
Chapter 10

File System

10.1 Motivation

• We need the possibility to store large amounts of data
reliably and permanently.

• Files (logical resources)

• A file is a collection of logical data entities, the so-called
records.

• Depending on the application area a file system supports
• Records of constant or variable length
• Files of dynamically changing size
• Modifiable internal structure of files
• Variable number of files on a volume
• Oversized files spanning across more than one volume

10-2 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Storage media

• Files should be stored
• on non-volatile media with relatively
• short access times at
• low cost

• and allow
• reading and writing access.

• The currently still best suited medium is the

magnetic disk
• For smaller volumes also: Flash Memory (SSD)
• For larger amounts: Tape libraries
• For archiving or read-only access: CD-ROM, DVD, Blueray

10-3 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Storage media

• Following, we will focus on disk drives as main
medium for file storage.

• DVDs and CD-ROMs have a similar structure.

• SSDs also have a similar structure, but certain
specialties have to be obeyed (addressed
separately in the lecture on I/O).

• Only tapes are fundamentally different, since they
allow only sequential access due to their one-
dimensional linear structure.

10-4 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Interplay

10-5 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

User
command
(e.g. read

file)

File
directory

Access
control

File structure

Access
method

File
operations

Logical pieces
(e.g. records)

Blocking

Phys. blocks
in main memory

Phys. blocks
on disc

Disk
scheduling

I/O

Allocate

Free space
management

File management system
General OS-Aspects

10.2 Files on disk

Structure of blocks
• Blocks (or sectors) are the smallest addressable units of a disk.
• They are spatially separated by so called block gaps.
• Each individual block contains (in addition to the data)

• A block identifier which is its physical location in the simplest case
• Check fields for error detection (CRC, cyclic redundancy check).

• Example:

10-6 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

gap Block ID gap data gap

synch
byte

track
No.

head
No.

sector
No.

CRC synch
byte data CRC

1 2 1 1 2 1 512 1

Block length
600 Bytes

Blocks and records

• Blocks are the elementary units of a disk (physical units),
while records are the elementary units of a file (logical units).

• If records are required to be of arbitrary length, we need a
flexible assignment of records to blocks.

• For constant record length the ratio of block length to record
length is called blocking factor f.

10-7 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

record 1 record 2

block 1 block 2

block 1

block 1 block 2

block 2

record 1st half record 2nd half

f = 1

f = 4

f = 1/2

r 1 r 2 r 3 r 4 r 5 r 6 r 7 r 8

Blocks and records

• Records do not need to have constant length.

• The following record formats are possible:

• It is also possible that there is no record structure at all,
i.e. the file is an unstructured sequence of bytes (e.g.
Unix).

10-8 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

variable

constant r 1 r 2 r 3 r 4

r 1 r 2 r 3 r 4 unspecified r 5

BL 1 1 RL 2 RL 3 RL 4 RL BL 2 r 1 r 2 r 3 r 4

Allocation of a disk storage

10-9 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Tracks

Blocks (sectors)

cylinder
volume label

allocation information

table of contens

file

file

file

Volume label

• Identifier of volume
• Date of activation
• Capacity
• Physical layout
• Bad blocks
• Link to allocation information (or allocation information

itself)
• Link to table of contents (or table of contents itself)

• The volume label is placed at a well-defined position

(e.g. first block) and is created at activation (i.e.
formatting) time.

10-10 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Allocation information
(free and allocated blocks)

• Vector- or list-based
• contiguous or scattered

• Example:

• Vector (bit map) for allocated and free blocks, separate for
each area (minimizing head movements).

10-11 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

area,
e.g. cylinder

1100010110100000

1100000000000111

1100111100011000

Free space list as a separate table

10-12 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

3 16

adress
(block no.) length

2 2 9
32 10
44 9
57 8

1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56
57 58 59 60 61 62 63 64

10.3 Table of contents
(file directory)

• The file directory contains the list of the descriptions of all files and is
stored on the volume.

• Flat directory structure
• In the simplest case it consists of a one-dimensional table

• For large volumes and many files the flat structure is awkward and
unhandy (for the human user as well as for accessing programs).

10-13 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

File description

constant or
variable length

File directory

• Structured directories

10-14 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

possibly more blocks Entry into
file directory A B E

R S A D T

X Y X Y

file B

file A.R file E.A
file E.T

file
A.S.X

file
A.S.Y

file
E.D.X

file
E.D.Y

File description

• The file description contains all necessary information
concerning the particular file:
• file name
• organization
• creation date
• owner
• access rights
• date of last access
• date of last change (write access)
• position of file (or its parts)
• size
•

10-15 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Access rights

• Access rights are determined by the owner, who usually is
also the creator of the file.

• If read (r) and write (w) are offered as basic rights, access
rights could be specified as follows:

• Advanced differentiation of access rights
• Execute (for program files)
• Change access rights (reserved to owner)
• Write differentiated between „update“ or „append“
• Delete
• …

10-16 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

file 1

file 2

file 3

file 4

 user(group) A

r, w

w

 user(group) B

r r, w

r

r, w
 user(group) C

r

r

 user(group) D

r

10.4 File organization

• File organization concerns the internal structure of the file.
• The organization specifies in which way access to

individual records is possible.
• We distinguish:

• Sequential file organization
• The records are accessed sequentially, i.e. one after the other.

• Direct file organization
• Random access to arbitrary records

• Index-sequential file organization
• Sequential as well as random access

• More than one form of organization may be offered

simultaneously and mapped to a basic form of
organization.

10-17 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

10.4.1 Sequential file organization

• There is an order of the records that determines the access.
• It is the mandatory organization for files on magnetic tapes.
• It could also be applied for disk storage devices.
• There is a pointer which identifies the current record and can

be moved explicitly or implicitly by special operations.
• The access (e.g. read) always relates to the current position of

the pointer:

10-18 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

S1 S2 S3 S4 S5 S6 S7 S8

Begin of file

Position of pointer
old new

S4

Sequential file organization

• Writing to a file is usually only possible at the end of the
file.

• Only if a record can be replaced by another record of the
same length, writing within the file is possible.

• Often, there are explicit operations to move the pointer:
• next – advance the pointer by one
• previous – set back by one (sometimes not offered)
• reset – set back to begin

10-19 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

S1 S2 S3 S4 S5 S6 S7 S8

Begin of file

EOF
old new

S9 append

S4 replace
(update in place)

Sequential files on disk

• Disk devices offer some choices for storing sequential
files:
• Contiguous allocation

• The file occupies consecutive blocks on the disk.
• Noncontiguous allocation

• The file occupies arbitrary blocks on the disk.
• The ordering of the blocks can be achieved in two

different ways:
• Linked allocation (chaining)

- direct (integrated) chaining of blocks
- separate chaining in a table (e.g. FAT in MS-DOS /

Windows)
• Indexed allocation

10-20 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Sequential files on disk

• blocks directly chained

• blocks managed by usage of an index block

10-21 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

S1 S2 S3

S4 S5 S6

S7 S8 S9

S1 S2 S3

S4 S5 S6

S7 S8 S9

Example

• The FAT file system of MS-DOS uses separate chaining.
• The chaining is done in a File Allocation Table (FAT) that

provides an entry for each block.
• For performance reasons it must be kept in main

memory permanently.

10-22 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

567

298

EOF

129

235

567

298

„xyz“ 235
name 1st block

....
File directory entry 0

129

File Allocation Table

10.4.2 Direct file organization

• Direct access to a record is organized using a key.

• The address (block- or track number) is calculated based on
the key value.

 ⇒ Hash function ai = f (ki), e.g. ai = ki mod n
• The address calculated (block number) is not necessarily the

physical block number. An additional intermediate mapping is
possible.

• Blocks or tracks serve as containers for several records, i.e.
for all those that are mapped to the same hash address.

• Only in case of an overflow we need to resolve the hash
collision.
 10-23 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

key

k i r i
record

Direct file organization

• Collision resolution, e.g. linearly by ai+1 = (ai + d) mod n

10-24 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

R R R R R R

R R
R
R

R
R

M
M
M
M
M

M

R R blocks or tracks a i = f k i ()

Direct file organization
• If files grow arbitrarily, the hash table will overflow at some

time.
• Then we need a costly reorganization (rehashing).
• To avoid that, we can employ the extendible hashing.
• It allows an incremental extension of the hash table without a

complete reorganization.
• For that we need an additional stage of indirection, e.g. the hash

function leads first into a component of a vector of pointers.
• As hash function we use ai = ki mod 2g, e.g. the keys are

discriminated according to their last g binary digits.
• If there is an overflow of one of these hash buckets, we create a

new bucket and the content is distributed to the two buckets
(previous and new) according to the „refined“ hash function.

• To ensure correct addressing, we increase g by one (length of
pointer vector doubles), and the pointers need to be translated
accordingly.
 10-25 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Example

• before extension
 (key 43 is inserted)

• after extension

10-26 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

pointer vector g
pointer

2 2 2 2

24
16
92

13
49

22
18

19
15
31
27

data
blocks

b = 2 = 4 g = 2 g max max

pointer vector g
pointer

2 2 2 3

24
16
92

13
49

22
18

19
27
43

b = 2 = 8 g = 3 g max max

2 2 2 3

15
31 data

blocks

10.4.3 Index-sequential file
organization

• Some data sets require both sequential and direct processing
(at different times).

• That leads to a mixture of sequential and direct (indexed)
organization, the index-sequential file organization.

• Although the records of the file are sequentially stored on the
storage media, there is additionally direct access supported by
appropriate data structures.

• In its original form, there is exactly one index stage which
holds the largest key of each block.

10-27 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r12 r13 r14 r15 r16 r17 r18 r11

r4 r7 r12 r15 r18

Index-sequential organization
• With dynamic operations (insertion and deletion of records)

blocks may overflow.
• Then we need to provide overflow blocks to store the records

that don‘t fit in and have to insert appropriate reference
pointers.

10-28 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r12 r13 r14 r15 r16 r17 r18 r11

r4 r7 r12 r15 r18

r4.1 r12.1 r12.2 r4.2 r12.3

r4.2 r12.3

overflow block

B*-Trees

• The usage of pointers with overflow blocks can significantly increase
access times to individual records.

• Better are data structures that by their very nature support growing
and shrinking.

• The B*-Tree is a variant of the B-Tree. It contains records only in the
leaves.

• The internal nodes only contain keys and serve for the speed-up of
the access.

• With regard to the degree of filling and shape conservation, the B*-
tree corresponds to the B-tree.

10-29 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

13 14 17 19 23 24 29 31 37 41 43 71 73 79

19 31 71

41

Properties of B*-Tree

• The nodes correspond to the blocks on the disk.
• Each node (block) is at least half full.
• Let be

• ci the number of keys in an internal node i
• m the minimal degree of filling for internal nodes (min.

number of keys)
• ci* the number of records in a leaf node i
• m* the minimal degree of filling for leaves (min. number of

records)
• Then for all internal nodes i (except the root):
 m ≤ ci ≤ 2m
 and for all leaf nodes i:
 m* ≤ ci* ≤ 2m*
 (For the example on the preceding slides we have m = 1, m* = 2.)

 10-30 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Insertion in B*-Tree

• Normal case: still free space in node
• Overflow case:

• neighbor has enough space: load balancing with neighbor
• both neighbors full: split node (allocate new block)

• B*-tree after insertion of a record with key 16?

10-31 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

 31 71

4 1

13 14 17 19 23 24 29 31 37 41 43 71 73 79

19

Insertion in B*-Tree

• B*-tree after insertion of a record with key 16 (node
splitting at leaf level, load balancing at level above)

10-32 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

 31 71

4 1

13 14 17 19 23 24 29 31 37 41 43 71 73 79

19

 19 41 71

3 1

13 14 16 23 24 29 31 37 41 43 71 73 79 17 19

16

Deletion in B*-Tree

• Normal case: node remains at least half full
• Reconfiguration case (node falls below 50% filling):

• neighbor more than half full: load balancing with neighbor
• both neighbors exactly half full:
 merger with one the neighbors (release block)

• B*-tree after deletion of record with key 71?

10-33 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

 19 41 71

3 1

13 14 16 23 24 29 31 37 41 43 71 73 79 17 19

16

Deletion in B*-Tree

• B*-tree after deletion of record with key 71 (node
merger at leaf level)

10-34 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

 19 41 71

3 1

13 14 16 23 24 29 31 37 41 43 71 73 79 17 19

16

 19 41

3 1

13 14 16 23 24 29 31 37 41 43 73 79 17 19

16

How tall do B*-Trees get?

• e.g. social security in China with ca. 109 entries
• With 40 bytes per entry (key and pointer) and a block

size of 4096 bytes we get a fan out degree of
 t = 4096/40 ≈ 100 (no. of keys per node)

• A B*-tree of height 4 is sufficient!
 10-35 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

10 2

10 4

10 6

10 8

10 10

10.5 File operation

• Operations on files
• Create

• open
• read
• write
• reset
• lock
• …

• close
• read parameter
• set parameter (e.g. access rights)

• Delete

10-36 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

File control block

• Operation of a file requires some management
information:
• position pointer
• current block address
• references to buffer (in main memory)
• degree of filling of buffer
• lock information

• These data are stored in the file control block (FCB).
• The FCB is a data structure that is created at opening

time of a file and deleted after closing.
• The thread or process control block contains references

to the file control blocks of files that this process has
currently opened.

10-37 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Shared usage of files

• A file can be used by several threads at the same time.
• Since the FCB contains data that refers to the file as

such, and data that is related to the respective user, we
can split those two parts:

10-38 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

TCB1

TCB2

FCB FCB FCB

FCB FCB

FCB‘
common part

shared file

Buffering

• Since data are often accessed more than once, e.g.
index blocks, it pays off to keep copies of those disk
blocks in main memory (disk cache).

• Some operating systems use the whole otherwise
unused main memory as disk cache e.g. Linux even
swaps out program memory in favor of disk cache (if
sysctl parameter vm.swappiness > 0; default is 60).

• (In addition, disk controllers usually have another,
internal and transparent cache)

• At each access to a disk block the OS checks the cache
whether the block is already present in main memory.

10-39 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Buffering

• As replacement strategy at shortages we can employ the
same algorithms we know from the virtual storage.
(LRU, FIFO, …).
• Performance?

• If a modified block is written back to the disk only as
part of a replacement, there is some danger of loss.
• Why?

• Important blocks on which the consistency of the file
system depends (directory blocks, index blocks) should
be saved immediately after writing.
• How?

• Sequential access can be exploited: Read-Ahead and
Free-Behind.

10-40 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

10.6 Example: Unix File System

• Hierarchic
• tree structure
• file directories as internal nodes
• files as leaves
• no restrictions with regard to breadth or depth

• Unified
• Almost all system objects are represented as files and

accessed by using the file interface (files, catalogues,
communication objects, devices).

• syntactically equal treatment of all types, semantically as
far as possible.

• therefore programs are independent of the object type
• Simple

• only few, but flexible file operations
• simple file structure

10-41 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Files in Unix

• byte string
• arbitrarily addressable
• content without property and structure
• form and content completely defined by user
• maximum file size depending on system (typically GB or

TB range, originally GB range)
• limited to one logical volume
• protection by access rights

• r read
• w write
• e execute

• specifically for user, group, world

10-42 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

The Inode (Index-node)

• Each file is described by a so-called I-node. It
represents the file.

• It contains
• owner (UID, GID)
• rights
• date of creation
• date of last change
• size
• type (file, directory, device, pipe,...)
• array for tree-like access structure (references to data

blocks)
• I-nodes are kept in a table for each file system.

10-43 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Unix file organization

10-44 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

direct

:

indirect

:

:
twofold
indirect

:

:

:

:

threefold
indirect

0
1
2
3
4
5
6
7
8
9

10
11
12

assumption: block size of 1KB

access level max. file size
direct: 10KB
indirect: 256KB

twofold indirect: 64MB
threefold indirect: 16GB

Directories (catalogues)

• Directories are managed as normal files. Only an entry
in the type field indicates that it is actually a directory.

• A directory entry contains:
• length of entry
• name (variable length up to 255 characters)
• I-node number

• More than one directory entry can point to the same I-
node (hard link).

• Users identify files by a path name (series of identifiers
with “/” as separator which is translated into an I-node
number.
• If the path starts with “/”, then it is an absolute path name

that starts at the root-directory.
• If a path starts with a character other than “/”, it is a

relative path name, that refers to the current directory.
10-45 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Directories

• Each directory starts with an entry ".", that indicates the
I-node of the current directory.

• The second entry is ".." and refers to the parent
directory.

• The path name is being resolved from left to right and at
every resolution the respective name is searched in the
directory.

• As long as it is not the last name of the path, it must be
a directory. If not, the search is aborted with an error
message.

10-46 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Symbolic Links

• Unix offers the opportunity to access files and directories using
different names. That also helps to facilitate shared usage.

• by symlink(old_name, new_name) an additional name is
generated.

• Example:
• with symlink("/usr/src/uts/sys","/usr/include/sys")
• and symlink("/usr/include/realfile.h","/usr/src/uts/sys/testfile.h")
• we have three path names to the same file:

• /usr/src/uts/sys/testfile.h
• /usr/include/sys/testfile.h
• /usr/include/realfile.h

10-47 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

/

usr

src include

uts

sys

inode.h testfile.h

sys realfile.h

Hard and Symbolic Links

• A hard link is only another file name.
• There is another directory entry with a pointer to the same file.
• The I-node entry is the same for all hard links.
• Each new hard link increases the link counter in the I-node of the

file.
• As long as link counter ≠ 0, the file will not be deleted after a

remove().
• A remove() only decrements the link counter.

• A symbolic link (soft link) is a file that contains a path name

for a directory or a file.
• Symbolic Links will be evaluated at each access.
• If the file is deleted, the path name does no longer refer to an

existing file, e.g. it gets invalid.
• Symbolic links to files or directories can be created even if the file

or directory does not yet exist.

10-48 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Logical and physical file system
• A logical file system can consist of more than one physical file system.
• A file system can be inserted into another file system at an arbitrary

place by using the “mount”-command and removed again by using
“umount”.

• At the access of a mounted directory a special bit in the I-node
indicates that it is a “mount-point”.

• A “mount-table” is established, which is managed by the OS as a
connection between the I-node of the mount point and the root
directory of the mounted file system.

10-49 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

/

bin etc usr

cc sh passwd getty

/

bin include src

awk yacc stdio.h uts

mount-point

Disk structure
• Each physical file system typically resides on a logical device

(partition of a physical device or logical volume managed by a logical
volume manager). Many of those partitions can be existent on a
physical device.

• Each logical device (file system) contains, behind the boot block, a
so-called super block with the following content:
• size of file system
• list of free blocks
• list of free I-nodes

• Following the super block there is the list of I-nodes of this file
system.

• Newer Unix file systems use the concept of a cylinder group which
provides this structure (super block, Inodes) for each cylinder group
separately. (Reduction of arm movement)

10-50 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

B S I-node table

. . .

data blocks

. . .

boundry

Buffering

• Disk blocks are buffered in main memory. For fast access a hash
table is used. Blocks with identical hash value are kept in a linked
list.

• The management of the buffer blocks (replacement strategy) follows
the LRU principle. A free list is maintained, in which the free blocks
are double linked in a circular way. Free blocks are removed at the
head and inserted at the tail.

10-51 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

hash table head of free list

free

locked

File operation

• Upon opening a file, a file descriptor (integer) is created.
• It is used as an index to a process specific table of open

files.
• From that table entry a reference leads to an entry in a

system wide file table.
• From there we get to the I-node of the file.

10-52 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

:
read(3,..)
:

user address space system address space disc

open files
(process specif.)

file table
 (system wide)

I-node
table

(in buffer)

data blocks

File operation

• Read and write do not contain any position information,
only the number of bytes to be transferred.

• The current position pointer is kept in the file table and
updated after each operation.

• A process can have more than one descriptor to the
same file.

• Different processes can access the same file.
• Problem?

• The copy of the I-node in the buffer contains a counter
which indicates how many entries in the file table are
pointing to it.

• Locks are possible, but are not enforcing (advisory
locks).

• They can be applied to entire files or to parts of files.

10-53 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

10.7 Windows NTFS

• Windows NT supports older file systems like the FAT system of DOS and
Windows95 or HPFS of OS/2.

• The usual one is NTFS (NT File System) with following properties:
• Fault tolerance

• Transaction concept (all-or-nothing)
• Automatic restart at system crash during operation.
• Support of RAID-1 (mirroring) and RAID-5 (block-level-parity, server only)

• Security
• Discretionary access control

• Support of large files and large disks
• Unicode-Names
• POSIX support
• Encryption
• Compression

10-54 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Volume structure

• Sector: smallest addressable unit on a disk
• Cluster: Collection of several contiguous sectors on the same track

 (smallest unit of allocation in NTFS)
• Volume: logical partition

• at least 1 Cluster
• can stretch across several disks (< 264 bytes)
• Raid 5 supported

• Access to the cluster by Cluster Numbers:
• Numbering of cluster of a volume: Logical CN
• Numbering of cluster of a file: Virtual CN
• Mapping of VCN to LCN in file description

10-55 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

volume size sectors per cluster cluster size in KB
< 512 MB 1 0.5
 512 MB – 1 GB 2 1
1 GB – 2 GB 4 2
2 GB – 4 GB 8 4
4 GB – 8 GB 16 8
8 GB – 16 GB 32 16
16 GB – 32 GB 64 32
> 32 GB 128 64

Volume structure

• MFT (corresponds to Inode-Table in Unix)
• Each row (1KB) describes a file or a directory and contains

Information about the location of the data blocks. If the file
is very small it will be stored exactly there.

• System files
• MFT2: Mirroring of the first 3 rows of the MFT
• Log file: List of transaction steps
• Cluster bit map: Representation of occupied and free

Clusters
• Attribute definition table: Supported file attributes on this

volume
• Bad cluster file

10-56 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

File Area System
Files

Master File Table
partition

boot
sector

File attributes

Attribute type Description
Standard Information file attributes (Read-only, read/write, etc.)

time stamp (creation date etc.)
Link counter etc.

Attribute list For those attributes that do not fit into one
Row of the MFT (1KB)

File name At least one name
(up to 255 Unicode characters)

Security descriptor owner and list of authorized users
Data file content
Index root For directory files
Index allocation For directory files
Volume information Version number and volume name
Bitmap For directory files

10-57 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Mapping of Virtual to
Logical Numbers

Source: Solomon, D.A., Russinovich: Inside Windows 2000

10-58 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

NTFS in the context of other services

Source: Solomon, D.A., Russinovich: Inside Windows 2000

10-59 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Virtual Memory
Manager

Cache
Manager

Log File
Service

Disk Driver

Flush the
log file

Write the
cache

Log the transaction

Read/write
the file

Access the mapped
file or flush the cache

Load data from
disk into
memory

I/O Manager

Read/write a
mirrored or

striped volume

Read/write
the disk

NTFS Driver

Fault Tolerant
Driver

NTFS Data structure

Source: Solomon, D.A., Russinovich: Inside Windows 2000

10-60 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Process

handle
table

file object

file object

data
attribute

user defined
attribute

stream
control
blocks

NTFS data structures
(use to manage the
on-disk structure)

file
control
block

master
file table

10.8 On-disk Consistency of
File Systems

• Traditional file systems
• Require complete check after crash
• Traverse everything, check for consistency, fix problems
• (Possibly hidden) data loss likely

• Newer approaches try to avoid this check
• Journaling file systems (aka logging file systems)
• Log-structured file systems
• Copy-on-write file systems (aka shadow paging file systems)
• File systems with soft updates

• No replacement for regular consistency checks and
backups!
• File system bugs
• Silent data corruption
• User errors

10-61 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Journaling File Systems

• Journaling file system = Traditional file system + Journal
• Every modification (or set of modifications) is written as

a transaction to the journal first.
• Finished transactions are discarded from the journal.
• After a crash, only the journal has to be replayed

• Incompletely written transactions are recognized by wrong
checksums.

• Drawback: low performance, everything has to be
written twice

• Trade-off: journal only metadata
• Other issues: read-only access and boot-up after a crash

problematic due to pending log replay; log replay often
not that well tested

10-62 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Log-structured File Systems

• Log-structured file system
• = Journaling file system – Traditional file system
• = Journal

• Just the Log itself remains
• Requires extensive caching

• Which is done today anyway
• In-memory file system is constructed by replaying the log

• Regularly written checkpoints contain enough metadata, so
that not everything has to be replayed

• All writes are sequential, good for HDDs and SSDs
• Drawback: garbage collection necessary, low

performance when nearly full and too much I/O to do
garbage collection in background

10-63 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Copy-on-Write File Systems

• Copy-on-Write file system
• = Traditional file system – In-place updates (strictly

speaking, log-structured file systems are also COW)
• No in-place updates, therefore no inconsistencies
• If a block must be updated, a copy of that block is

updated and then the reference to it is replaced
• Possibly recursively up to the superblock
• (remember our B* Tree example: How many copy

operation are necessary?)
• Allows easy realization of snapshots
• Drawbacks: COW operations can be costly

• Trade-off: increase commit latency for better performance
• “Not enough free space to delete file”?

10-64 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

File Systems with Soft Updates

• Soft update file system
• = Traditional file system + Enforced order of writes

• Writes are ordered to avoid inconsistencies
• On-disk file system is always semi-consistent

• Not all inconsistencies can be avoided, but
• Nothing bad will happen after a crash

• Still needs a complete file system check after a crash
• Can be done concurrently in the background

• Drawback: difficult to implement, reduced performance
due to frequently used I/O barriers, conflicts with I/O
scheduler

10-65 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

10.9 ZFS: “The Last Word on File
Systems”

• Originally: “Zettabyte File System”
• Goal: Sufficiently large file system (256 quadrillion ZB,

1ZB =270B)

• Features:
• Storage pools
• End-to-end data integrity by checksums
• Copy on write transactional model
• Caching
• Snapshots
• Deduplication
• Encryption
• …many more

10-66 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

ZFS: Architecture

• Three layers:
• ZFS POSIX layer (ZPL)

• Issues transactions atomically
• Changes are reverted if it does not complete atomically
• Offers the classical POSIX interface to the user

• Data management unit (DMU)
• Manages copy on write behavior
• Commits at the end of a transaction

• Storage pool allocation (SPA)
• Manages storage pools including

• Compression
• Checksums and verification
• Snapshots
• …

10-67 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

ZFS: Storage Pools

• Classical way: One filesystem per partition or using
volume manager to combine devices into logical
partitions

• ZFS: Devices contribute to a storage pool that can be
extended at run-time

• Support for different replication strategies (similar to
RAID)

• Storage pool is dynamically used to offer
• File systems
• Block devices (e.g., for virtual machines)
• Snapshots

10-68 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

ZFS: Caching

• ZFS supports caching at different levels
• RAM cache

• Caches read accesses
• Can use large amounts of RAM in an efficient manner

• SSD cache (optional)
• Read cache (L2ARC) automatically filled during operation

to speed up read operations. No damage if lost because
data is always on hard disk. Speeds up deduplication
significantly.

• Write cache caches synchronous writes as asynchronous
writes that are later committed to the storage pool. Used
only in case of crash. Device failure may result in losing
latest writes.

10-69 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

10.10 Distributed and Parallel FS

• Network File Systems
• Server(s) provides file system as service to many clients

• Reduction of complexity of data management
• Improvement of reliability

• NFS, Server Message Block (SMB)/Common Internet File

System (CIFS)
• Andrew File System (AFS)

• Worldwide access to files
• Kerberos for authentication
• Access control lists for access right management
• Weak consistency model

• Local copies of files with synchronization by network access
• Flexibility by using volumes for data storage
• Mount points embedded into client’s local file system

10-70 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Parallel File Systems

• Network file systems with many servers
• Improvement of performance and
• Reliability by
• Distribution of data

• Data distribution

• Meta-data
• Real data (load)
• Both
• Consistency model and protocol needed

• Examples

• GlusterFS
• Lustre

 10-71 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Ceph

• CERN
• 2 * 100 PB disc storage
• 1-2 PB/month due to LHC experiments
• Test in 2015 with ~30PB using 150 servers
 with 48 * 4TB

• Design goal: support of tens or hundreds of thousands

of hosts concurrently reading from or writing to the
same file or creating files in the same directory

• Object, Block and File System

10-72 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Ceph

• Decoupled data and meta-data operations
• Workload distribution
• Meta-data Cluster

• CRUSH – Controlled Replication Under Scalable Hashing
• decentralized meta-data lookup

• Journal based meta-data storage
• Load balancing and Replication on demand

• Object Storage Cluster
• Object Storage Devices – Servers providing disc storage
• Replication

• Management of meta-data and I/O operations using
capabilities

• Reliable Autonomic Distributed Object Store (RADOS)
• near-POSIX file system interface

10-73 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

10.11 the very last word on FS: no FS

• Single address space operating system
• All data stored in one address space (and kernel data)
• Data exchange by defined interfaces

• Shared memory
• IPC

• (Disc used for virtual memory only)

• Mungi (University of New South Wales, Australia)
• L4 kernel based OS
• Data objects addressed by capability
• Shared memory to improve performance

10-74 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

References

• Stallings,W.: Operating Systems 5th ed., Prentice Hall,
 2005, Chapter 12

• Tanenbaum, A.: Moderne Betriebssysteme, 2.Aufl., Hanser,
 1995, Kapitel 4+7

• Bacon,J.: Concurrent Systems, Addison Wesley, 1997,
 Chapter 7

• Nehmer,J.; Sturm,P.: Systemsoftware, dpunkt-Verlag, 2001,
 Kapitel 9

• Solomon, D.A., Russinovich: Inside Windows 2000, MS Press,
 1998, Chapter 9

• Fagin,R.; Nievergelt,J.; Pippenger,N. and Strong,H.R.: Extendible
 Hashing - A Fast Access Method for Dynamic
 Files, ACM Transactions on Database
 Systems, 4(3):315-344, 1979

• Kumar, V.: Concurrent Operations on Extendible
 Hashing and its Performance. Commun.

 ACM 33(6): 681-694(1990)

10-75 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

	Foliennummer 1
	10.1 Motivation
	Storage media
	Storage media
	Interplay
	10.2 Files on disk
	Blocks and records
	Blocks and records
	Allocation of a disk storage
	Volume label
	Allocation information �(free and allocated blocks)
	Free space list as a separate table
	10.3 Table of contents �(file directory)
	File directory
	File description
	Access rights
	10.4 File organization
	10.4.1 Sequential file organization
	Sequential file organization
	Sequential files on disk
	Sequential files on disk
	Example
	10.4.2 Direct file organization
	Direct file organization
	Direct file organization
	Example
	10.4.3 Index-sequential file organization
	Index-sequential organization
	B*-Trees
	Properties of B*-Tree
	Insertion in B*-Tree
	Insertion in B*-Tree
	Deletion in B*-Tree
	Deletion in B*-Tree
	How tall do B*-Trees get?
	10.5 File operation
	File control block
	Shared usage of files
	Buffering
	Buffering
	10.6 Example: Unix File System
	Files in Unix
	The Inode (Index-node)
	Unix file organization
	Directories (catalogues)
	Directories
	Symbolic Links
	Hard and Symbolic Links
	Logical and physical file system
	Disk structure
	Buffering
	File operation
	File operation
	10.7 Windows NTFS
	Volume structure
	Volume structure
	File attributes
	Mapping of Virtual to �Logical Numbers
	NTFS in the context of other services
	NTFS Data structure
	10.8 On-disk Consistency of �File Systems
	Journaling File Systems
	Log-structured File Systems
	Copy-on-Write File Systems
	File Systems with Soft Updates
	10.9 ZFS: “The Last Word on File Systems”
	ZFS: Architecture
	ZFS: Storage Pools
	ZFS: Caching
	10.10 Distributed and Parallel FS
	Parallel File Systems
	Ceph
	Ceph
	10.11 the very last word on FS: no FS
	References

