
Chapter 11 

Performance Modeling 
 



11.1  Problem Statement  

• Whether a computer system consisting of hard- and 
software really achieves the desired performance turns 
out during operation at the latest.  

• Then, however, it is too late. 
• Similar to other areas of engineering (e.g. architecture, 

aviation) quantitative issues (performance, capacity) 
need to accompany the design process and be 
interwoven with it.  

• Whereas the performance of  hardware components can 
be determined relatively easily, the performance of a 
complete computer system depends on the complex 
interplay of software and hardware components.  

• It is the responsibility of the operating system to 
organize this interplay in the most efficient way to 
achieve the maximum performance.   
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Impact factors on the performance 

• The performance data of the machine (MIPS per 
core, number of cores, memory capacity, bus 
bandwidth,...) set upper bounds for the 
performance of the computer system. 

• To what extent this performance capacity can be 
exploited depends on the program load that more 
or less fits the properties of the machine.  

• The operating system tries by using appropriate 
strategies and a suitable program mix to provide all 
active components with useful work.  
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Impact factors on the performance 

• Finally, the user or operator/owner of the 
computing system defines the ultimate 
performance goals from which particular 
performance measures can be derived.  
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What is performance? 

• Depending on the perspective and the application area, 
different measures for performance are useful.  

• Performance measures are usually based on the intuitive 
physical notion of power: 

  power (=performance) = work per time 
 
• It is measured 

• how long some action takes 
 (memory cycle time, block transfer time, response time, program 

runtime, packet delay,....) 
• how many actions per time unit are performed 
 (MIPS, MFLOPS, transactions/sec, Jobs/h, Mbit/sec, SPECmarks…) 

• As can be seen from the examples, pure hardware measures 
and measures for complete HW/SW systems are used.  
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How can performance be assessed? 

• At the real system 
• If the system to be evaluated is at disposal, we can use 

measurements.  
• A device to measure the system’s behavior is called monitor. 
• Monitors can be realized in hardware or in software. 

•  Hardware monitor 
• A monitor device consists of several probes, that are connected at 

those places where something is to be measured.  
• Typical components : 

• Counter   counting of specific events 
• Logic elements  combination of special signals 
• Comparer  Recognition of particular signal values (e.g.  

   specific address) 
• Clock   To provide logged events with a timestamp 
• Disk / Tape  recording of signals or events 

• Measures hardware quantities, e.g. addresses, instruction 
execution times, bus assignment, cache misses, etc. 

• High time resolution (nsec), high sampling rate, usually no 
performance impact.  
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How can performance be assessed? 

• Software Monitor 
• A program system embedded into an application 

system or operating system 
• Measures software quantities, e.g. operating system calls, 

procedure execution times, working set sizes 
• Uses system resources, i.e. influences performance and 

may distort measurements to some degree 
• Time resolution dependent on system clock 
• System specific 
• Operation modes  

• On-line-operation: Representation of measurements on-line 
   during operation 

• Off-line-operation: Recording of events (trace) on   
   secondary memory for later post- 
   processing and evaluation  
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Monitors 

• Monitors are useful for bottleneck analysis and optimization of existent 
hard-/software systems. 

• If we can measure the call frequencies of particular operating system 
modules, we know at which place further code optimization is 
profitable.  

• If we can measure statistical profile of memory requests, we can 
optimize the memory management scheme towards this profile. 

• If we know the block access frequencies at the disk storage we tune the 
track allocation to minimize head movements and thus access times.  

• If we know the behavior of individual programs (e.g. compute bound 
vs. I/O-bound), we can achieve high utilization by a suitable program 
mix. 

• If the performance of a system is poor, it may not be the processor to 
be blamed: 

• The bottleneck may be 
• the memory (too much paging) 
• the cache (too low hit ratio) 
• the bus (too many bus conflicts) 

• All this can be found out using monitors.  
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Characterizing the Program Load 

• Processor performance indicators such as MIPS or MFLOPS are based 
on a weighted mix of individual instructions. 

• They only tell you something about performance if the processor is 
really the bottleneck.  

• I/O behavior and possible performance loss due to the operating 
system remains unconsidered.  
 

• Example: Gibson Instruction Mix 
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Load and Store 31.2 
Fixed-Point Add and Subtract 6.1 
Compares 3.8 
Branches 16.6 
Floating Point Add and Subtract 6.9 
Floating Multiply 3.8 
Floating Divide 1.5 
Fixed-Point Multiply 0.6 
Fixed-Point Divide 0.2 
Shifting 4.4 
Logical, And, Or 1.6 
Instructions not using registers 5.3 
Indexing 

  

 
100.0 

 

Instruction type percentage 

18.0 



Characterizing the Program Load 

• Synthetic Programs 
• A synthetic program is a special small test program in a 

higher programming language that mainly consists of 
operating system calls and I/O operations. 

• It is supposed to mimic program behavior in a condensed 
way. 

• It is easily portable and adaptable.  
• Effects resulting from multiprogramming and high program 

load (paging) cannot be modeled adequately. 
 

• Benchmarks 
• To determine the real performance, we have to measure 

real programs. 
• A benchmark is a program or a set of programs that 

represent a typical load profile (workload). 
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Application-specific Benchmarks 

• Since the performance requirements are different in different 
areas of computing, application specific benchmarks have proven 
useful. 
 

• Example 
• Linpack  

• Dedicated to scientific computing. High fraction of floating point operations.  
• Most of the time are spent in BLAS subroutines (Basic Linear Algebra Subpackage). 

• Dhrystone 
• Specialized for system software. Many procedure calls, many string operations. 
• Good for integer performance. I/O- and floating-point performance are not covered.  

• Debit-Credit Benchmark 
• Dedicated to transaction systems (Banking applications) 

• SPEC Benchmark Suite (Systems Performance Evaluation 
Cooperative) 

• Sort of standard, which leading manufacturers have agreed on.  
• Measures primarily CPU performance (integer and floating-point). 
• Consists of 10 selected applications from science and engineering. 
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Benchmark Comparison 
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From: Weicker, R.P.: An Overview of Common Benchmarks. IEEE Computer, Dec. 1990 



SPEC-Benchmark 

• Original SPEC-Benchmark: 
 
 
 
 
 
 

 
• The current SPEC CPU2017 suite includes applications from 

these areas: 
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AI game theory  bioinformatics  chemistry  compilers  

interpreters  data compression  fluid dynamics  physics  

speech recognition  video processing  weather prediction  
 



SPEC-Benchmark 

• Meanwhile, SPEC is only the umbrella organization, 
under which different groups are developing specific 
benchmarks: 
• Open Systems Group (OSG) 
• High Performance Group (HPC) 
• Graphics Performance Group (GPG) 

 
• Currently, SPEC benchmarks are available for: 

• CPU,    Graphics,   MPI/OMP,  
• Java Client/Server,  Mail Server,   NFS,  
• Power,    SIP,    SOA,  
• Virtualization,   Web Servers,  Cloud/IaaS 
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Performance evaluation a priori  

• To assess and evaluate strategy variants during the 
design phase, we cannot rely on measurements since 
the system does not exist yet.  

• Frequently, we also want to abstract from machine 
details to exclude side effects.  

• In this case we have to model the system and its 
behavior.  

• To do this, we have two alternatives:  
• Analytical models 

• The system behavior is described by mathematical quantities 
and functional relations between them. 

• Simulation models 
• The computing system with all its components and its 

behavior is simulated on the computer.  

 
11-15 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23 



Simulation vs. Analytical Modeling  

• Simulation models are almost unlimited concerning their accuracy 
and their application areas.  

• Modeling can be done with an arbitrary level of detail.  
• The cost is correspondingly high: 

• The development of the simulation models is costly. 
• Carrying out simulations runs is extremely compute intensive. 

• To find out  the functional relationship between two system 
quantities, we need to perform a complete set of simulation runs. 

 
• Analytical models rely on assumptions that in real world are often 

not met (e.g. assumptions about distributions). 
• The computational overhead is very low compared to simulation. 
• Functional relationships can be derived directly from the model.  
• The application range is limited due to the mathematical 

assumptions. 
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11.2  Queuing models: Introduction 

• Queuing models consist of one or more service stations that are built 
in the following way: 

 
 
 
 
 
 
 
• An arrival stream, described by the distribution of the interarrival 

time, feeds an input queue with objects that may be customers, 
requests, processes, packets etc. depending on the application.  

• From there the customers get to one of the identical service stations 
or servers, if it is idle.  

• The selection from the queue is done according to some given 
strategy.  

• The time the customer spends at the service station is described by 
the probability distribution of the service time.  
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Characterization of queuing systems 

• To describe a given queuing system, the major 
parameters are composed in the following characteristic 
way (Kendall's notation): 
 

  A | B | c | K | P | S 
 

• The letters have the following meaning: 
  A: Distribution of the interarrival time 
 B: Distribution of the service time 
 c:  Number of service stations 
 K: Capacity of queue 
 P: Size of population (maximum number of customers) 
 S: Selection strategy 
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Characterization of queuing systems 

A:  Distribution of the interarrival time 
 Examples: 
 D Deterministic 
 M Markov (exponential) 
 Er Erlang stage r 
 Hr Hyperexponential degree r 
 G General (unspecified) 
 
B:  Distribution of the service time 
 Possible specifications as with A 
  
S: Selection strategy 
 Examples: 
  FCFS First Come First Served 
  LCFS Last Come First Served  
  PS Processor Sharing  
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Characterization of queuing systems 

• Usually, the parameters queue size K and  
 population P are not limited.  
• In those cases the quantities are not indicated.  
• If nothing is said about S, the assumption is FCFS (default strategy). 
 
•  Typical descriptions are: 
  D | D | 1 
  M | M | c 
  M | M | 1 | K 
  Er | M | 1 
  M | G | c 
  G | G | 1 
  M | M | 3 | 20 | 1000 | FCFS  
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Important quantities 

• Number quantities (stochastic variables) 
 m number of customers in the queue 
 u number of customers currently being served 
 n number of customers in the system 
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Important quantities 

• Time quantities (stochastic variables) 
 a interarrival time 
 w waiting time (time spent in queue) 
 b service time (time spent at service station) 
 r response time (time spent in the system), a.k.a. residence time 
 
 
 
 
 
 
 
 
• Rates (Parameter of distribution) 
 λ arrival rate (E[a]=1/λ) 
 µ service rate (E[b]=1/µ)  
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Elementary relations 

• Stability criterion 
• If c denotes the number of service stations (or simply: 

servers) the following must hold: 
   λ < c µ 
  "On the average, not more customers may arrive than can 

 be processed (= served)" 
 

• Especially in systems with only one server (c = 1) we use 
   ρ := λ /µ (traffic intensity)  
  

• We get as stability condition:  ρ < 1 
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Elementary relations 

 
• If the stability criterion is violated, we get (in case 

of unlimited population and unlimited queue size) 
infinite queue lengths (m = ∞). 
 

• By limiting the input buffer (queue), however, the 
system remains (mathematically) stable. 
 

• If there is a buffer overflow, customers (requests) 
get lost.  
 

11-24 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23 



Elementary relations 

• Numbers  
• The following holds:  m + u = n  
• The number of requests in the system is composed of the number 

in the queue and the number in service. 
• This also holds for the expectations: 

  E[m] + E[u] = E[n] 
    
• Times   

• The following holds: :  w + b = r 
• The response time is composed of waiting time and service time.  

  E[w] + E[b] = E[r] 
 

• If the service rate is independent of the queue length, the 
additive relation is also applicable to the variances: 

 var[m] + var[u] = var[n]   and  var[w] + var[b] = var[r]  
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Little‘s Law 

• Relation between numbers and times in arbitrary 
(sub)systems 

• „Mean number = arrival rate x mean residence time“ 
 
  
 
 
 
• Idea for proof: 

• If you look at the system exactly when a requests leaves, then 
there are in the system exactly those that have arrived during the 
residence time of the leaving request.  

• The number of requests in the system is N, and the number of 
requests arrived during a period R divided by R is the arrival rate. 

• By taking the average we get the above relation.  
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Little‘s Law 

• We observe the system over a long interval [0,T]. 
 
 
 
 
 
• A(t):  Number arrivals in [0,t], t<T 
• D(t): Number departures in [0,t], t<T 
  
• Due to the stability condition the following approximately holds:   
  A(T) = D(T). 
 
• We obtain as arrival rate: 
 Arrival rate = A(T) / T = D(T) / T = Departure rate  
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Little‘s Law 

• Moreover, we get for the number of requests N(t)  in the system: 
 N(t) = A(t) – D(t) 
 
 
  
  
  
  
 

 

• The filled area in both diagrams has the same size. It can be 
calculated as 

  
  
 
 and indicates the accumulated residence time of all requests in the 

system.  
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Little‘s Law 

• J  can be obtained also this way (see 
diagram at the right):  
 

  
• Dividing J  by the number of arrived 

(or departed) requests yields the 
mean residence (response) time: 
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Little‘s Law 

• Mean number = arrival rate  ×  mean residence time 
 
• The law is applicable  

• for the complete queuing station: 
    E[n] = λ E[r]      number in system = arrival rate × response time 
 

• for the server alone: 
   E[u] = λ E[b]     number in service = arrival rate × service time 
  

• for the queue: 
    E[m] = λ E[w]   number in queue = arrival rate × waiting time 
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11.3  Stochastic Processes  

• If we look at a system quantity such as the queue length m at 
different times, we will observe different values.  

• They can be regarded as stochastic variables over the time. 

• Let T be a set and let X(t) be a stochastic variable for each t ∈T . 

• The collection of all stochastic variables X(t), t ∈T  is called a 
stochastic process. 

• Types of stochastic processes: 
• If the set of values that X(t) can take is finite or countable, the 

process is called discrete-state, otherwise continuous-state. 

• If the set T is finite or countable, the process is called discrete-
time, otherwise continuous-time. 
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Examples 

 

11-32 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23 

discrete-state continuous-state 

continuous-
time 

discrete-
time 

time 

state 

time 

state 

time 

state 

time 

state 



Markov Process 

• Definition 
• A stochastic process {X(t), t ∈T } is called Markov process, if 

for each subset of n+1 values t1< t2< ... < tn+1 of the index set T 
and for each set of n+1 states {x1, x2, ... xn+1} the following 
holds: 
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Markov Chains 

• A Markov chain switches states at some times.   
• If the probability for the state change does not depend on the 

time, the chain is called homogeneous. 
• A homogeneous Markov chain can be described by its state 

change behavior. 
• We denote with qij the transition rate  
 from state i into state j.  
• The Markov chain can be represented  
 as a (possibly infinite) graph with the  
 states as vertices and the possible  
 transitions as edges. 
• Under some assumptions the process shows a so-called 

stationary behavior, i.e. for t → ∞ the process exhibits an 
"average" behavior that is independent of its initial state.  

• Then we can calculate the probability that the process is in 
some state i. 
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Special Markov Chains 

• If in a discrete, one-dimensional state space only transitions between 
neighboring states are possible the Markov chain is called birth-and-
death process. 

• The birth-and-death (BD) process can be described by the following 
state diagram: 

  
  
 
 

•  The λi are called birth rates, the µi are death rates. 
• Applying BD processes to queuing systems the λi are called arrival 

rates, the µi are service rates.  
• The state space may be finite or infinite. 
• There are also pure birth processes (µi = 0 ∀i ) and pure death 

processes (λi = 0 ∀i ). (In queuing systems: arrival process and 
departure process.) 

• In many cases the rates are independent of the state, i.e. λi = λ ∀i   or  
µi = µ ∀i . 
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The Poisson Process  
(Poisson Stream) 

• The pure birth process counts the births or arrivals, respectively, and 
is called Poisson Process. 
 
 
 
 

• The following properties hold: 
• The probability for an arrival at time t is independent of the time of the 

previous arrival (“Memorylessness” or Markov-property). 
• The interarrival time is exponentially distributed, i.e.  

 
 

• The number of arrivals (state of Poisson Process) X(t) in interval [0,t]  
follows a Poisson distribution, i.e.  
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Poisson Streams 

• Joint of Poisson Streams 
 If several Poisson arrival streams are combined, 

the resulting combined process is again a 
Poisson process with rate 

 
      
• Fork of Poisson Streams 
 If a Poisson stream forks into several  
 substreams with forking probabilities 
                      , the resulting substreams are also  
 of Poisson type and the following holds: 

 
• Departures 
 If a M|M|k-Station is fed by a Poisson stream 

then the departure stream is also of Poisson 
type.  
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11.4 The M|M|1-Station 

• The birth-and-death process exactly describes the behavior of 
the most simple service station, the M|M|1-Station. 

 
  
 
• The state of the process indicates the number N of requests at 

the station.  
• The following generally holds for the BD-process: 
  
  
  
• The idle probability π0 follows from the normalization condition: 
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Steady state probabilities 

 
 
 

• If all rates are constant (λi = λ, µi = µ) we get: 
  
    with  
  
• Usually, we set ρ := λ/µ and call ρ traffic intensity. Then we have: 
 
 
• For stability reasons we require: ρ < 1, i.e. λ < µ . 
 
• Then we get for the state probabilities 
  
  
• The number of requests in the system in a  M|M|1-Station is 

therefore geometrically distributed. 
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Other Quantities 

• Once we know the distribution, we can compute many relevant 
quantities: 
• Mean number of requests in the system:    

  
 
 

• Probability that there are at least k requests in the system: 
 
   
 

• Mean response time  
 Using Little’s  formula we obtain the mean response time from the mean 
 number of requests: 

  
 
   

• Utilization defined as the probability that the system is working: 
  

11-40 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23 

[ ]
λ−µ

λ
=

ρ−
ρ

=π== ∑
∞

= 10i
iiNEN

[ ] ( ) k

ki

i

ki
kkNP ρ=ρ−ρ=π=≥ ∑∑

∞

=

∞

=
1

[ ] 0system not idle 1Pη π ρ= = − =

( ) ( ) λ−µ
=

ρ−µ
=

ρ−λ
ρ

=
λ

=⇒λ=
1

1
1

1
NRRN



Quantities as Functions of Utilization 
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Example 

• At a gateway arrive on the average 125 packets per second. 
• The gateway needs 2 msec to forward a packet. 

 a) What is the probability for a packet loss, if the gateway has buffer capacity for 
exactly 13 packets?  

 b) How many buffer slots do we need if we want to loose at most one out of one 
million packets? 

• Arrival rate   λ = 125 pps  
• Service rate  µ = 1/0.002 = 500 pps  
• Traffic intensity ρ = λ / µ = 0.25 
• State probability    P[k Packets at gateway] = 0.75 (0.25)k 

• Mean number packets at gateway:  

• Mean packet residence time at gateway:  

• Probability for buffer overflow (Packet loss)  

• Limitation of loss probability to  10-6: 

  

 i.e. 10 buffer slots are sufficient. 
 

 
11-42 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23 

33.0
75.0
25.0

1
==

ρ−
ρ

=N

( ) ( ) msec 66.2
25.01500

1
1
1

=
−

=
ρ−µ

=R

[ ] 81313 1049.125.013 −×==ρ=≥NP

( ) ( ) 9692501010 66 ..loglogkk ≈≥⇒≤ −−ρ



Other Quantities 

• Mean number in service 
  
   
• Mean number in queue 
 Since the number of request in the station N  is composed of 

the number in service U and the number in the queue M , we 
get:  

  
 
   
• Mean waiting time 
  The mean waiting time can be obtained by using Little’s law : 
  
   

 
 11-43 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23 

U

[ ] ( ) ρ=π−⋅+π⋅== 00 110UEU

M

( ) NUNM ρ=
ρ−

ρ
=

ρ−
ρ−ρ−ρ

=ρ−
ρ−

ρ
=−=

111

22

W

( ) ( )ρ−
ρ

µ
=

ρ−λ
ρ

=λ=
1

1
1

/
2

MW



Other Quantities 
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11.5  The M|M|k-Station 

• In the M|M|k-Station we have k servers that work in parallel. 
Each of these k servers works at the same rate.  

 
 
 
 
 

  
• If there are k or more requests at the station (j ≥ k), then all 

servers are busy and provide a joint service rate of k × µ. 
 
• If there are less than k requests at the station (j < k), then all 

these j requests are currently processed, i.e. j servers are 
busy and provide an accumulated service rate of j × µ. 
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M|M|k-Station 

• Therefore, the service rate of the M|M|k-station is state-
dependent: 

  
  
• That leads to the following state transition diagram: 
 
 
  
• The state probabilities can be derived from the general 

formula for the BD-process with state-dependent rates: 
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M|M|k-Station 

• From these state probabilities we can (with some effort) calculate the 
mean values of different quantities: 

  
       
  
 
 
 
 using  
  
 
 
 
 
• The corresponding times can be derived applying Little’s law. 
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Example 

• A server works at a rate of µ.  
• To improve the response times, one ponders the following 

alternative: 
• Alternative 1 (twice as fast)   
 Replace the server by a new one with double speed, i.e. one  with 
 rate of  2µ. 

 
  
 

• Alternative 2 (two servers)   
 Add to the existing server another one with the same speed, such 
 that both can work in parallel and are fed by a joint input queue.   
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Which Alternative is better? 

 One server with double speed Two servers with single speed 
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Comparison of time 

 
 
 
 
 
 
 
 
 
 
 

• The corresponding numbers N and M  perform similarly 
due to Little’s law. 
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Interpretation 

• The system with two servers has lower waiting times, since 
for N=1 an arriving requests can be served immediately, while 
in the system with one double speed server it has to wait.  

• The single double speed server can more than compensate the 
higher waiting time since a request is served in half the time.  

• The single double speed server delivers its service rate of 2µ 
already for N=1, while the system with two single speed 
servers only for N=2 and more works at the rate of 2µ. 
 
 

 
 
 Single double speed server  two single speed servers 
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11.6 The M|M|1|K-System   
(limited input buffer) 

• If the system has a bounded queue capacity, arriving requests 
may be refused due to buffer overflow, i.e. they are lost.  

  
 
 
 
• The state space in this case is finite: 
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The M|M|1|K-Station 

• Due to the finiteness of the state space we can drop the 
stability condition ρ < 1: 

• For the state probabilities we obtain 
  
  
  
• For ρ = 1 this leads to an undefined expression.  
• Computing the limit ρ → 1 yields (L' Hospital): 
  
  
  
• From that we can calculate as expectation the mean value: 
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Loss due to buffer overflow 

• Of particular interest is the loss probability, i.e. the probability  that 
a request is lost: 

  
  
• While at the system with infinite input queue the arrival rate is equal 

to the departure rate, here we have to consider some loss: 
 
   
  
 
 
• The arrival stream splits into an effective stream and a loss or 

leakage stream:  λ = λeff + λL 

• The loss rate is λL = pL λ 
• Therefore the effective arrival rate is λeff = (1-pL) λ 
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Remark 
• Using the M|M|1|K-station we can calculate the example of  

 slide 11-42 more accurately: 
• We found: arrival rate  λ = 125 pps  
    service rate  µ = 1/0.002 = 500 pps  
   traffic intensity  ρ = λ / µ = 0.25 
     
• We wanted to calculate the loss probability for a buffer size of 13. 
• The probability for buffer overflow (packet loss) was 
    
• This is only an approximate solution since the M|M|1| -system can 

also get into higher states (N>K), while the M|M|1|K-system remains 
in the state K. 

• The M|M|1 -system should therefore calculate the loss probability to 
pessimistically.  

• Actually, we obtain for the M|M|1|13-system a value of  
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11.7  Closed System with two 
queuing stations 

• In a multitasking system, for each process we can observe 
alternating compute phases and I/O phases.  

• The I/O operations can be file accesses or paging activities. 
• Modeling the processor and the disk each as a queuing station we 

get the following picture: 
  
  
 
 
  
• We assume that in this closed system K  processes circulate, i.e. K is 
  the multiprogramming degree.  
• The state of the system can be expressed solely by e.g. the number 

of requests (processes) k at the first station, because the number at 
the second station necessarily results to K-k . 
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Computing relevant quantities 

• Unknown are the arrival rates at the particular stations.   
• However, the arrival rate at the first station equals the departure 

rate at the second station, as long as there are requests at the 
second station (and vice versa): 

 
  
• These equations are exactly the same conditions as for the limited 

M|M|1|K-system of the last section.  
• That means that the closed two-station system is exactly described 

by the equations of slide 11-53 if we write v = µ2/ µ1 instead of von ρ 
= λ / µ. 

• Interesting is e.g. the utilization of processor and disk: 
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Utilization in the 2-Server System 
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Modeling paging 

• We know from the discussion of paging that increasing the 
multiprogramming degree K reduces the number of page frames per 
process.  

• By that, the time between two page faults gets smaller and smaller.   
• As relationship between the multiprogramming degree and the 

interpage-fault time we know from empirical studies: 
 
   , where M is the memory size. 
  
• We now can model this relationship by using a closed two-station 

system: 
• Let station 1 be the CPU, station 2 the paging device.  
• The interpage-fault time can be interpreted as the mean service time 

of the CPU: 
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Thrashing 
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Modeling paging 

• We can derive the following: 
• For small K the CPU utilization (η1) increases strongly and 

stays for some time at a high level. 
• The utilization of the paging disk (η2) is initially very low.  
• With increasing K the disk utilization increases and at the 

same time the CPU utilization.  
• There is a point where congestion of the processes starts 

because of the intensive usage of the paging device 
(thrashing effect). 

• For large values of the constant C (= small memory size) 
the effect starts early and heavily.  

• If we have more memory available (small C ), we can 
achieve high CPU utilization also for large numbers of 
processes K. 
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Remarks 

• Understanding the single queuing station and applying 
the formulas can lead to useful insights into the behavior 
of an operating system. 

• For more complex problems we need to 
• give up the Markov assumption 
• use other strategies as FIFO 
• regard the system to be modeled as a network of many 

queuing stations 
• In such cases we may use modeling tools with graphical 

user interface to describe the system to modeled.  
• Analysis and graphical presentation of the results can be 

done automatically. 
• Some of these tools allow also the simulative analysis 

with statistic evaluation.  
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