.

11-42 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

33.0
75.0
25.0

1
==

ρ−
ρ

=N

() () msec 66.2
25.01500

1
1
1

=
−

=
ρ−µ

=R

[] 81313 1049.125.013 −×==ρ=≥NP

() () 9692501010 66 ..loglogkk ≈≥⇒≤ −−ρ

Other Quantities

• Mean number in service

• Mean number in queue
 Since the number of request in the station N is composed of

the number in service U and the number in the queue M , we
get:

• Mean waiting time
 The mean waiting time can be obtained by using Little’s law :

 11-43 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

U

[] () ρ=π−⋅+π⋅== 00 110UEU

M

() NUNM ρ=
ρ−

ρ
=

ρ−
ρ−ρ−ρ

=ρ−
ρ−

ρ
=−=

111

22

W

() ()ρ−
ρ

µ
=

ρ−λ
ρ

=λ=
1

1
1

/
2

MW

Other Quantities

11-44 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

 M

ρ

 W

ρ

 Number in queue Waiting time

[image: image1.wmf]



M

[image: image1.wmf]



W

11.5 The M|M|k-Station

• In the M|M|k-Station we have k servers that work in parallel.
Each of these k servers works at the same rate.

• If there are k or more requests at the station (j ≥ k), then all

servers are busy and provide a joint service rate of k × µ.

• If there are less than k requests at the station (j < k), then all

these j requests are currently processed, i.e. j servers are
busy and provide an accumulated service rate of j × µ.

11-45 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

. . .

1

k

2

:

M|M|k-Station

• Therefore, the service rate of the M|M|k-station is state-
dependent:

• That leads to the following state transition diagram:

• The state probabilities can be derived from the general

formula for the BD-process with state-dependent rates:

11-46 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

() , if
, if

j j kj
k j k

µ
µ

µ
⋅ <

= 
⋅ ≥

0 1 2 3 k-1
λ λ λ λ λ λ
µ 2µ 3µ 4µ (k−1)µ

k
λ λ

k+1
k µ k µ k µ

kj

kj

kk

j

kj

j

j

j

≥

<











π







µ
λ

π







µ
λ

=π

− 0

0

!
1
!

1

M|M|k-Station

• From these state probabilities we can (with some effort) calculate the
mean values of different quantities:

 using

• The corresponding times can be derived applying Little’s law.

11-47 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

02

1!
π

µ
λ









µ
λ−









µ
λ

+
µ
λ

=
k

k
k

N

k

02

1!
π

µ
λ









µ
λ−









µ
λ

=
k

k
k

M

k

∑
−

= 

















µ
λ−









µ
λ+








µ
λ

=π

1

0

0

1

1
!

1
!

1

1

k

j

kj

k
kj

Example

• A server works at a rate of µ.
• To improve the response times, one ponders the following

alternative:
• Alternative 1 (twice as fast)
 Replace the server by a new one with double speed, i.e. one with
 rate of 2µ.

• Alternative 2 (two servers)
 Add to the existing server another one with the same speed, such
 that both can work in parallel and are fed by a joint input queue.

11-48 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

2 µ

. . .

1

2

µ

µ

Which Alternative is better?

 One server with double speed Two servers with single speed

11-49 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

µρρµρ

µρ
ρ

ρ

ρ

µρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ
ρ

ρ

ρ

ρ

ρ

2
1

2
1

1

2
1

1
2
1

2
1

1

2
1

2
1

2
1

2
2
1

2
1

2

2
1

2

2
1

2

2
1

2

2
1

2
1

2

2
1

2

22

















+
+

−
=

−
=

+−
=

−
=

+
+

−
=

−
=

+−









=
−









=

TD

TD

TD

TD

RR

WW

NN

MM

Comparison of time

• The corresponding numbers N and M perform similarly
due to Little’s law.

11-50 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Waiting times

W T

W D

ρ

Response times

R D

R T

ρ

Interpretation

• The system with two servers has lower waiting times, since
for N=1 an arriving requests can be served immediately, while
in the system with one double speed server it has to wait.

• The single double speed server can more than compensate the
higher waiting time since a request is served in half the time.

• The single double speed server delivers its service rate of 2µ
already for N=1, while the system with two single speed
servers only for N=2 and more works at the rate of 2µ.

 Single double speed server two single speed servers

11-51 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

0 1 2 3
λ λ λ λ
2µ 2µ 2 µ 2 µ

0 1 2 3
λ λ λ λ
µ 2µ 2 µ 2 µ

11.6 The M|M|1|K-System
(limited input buffer)

• If the system has a bounded queue capacity, arriving requests
may be refused due to buffer overflow, i.e. they are lost.

• The state space in this case is finite:

11-52 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

µ N < K

N = K

0 1 2 3 K
λ λ λ λ λ
µ µ µ µ µ

0,
0

0

0
0

=>
≤<



 µ

=µ

≥
<≤



 λ

=λ

kKk
Kk

Kk
Kk

k

k

The M|M|1|K-Station

• Due to the finiteness of the state space we can drop the
stability condition ρ < 1:

• For the state probabilities we obtain

• For ρ = 1 this leads to an undefined expression.
• Computing the limit ρ → 1 yields (L' Hospital):

• From that we can calculate as expectation the mean value:

11-53 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

1,0
1

1
1 ≠≤≤

−
−

= + ρρ
ρ

ρπ Kkk
Kk

10
1

1
=ρ≤≤

+
=π Kk

Kk

() 1

1

1
1

1 +

+

ρ−
ρ

+−
ρ−

ρ
= K

K
KN

Loss due to buffer overflow

• Of particular interest is the loss probability, i.e. the probability that
a request is lost:

• While at the system with infinite input queue the arrival rate is equal

to the departure rate, here we have to consider some loss:

• The arrival stream splits into an effective stream and a loss or

leakage stream: λ = λeff + λL

• The loss rate is λL = pL λ
• Therefore the effective arrival rate is λeff = (1-pL) λ

11-54 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

1
1

1
K

L K Kp ρπ ρ
ρ +
−

= =
−

µ

λ L

λ eff
λ eff λ

Remark
• Using the M|M|1|K-station we can calculate the example of

 slide 11-42 more accurately:
• We found: arrival rate λ = 125 pps
 service rate µ = 1/0.002 = 500 pps
 traffic intensity ρ = λ / µ = 0.25

• We wanted to calculate the loss probability for a buffer size of 13.
• The probability for buffer overflow (packet loss) was

• This is only an approximate solution since the M|M|1| -system can

also get into higher states (N>K), while the M|M|1|K-system remains
in the state K.

• The M|M|1 -system should therefore calculate the loss probability to
pessimistically.

• Actually, we obtain for the M|M|1|13-system a value of

11-55 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

()
13 8

13 14
1 0 25 0 25 1 11 10

1 0 25L
.p . .

.
π −−

= = = ×
−

[] 81313 1049.125.013 −×==ρ=≥NP

11.7 Closed System with two
queuing stations

• In a multitasking system, for each process we can observe
alternating compute phases and I/O phases.

• The I/O operations can be file accesses or paging activities.
• Modeling the processor and the disk each as a queuing station we

get the following picture:

• We assume that in this closed system K processes circulate, i.e. K is
 the multiprogramming degree.
• The state of the system can be expressed solely by e.g. the number

of requests (processes) k at the first station, because the number at
the second station necessarily results to K-k .

11-56 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Station 1 Station 2

λ 1 λ 2
µ 1 µ 2

Computing relevant quantities

• Unknown are the arrival rates at the particular stations.
• However, the arrival rate at the first station equals the departure

rate at the second station, as long as there are requests at the
second station (and vice versa):

• These equations are exactly the same conditions as for the limited

M|M|1|K-system of the last section.
• That means that the closed two-station system is exactly described

by the equations of slide 11-53 if we write v = µ2/ µ1 instead of von ρ
= λ / µ.

• Interesting is e.g. the utilization of processor and disk:

11-57 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

µ
λ

<
= 

≥
2

1 0
k Kfor
k K

[] []

11

01

1
1

1
11

1011

++ −
−

=
−

−
−=

π−==−=≥=η

K

K

K v
vv

v
v

NPNP [] []

11

1
2

1
1

1
1

111

++

+

−
−

=
−
−

−=

π−==−=−≤=η

K

K

K

KK
K

v
v

v
vv

KNPKNP

Utilization in the 2-Server System

11-58 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

K=1

K=2 K=3
K=4

1 2 3 4 5

0,2

0,4

0,6

0,8

1,0

v

η1 η2

Utilization

Modeling paging

• We know from the discussion of paging that increasing the
multiprogramming degree K reduces the number of page frames per
process.

• By that, the time between two page faults gets smaller and smaller.
• As relationship between the multiprogramming degree and the

interpage-fault time we know from empirical studies:

 , where M is the memory size.

• We now can model this relationship by using a closed two-station

system:
• Let station 1 be the CPU, station 2 the paging device.
• The interpage-fault time can be interpreted as the mean service time

of the CPU:

11-59 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

2







=

K
Mats

22
2111

1/1 KCK
Ma

Bts ⋅==µ⇒µ==

Thrashing

11-60 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

0.2

0.4

0.6

0.8

1.0

2 4 6 8 10

C=32
32

C=64

C=64 C=16

16

C=8

8

η2 η1

Multiprogramming-
degree K

Utilization of CPU η1 and disk η2

Modeling paging

• We can derive the following:
• For small K the CPU utilization (η1) increases strongly and

stays for some time at a high level.
• The utilization of the paging disk (η2) is initially very low.
• With increasing K the disk utilization increases and at the

same time the CPU utilization.
• There is a point where congestion of the processes starts

because of the intensive usage of the paging device
(thrashing effect).

• For large values of the constant C (= small memory size)
the effect starts early and heavily.

• If we have more memory available (small C), we can
achieve high CPU utilization also for large numbers of
processes K.

11-61 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Remarks

• Understanding the single queuing station and applying
the formulas can lead to useful insights into the behavior
of an operating system.

• For more complex problems we need to
• give up the Markov assumption
• use other strategies as FIFO
• regard the system to be modeled as a network of many

queuing stations
• In such cases we may use modeling tools with graphical

user interface to describe the system to modeled.
• Analysis and graphical presentation of the results can be

done automatically.
• Some of these tools allow also the simulative analysis

with statistic evaluation.

11-62 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Further references

• Jain,R.: The Art of Computer Performance Analysis,
 John Wiley, 1991

• Kleinrock, L.: Queuing Systems, Vol.1+2, John Wiley,
 1975

• Trivedi, K.: Probability and Statistics with Reliability,
 Queuing and Computer Science
 Applications, John Wiley, 2002

• Weicker, R.P.: An Overview of Common Benchmarks. IEEE
 Computer, Dec. 1990

• Haverkort, B.: Performance of Computer Communication
 Systems, John Wiley, 1998

• Zeigler, B. et al.: Theory of Modeling and Simulation (2nd ed.)
 Academic Press, 2000

11-63 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

	Foliennummer 1
	11.1 Problem Statement
	Impact factors on the performance
	Impact factors on the performance
	What is performance?
	How can performance be assessed?
	How can performance be assessed?
	Monitors
	Characterizing the Program Load
	Characterizing the Program Load
	Application-specific Benchmarks
	Benchmark Comparison
	SPEC-Benchmark
	SPEC-Benchmark
	Performance evaluation a priori
	Simulation vs. Analytical Modeling
	11.2 Queuing models: Introduction
	Characterization of queuing systems
	Characterization of queuing systems
	Characterization of queuing systems
	Important quantities
	Important quantities
	Elementary relations
	Elementary relations
	Elementary relations
	Little‘s Law
	Little‘s Law
	Little‘s Law
	Little‘s Law
	Little‘s Law
	11.3 Stochastic Processes
	Examples
	Markov Process
	Markov Chains
	Special Markov Chains
	The Poisson Process �(Poisson Stream)
	Poisson Streams
	11.4 The M|M|1-Station
	Steady state probabilities
	Other Quantities
	Quantities as Functions of Utilization
	Example
	Other Quantities
	Other Quantities
	11.5 The M|M|k-Station
	M|M|k-Station
	M|M|k-Station
	Example
	Which Alternative is better?
	Comparison of time
	Interpretation
	11.6 The M|M|1|K-System �(limited input buffer)
	The M|M|1|K-Station
	Loss due to buffer overflow
	Remark
	11.7 	Closed System with two queuing stations
	Computing relevant quantities
	Utilization in the 2-Server System
	Modeling paging
	Thrashing
	Modeling paging
	Remarks
	Further references

