
Chapter 9

Resource Management

9.1 Introduction and Overview

• Every entity needed by a thread to run can be called a resource.
• Resources can lead to problems if they are limited, or if they can

used exclusively only.
• There are different kinds of resources and therefore different

approaches to manage them.

• Example 1:
• A thread needs the program code to be executed accessible in main

memory.
• The program code is a resource of the thread.
• Other threads may execute the same program code. These threads can

access the code as well. There is no need to manage the access to the
resource.

• Example 2:
• Threads need memory to store some data.
• Memory is limited and should be assigned exclusively. Therefore the

memory must be managed.

9-2 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Uncoordinated usage

• Uncoordinated usage of a resource may lead to
undesirable effects.

9-3 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Chaos !

xxxxxxx
yyyyyyy
yyyyyyy
xxxxxxx
yyyyyyy

 printline(„xx...x“)

printline(line)

return

send line to printer

printline(„yy...y“)

Thread x

Thread y

Coordination by Resource Manager

• Using a resource manager for instance the exclusive
access can be ensured.

9-4 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

 printline(„xx...x“)

printline(line)

return

send line to printer

printline(„yy...y“)

Thread x

Thread y

xxxxxxx
xxxxxxx

yyyyyyy
yyyyyyy

Resource
Manager

Release

Allocate

Allocate

Release

Resource Management

• Separation of usage and management!
• Wrapping usage by management operations!

9-5 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Management

Usage

Management

Res. Alloc

Res. Usage

Res. Release

Rent car

Drive car

Return car

What is resource mangement?

9-6 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Resource

Stakeholder

Resources, e.g.
 CPU
 Memory
 Bandwidth

Stakeholder, e.g.
 User
 Process
 Thread
 CPU
 Network interface

 File
 Signal
 Message
 Name
 Colour

• Limited amount of resources
• Exclusive usage
• Management is reasonable

Resource management in
everyday life

• Solution 1:
 Central authority decides (resource mangement).
 Traffic lights, gates

9-7 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Traffic bottleneck as resource.

Solution 1: Resource Management

• Usage of a resource only after
 allocation.
• Allocation before usage enforced
 by intermediate instance.

• Examples

• 2-phase locking for transaction based systems
 (Access to data as a resource managed exclusively by the scheduler)
• (Main) memory management
 (Access to allocated segments only)
• Monitor
 (Call of entry procedure only after release of monitor)
• Printer
 (Access to printer only via driver as resource manager)

9-8 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

 Res.

P1 P2

Resource Manager

Resource management in
everyday life

• Solution 2:
 Agreement between all parties (rules, negotiation,
 protocol)
 Traffic sign, hand signal, flash light

9-9 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Traffic bottleneck as resource.

Solution 2: Agreement

• Applicants agree about access
 to resource (protocol).

• Critical section
 Involved processes agree to implement mutual exclusion by

usage of lock.
• Decentralized Bus Arbitration
 Access to bus as shared communication media must be

managed. Agreement about special protocol to coordinate bus
arbitration in case of requesting component.

• Distributed systems – global serialization
 Nodes apply for global serialization by broadcast.

Coordination of access sequence based on logical time.

9-10 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Res.

P1 P2

Resource management in
everyday life

• Solution 3:
 No action (uncoordinated usage)
 Risk of collision

9-11 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Traffic bottleneck as resource.

Solution 3: Uncoordinated usage

• Without coordination collisions
 are possible.
• Collisions have to dissolve properly.

• The effort to handle collisions may be smaller than to
avoid collision permanently.

• Can be used in case:
• Collision is unlikely or seldom and
• the “damage” done by collision can be fixed afterwards.

9-12 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Res.

P1 P2

Solution 3: Uncoordinated usage

• Optimistic synchronization of transactions (Validation)
• Transaction don‘t implement locks, but perform access
• Access is recorded (Log)
• At the end of transaction (Commit) check for collision (access by different

processes) is performed (Validation)
• Abort and roll-back in case of collision

• LAN (CSMA/CD)
• Listen to the medium
• Sending if medium is free, otherwise wait until it’s free
• Listening while sending
• Packets are destroyed by other packets on the medium
• In case of collision sender have to wait and send again

9-13 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Packet Packet
Ethernet

Collision

S1 S2

Classification

• Forms
• real / logical / virtual

• Real resources are physically existent.
 Real resources are base for virtual and logical resources.
 Examples: Main memory, Disc drive, Processor
• In order to offer more or higher capacity of real resource a

virtual resource is built.
 Usage is often intermittent, i.e. virtual resource is mapped to the real

resource only for short time (Multiplexing).
 Examples: Virtual memory, Virtual processor
• Logical resources extend virtual or real resource in order to

provide “higher” level of service via comfortable interface or
with interface with enhanced functionality.

 Logical resource is kind of abstraction of the real one.
 Examples: File, Window

9-14 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Classification

• Persistence
• Reusable
 Resources usually are released after usage and can be

used by other processes.
• Consumable
 Some logical resources are consumed by usage and are not

usable afterwards.
 Examples: Signals, Messages, Times stamps

• Capacity
• Limited
 Amount of usage of the resource has to be managed

(allocation/release).
• Unlimited
 No management of amount of usage needed; management

of access only.
9-15 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Classification

• Acquisition
• Process requests usage of resource for itself.
• Some different instance requests allocation of resource for

the process (request for memory for forked process).

• Implementation of resource management
• As procedure
 without parallel execution to the requesting process
• As process
 with parallel execution to the requesting process

9-16 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

RM – interim status

• Resource
 Term for all entities needed by a process to run.
• Resource management
 All tasks before and after usage of a resource needed to implement a correct

execution.

• Goals to resource management

• Correct execution
• No deadlock
• No starvation
• High level of parallel execution
• High level of resource usage

• In real live leads to complex optimization problems.
9-17 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Res.
Operations Res

 User 1

 User 2

Management

permit prohibit

Example: Parallel computer
• Parallel programs run on a given amount of processors or compute nodes for

a specific time span: allocate (num_processors, processing_time).
• Requests can be seen as a rectangle (number of processors x time).
• So the search for the optimal utilization is a Bin Packing Problem (Knapsack

problem).

9-18 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Time

Number of Processors

Length of
schedule

Fragmentation

Max. Number of
Processors available

9.2 Central resource management
9.2.1 One-exemplar resources

• Usage of a one-exemplar resource can be seen as
critical section.

• So resource management is like handling a coordination
problem.

• Operations of resource management allocate and
release do have same structure as operation for
coordination at a critical section with lock and unlock.

9-19 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

R := free

R := occupied

release(R) allocate(R)

yes

process waiting ?
deblock process

no block
R = free?

Snapshot of allocation

9-20 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Processes

Single Resources
free

allocated

„has allocated“
„waiting“

Data for resource management

• Required data
• State of allocation (free, allocated)
• Waiting processes (blocked at allocation request)

• Additional data (optional)

• Allocating processes (current owner)
• Number of allocations
• Average length of allocation time
• Degree of utilization
• Start of current allocation
• …

• Data needed to implement strategies for assignment or

revocation.

9-21 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Example of implementation

module single_unit_resource;
 export ALLOCATE_R, RELEASE_R;
 import BLOCK, DEBLOCK;

 var single_unit_R =
 record
 STATE: (free,occupied) = free;
 WP: queue of process = empty
 end;

 procedure ALLOCATE_R(R: single_unit_R);
 begin
 while R.STATE = occupied do
 BLOCK(R.WP);
 R.STATE := occupied
 end;

 procedure RELEASE_R(R: single_unit_R);
 begin
 R.STATE := free;
 if R.WP /= empty then
 DEBLOCK(R.WP);
 end;
 end single_unit_resource.

9-22 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

9.2.2 Multi-exemplar resources

• Amount of identical exemplars (drive cases for storage
media)

• Assumption: Single allocation
• ALLOCATE_S (ID)

• ID – Name or number of the allocated exemplar (return value)
• RELEASE_S (ID)

• ID – Name or number of the allocated exemplar (input value)

• In this simple case a Semaphore initialized with amount of
exemplars available would be sufficient.

9-23 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Multi-exemplar resources

• Divisible resources
• Memory (one-dimensional divisible resource)

• Processors (in Parallel Computers; two-dimensional
divisible resource)

9-24 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

0 1 2 3 v-1

(0,0) (0,v-1)

(v-1,v-1) (v-1,0)

Interface

• Usually these divisible resources are allocated
contiguously.

• In this case the area or amount of resources is
determined by start address and number of parts
exactly.

• ALLOCATE_R (START, NUM)
• START – Index to the begin of allocated area (return value)
• NUM – Number of units requested (input value)

• RELEASE_R (START, NUM)
• Release an area starting with START and with length of

NUM units

9-25 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Representation of allocation

• Status of allocation is stored using a data structure.
• Simple case: Bit list

• Operations to change the status of allocation:
• FREE (NUM)
 Check if amount of NUM units are available
• SET_OCCUPIED (START, NUM)
 Set given NUM bits from START to “used”
• SET_FREE (START, NUM)
 Set given NUM bits from START to “free”

9-26 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

0 1 2 3 v-1

1 1 1 1 1 1 0 0 0 0 1 1 0 0 1 0 0 0 1 1 1 0

used free

Structure of management for a
divisible resource

9-27 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

ALLOCATE _R(START,NUM) RELEASE _R(START,NUM)

FREE(NUM)

SET_OCCUPIED(START,NUM)

SET_FREE (START,NUM)

Y Y WP = empty

DEBLOCK(WP) BLOCK(WP)

R R

Example of implementation

9-28 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

module Multi_unit_resource;
export ALLOCATE_R, RELEASE_R;
 import BLOCK; DEBLOCK,
 FREE, SET_OCCUPIED, SET_FREE;
 var multi_unit_R =
 record
 STATE: array[0..v-1] of (free,occupied) = all free;
 WP: queue of process = empty
 end;

 procedure ALLOCATE_R(R: multi_unit_R;
 START: address; NUM: int);
 begin
 while ¬ FREE(R,NUM) do BLOCK(R.WP);
 SET_OCCUPIED(R,START,NUM)
 end;

 procedure RELEASE_R(R: multi_unit_R; START: address; NUM: int);
 begin
 SET_FREE(R,START,NUM);
 while R.WP /= empty do DEBLOCK(R.WP);
 end;
end Multi_unit_resource.

Expansion

• With many processes waiting the process with feasible
request should be chosen.

• Therefore the request have to be stored at the resource
manager (waiting requests).

• If requesting processes are sorted by size of request
(amount of units), allocation can be combined with
release.

• As the allocation is done be the releasing process it’s
called foreign-allocation (in contrast to self-allocation).

• There should be no additional check for resources within
the ALLOCATE procedure.

9-29 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Management of
multi-exemplar resources

• The implemented DEBLOCK operation is enhanced by a suffix
_S (for select) as a specific process – other than the first one
– is to be deblocked.

9-30 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

BLOCK(R.WP)

ALLOCATE_R(START,NUM) RELEASE_R(START,NUM)

SET_OCCUPIED(START,NUM)

N

N Request <PID,START,NUM>
satisfiable?

Is there a satisfiable
Request <P,S,N> in WR ?

Remove Request
from WR

DEBLOCK_S(R.WP,P)

R R

SET_FREE(START,NUM)

SET_OCCUPIED(S,N)

Store Request <PID,START,NUM>
in WR

Y

Example of implementation

9-31 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

module multi_unit_resource;
 export ALLOCATE_R, RELEASE_R;
 import BLOCK; DEBLOCK_S, INSERT, REMOVE, FIRST, ELEM, FREE,

 SET_OCCUPIED, SET_FREE;
 var multi_unit_r =
 record
 STATE: array[0..v-1] of (free,occupied) = all free;
 WP: list of process = empty;
 WR: list of record PROC: process;
 START: address;
 NUM: int
 end = empty
 end;
 procedure ALLOCATE_R(R: multi_unit_r; START: address; NUM: int);
 var P:process; S:address; N:int;
 begin
 if FREE(R, NUM)
 then SET_OCCUPIED(START,NUM)
 else begin INSERT(R.WR,<P_RUN,START,NUM>);
 BLOCK(R.WP)
 end
 end;
 procedure RELEASE_R(R: multi_unit_r; START: address; NUM: int);
 var P:process; A:address; L:int;
 begin
 SET_FREE(R,START,NUM);
 while ∃ELEM ∈ R.WR: FREE(ELEM(R.WR).NUM) do
 begin REMOVE(R.WR,ELEM(R.WR),<P,S,N>);
 SET_OCCUPIED(S,N);
 DEBLOCK_S(R.WP,P)
 end end;
 end multi_unit_resource.

9.3 Selection strategies

• Debating foreign-allocation introduced strategy differed
from FCFS principle.

• Strategies can be used to
• get high utilization of the resource
• treat the requesting processes fair.

• Given

• nf(t) number of free units of resource at time t
• n(i) number of units requested by process i
• W(t) amount of waiting processes (requests) at time t
 W(t) can be implemented as queue; new requesting

processes are inserted at the end.

9-32 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Selection strategies

• FIFO (First-In-First-Out) or FCFS (First-Come-First-Served)
• If n(i) ≤ nf(t) for the request n(i) units are allocated, otherwise

nothing no action is performed.
• Disadvantages:

• Low utilization in case of large first request.
• Because of the first large request smaller – satisfiable – request are

not served.

• First-Fit-Request
• Searching the queue from head to find a satisfiable request with

n(i) ≤ nf(t).
• Best-Fit-Request

• Queue is searched until end and the request fitting to
 is chosen.
• The request minimizing the amount of remaining free units is

chosen.
• Disadvantages of First-Fit- and Best-Fit-Request:

• Processes with large requests may be penalized (starvation).

 9-33 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

() () ()
() (){ }jntn ftnjntWj f

−
≤∧∈

min

Selection strategies

• Iterative procedure
• After release of a large amount of units more than one

request may be satisfied.
• So the strategies may be applied until no more request can

satisfied.
• Windowing

• To reduce effort the search may be limited by a window of
the size L and therefore only the first L positions of the
queue are investigated.

9-34 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Request

Queue

Window

A3 A6 A2 A5
Allocation

Solution for the problem of
starvation

• Using a dynamic size of the window the problem of starvation
in case of large requests (for First-Fit- or Best-Fit-Request)
can be solved.

• Given Lmax as maximal window size (initial value).
• The size of the window is adapted at every (successful)

allocation:

• Therefore after max. L-1 omissions the first request is served
(windows size == 1).

• With L converges to 1 the Best-Fit- and First-Fit-Request
converge to FCFS.

9-35 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23



 >−

=
otherwise ,

ignored is queue of headat request and 1 if ,1
:

maxL
LL

L

Request

Queue

Window size L=1

A3 A6 A2 A5
Allocation

A8

9.4 Deadlock
9.4.1 Characterization

• Examples:

9-36 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

P 1

WAIT(SO1)

SIGNAL(SO2)

P 2

WAIT(SO2)

SIGNAL(SO1)

Signaling
P 1

RECEIVE_S(CO1)

SEND_A(CO2)

P 2

RECEIVE_S(CO2)

SEND_A(CO1)

Communication

P 1

LOCK(LO1)

LOCK(LO2)

P 2

LOCK(LO2)

LOCK(LO1)

Locks

Deadlock

• Management of one-exemplar resource

• Management of multi-exemplar resource with 10 units

9-37 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

P 1 P 2

ALLOCATE(R1)

ALLOCATE(R2)

ALLOCATE(R2)

ALLOCATE(R1)

P 1 P 2

ALLOCATE_R(5)

ALLOCATE_R(1)

ALLOCATE_R(5)

ALLOCATE_R(1)

Deadlock

• More than one requesting processes

9-38 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

S

R

S

R

S

R

S

R

S

R

Deadlock in everyday life

9-39 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

waiting for waiting for

waiting for
waiting for

Deadlock resolution

9-40 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Another example for a deadlock

9-41 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Router

Links

Packets

Wait-for graph

• Directed graph with processes as nodes and edges show
the relation if a process waits for a resource allocated by
another process.

• A cycle in graph indicates a deadlock.
 with 6 processes

 with 2 processes

9-42 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

P1 P2

waiting for

waiting for

P1 P2

P4 P5

P3 P6

Deadlock

• Deadlocks can occur in different situations.
• In context of resource management these three

requirements are necessary for a deadlock:
1. Resources are used exclusive.
2. Processes hold allocation of a resource and try to

allocate another.
3. There is no preemption.
With these requirements fulfilled the following constraint
may occur and together with the first requirements this
is sufficient for a deadlock:
4. There is a cycle in the wait-for graph.

9-43 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Deadlock

• To deal with a deadlock different counteractions have to

be provided:
• Prevention
• Avoidance
• Detection
• Resolution, Recovery

9-44 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

9.4.2 Deadlock prevention

• Prevention stands for a methodic procedure handle
resource assignment restrict in a way no deadlock can
occur.

• Pre-claiming
• All resources needed by a process are requested (and

allocated) at start time.

• In dynamic systems the overall demand is difficult to predict.
• Uneconomical approach as resources are occupied longer

than needed.
9-45 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Pi

waiting for

cannot occur as process holds no resources

Deadlock prevention

• Overall release at request

• As the process does not possess any resource at allocation

the cycle in wait-for graph is prevented, too.

9-46 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Release (Res1, Res2)

eventual forced release

Allocate (Res1, Res2)

Allocate (Res3)

Release (Res3)
Allocate (Res1, Res2)

Deadlock prevention

• Allocation by (given) order
• Resource are sorted (Res1, Res2, Res3, …).
• Resource allocation is performed in order only.

• With this approach cycles in the wait-for graph are
prevented successfully.

9-47 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Allocate (Res1)

P1 P2

Allocate (Res3)

Allocate (Res4)

Allocate (Res2)

Allocate (Res3)

Allocate (Res5)

9.4.3 Depiction of resource allocation

• P Set of processes, |P| = m
• Rs Set of resource types, |Rs| = n
• Available resources
• Requests: Assignments:

• Overall request (maximum of all requests):

• Quintuple represents current resource allocation.

9-48 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

()nvvvv ,...,,: 21=

















=

mnm

n

aa

aa
A

...
::

...
:

1

111
















=

mnm

n

bb

bb
B

...
::

...
:

1

111
















=

mnm

n

gg

gg
G

...
::

...
:

1

111

()ABvRsP ,,,, 

Constrains

1. no more than available resources can be
 allocated.

2.

Requests can only contain amount of resource available.

3. Requesting processes are blocked until allocation.

4. Only non-blocked processes can request another resource
(see 3.).

9-49 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

{ } j

m

i
ij vbnj ≤∈∀ ∑

=1
:,...,1

{ } { }:,...,1,...,1 njmi ∈∀∈∀
vg

vba

ij

jijij

≤

≤+

Additional identifier

• Free resources

 with
 free res. = (existing) res. – allocated res.

• Remaining requests

 with
 remaining req. = overall req. – allocated res.

9-50 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

()nffff ,...,,: 21=


∑
=

−=
m

i
ijjj bvf

1
:
















=

mnm

n

rr

rr
R

...
::

...
:

1

111

ijijij bgr −=:

Notation

• Row vector instead of matrix
• 𝑎𝑎𝑖𝑖 := (𝑎𝑎𝑖𝑖𝑖, 𝑎𝑎𝑖𝑖𝑖, …, 𝑎𝑎𝑖𝑖𝑖𝑖) request of process i
• 𝑏𝑏𝑖𝑖 := (𝑏𝑏𝑖𝑖𝑖, 𝑏𝑏𝑖𝑖𝑖, …, 𝑏𝑏𝑖𝑖𝑖𝑖) allocated resources of process i
• 𝑔𝑔𝑖𝑖 := (𝑔𝑔𝑖𝑖𝑖, 𝑔𝑔𝑖𝑖𝑖, …, 𝑔𝑔𝑖𝑖𝑖𝑖) overall request of process i
• 𝑟𝑟𝑖𝑖 := (𝑟𝑟𝑖𝑖𝑖, 𝑟𝑟𝑖𝑖𝑖, …, 𝑟𝑟𝑖𝑖𝑖𝑖) remaining request of process i

• Relational operators

•
•

9-51 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

kk yxkyx ≤∀⇔≤ :

kk yxkyx >∃⇔≤/ :

Definitions

• Process Pi is blocked if , the current
request cannot be satisfied.

• Set of processes P = {P1, P2, …, Pm} is in a deadlock if
 , there is a subset of
processes that requests could no be satisfied by the
amount of resource not allocated by the processes of P.

• The subset I is also called to be in a deadlock.
• Example:

9-52 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

fbva
m

k
ki


=−≤/ ∑

=1

{ } ∑
∈

−≤/∈∀⊆∃
Ik

kk bva:Ik:m,...,,I
21

{ } 221 == n,,I ()4,4=v
 ()3,21 =b


()1,12 =b

 ()1,01 =a
 ()0,22 =a



() () () ()0,11,13,24,4 =−−=− ∑
∈Ik

kbv


() ()0,10,22 ≤/=a
() ()0,11,01 ≤/=a



Resource graph

• With resource graph the request and allocation status
can be formally described.

• P is set of processes, Rs is set of resource types.
• A resource graph is a directed graph (V, E) with

 V=P ∪ Rs and
• (p, r) ∈ E ⇔ Process p make a request for a unit of

 resource type r
• (r, p) ∈ E ⇔ Process p holds allocation of a unit of

 resource type r

9-53 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Resource graph

• Resource graph is bipartite regarding P (cycles) and
resources Rs (rectangles), so there are edges between P
and Rs only.

• The number of units provided by a resource type is
depicted as node weight (points within the rectangle)
and determines the max. number of units that can be
allocated by processes.

9-54 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

R1

R2 P1 R3

P2

P3

Resource graph
Properties and Operations

• Resource graph depict a specific status of system, shows the
current resource status.

• Comparable to the wait-for graph a cycle points to a deadlock
condition.

• But in difference to the wait-for graph with a cycle in the
resource graph there is no necessity to have a deadlock, but it
is necessary to have such a cycle to get one.

• Every operation of resource management (request, allocation,
release) imply a transformation of the graph (add or remove
edge).

• A process only can perform such a operation if it’s not
blocked.

• In case all of the remaining request can be fulfilled the
process may finish successfully (termination).

• With termination of a process all allocated resources are
released.
 9-55 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Resource graph - Reduction

• A process p can reduce the resource graph by removing
all of the edges for allocation if it’s not isolated or
blocked.

• A resource graph can be reduced completely if there is
an order of reductions (processes reducing the graph by
releasing the resources) so that all edges will be
removed at the end.

• Theorem of deadlocks for resource graphs
• There is a deadlock if the
 resource graph cannot be
 reduced completely.

9-56 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

R1

R2 P1 R3

P2

P3

Example: a)

Resource graph - Reduction

9-57 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

b)

R1

R2 P1 R3

P2

P3

R1

R2 P1 R3

P2

P3

c)

R1

R2 P1 R3

P2

P3

d)

R1

R2 P1 R3

P2

P3

e)

9.4.4 Deadlock avoidance

• The definition of a deadlock describes a current system
situation.

• To avoid such a deadlock the remaining requests of the
processes have to be known.

• In worst case all of the remaining requests occur at the same
time.

• If all of these remaining requests can be satisfied the situation
is safe.

• Otherwise the situation is unsafe.
• The system status is unsafe if there is a subset of processes

that have remaining requests that cannot be satisfied with the
resource currently available.

• There might be some requests that can be satisfied, but in
worst case of orders of allocation and release a deadlock may
occur.

9-58 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Allocation trajectory (with deadlock)

9-59 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Ry

Rx

P1

P2

Ry

safe safe safe

safe

safe

safe

unsafe

A R

A

A

R

A

R Rx

R

Allocation trajectory
(without deadlock)

9-60 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Ry

Rx

P1

P2

Ry

safe safe safe

safe

safe

safe

unsafe

A R

A

A

R

A

R
Rx

R

safe

safe

Deadlock avoidance

• Deadlock avoidance implement the resource
management in such a way no unsafe situation can
occur. So requests are satisfied only if it leads to a safe
situation.

• A set of processes P = {P1, P2, …, Pm} is called safe if
 with

 or

 i.e. there is a order of process termination so the
 remaining request of the other processes can be
 satisfied.

9-61 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

mkkk PPP ,..,, nPermutatio
21

∃

{ } ∑
−

=

+≤∈∀
1

1
:,...,2,1

r

s
kk sr

bfrmr


{ } ∑
=

−≤∈∀
m

rs
kk sr

bvrmr


:,...,2,1

Example

9-62 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

waiting for

1

2

3

4

5 6

7

8

Deadlock avoidance

• Check for every request if the allocation would lead to an unsafe
situation.

• If case the request would lead to an unsafe situation postpone
request.

• In order to perform the check for the current situation the Banker’s
Algorithm can be used:

procedure deadlock_avoidance (P: set of processes, v: vector,

r:matrix,b:matrix, var answer: state, DP: set of processes)
var f: vector;
begin
 answer := undefined;
 DP := P;
 ;

 while answer = undefined do
 if ∃ Pi ∈ DP: ri ≤ f
 then begin
 DP := DP – {Pi};
 f := f + bi ;
 if DP = ∅ then answer:= safe;
 end
 else answer := unsafe;
end;

 9-63 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

∑
=

−=
m

1i
ibvf:

Complexity and Example

• Complexity of the Banker’s Algorithm
• Selection of a process (pass loop): O (m n)
• with max. m processes: O (m2 n)

• Example
• Given system with m=4 processes (i=1,..,4) and n=2 type of resources

(j=1,2). Current status:
 Allocation Overall requests Free resources

So the Remaining requests can be calculated as R and the overall available
resources v:

9-64 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23



















=

45
03
01
40

B



















=

610
13
42
64

G
()23=f



















=

25
10
41
24

R ()1012=v

Is this a safe situation?

• Following the algorithm:

 1. P3 can terminate successfully: r3 = (0 1) ≤ f = (3 2)
 f := f + b3 = (3 2) + (3 0) = (6 2)
 2. P1 can terminate successfully: r1 = (4 2) ≤ f = (6 2)
 f := f + b1 = (6 2) + (0 4) = (6 6)
 3. P2 can terminate successfully: r2 = (1 4) ≤ f = (6 6)
 f := f + b2 = (6 6) + (1 0) = (7 6)
 4. P4 can terminate successfully: r4 = (5 2) ≤ f = (7 6)
 f := f + b4 = (7 6) + (5 4) = (12 10) = v

• As there is a order to terminate the processes

successfully (P3, P1, P2, P4) the situation is safe!
• (P3, P1, P4, P2 is also possible.)

9-65 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

8.4.5 Deadlock detection

• In case there is no knowledge available about the remaining
requests Deadlock avoidance cannot be performed.

• So deadlocks may occur.
• At least the occurrence of a deadlock has to be detected.
• This can be done by searching for all of the processes that are

not involved in a deadlock situation.
• The Processes P1, P2, …, Pm are not involved in a deadlock

situation if with

 or

 there is a order of termination of the processes in such kind

all request can be satisfied by free resources or by resources
released earlier.

9-66 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

mkkk PPP ,..,, nPermutatio
21

∃

{ } ∑
−

=
+≤∈∀

1

1
:,...,2,1

r

s
kk sr

bfamr


{ } ∑
=

−≤∈∀
m

rs
kk sr

bvamr


:,...,2,1

Deadlock detection

• The approaches to avoid a deadlock enforcing safe situations only and
the deadlock detection are nearly the same.

• In case of deadlock avoidance a permutation is searched for that can
be executed if all of the remaining requests occur at the same time.

• For deadlock detection the same operations are performed for the
current request.

• So we can use the Banker’s Algorithm for deadlock detection too.
• We do have to replace the remaining requests with the current

requests.
• The algorithm has to consider all of the processes.
• The Banker’s Algorithm for deadlock detection can run at:

• every new request
• periodically
• as part of the Idle process
• in case of suspicion (maybe manually)

9-67 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Algorithm for deadlock detection

procedure deadlock_detection(P: set of processes, v: vector,
a:matrix, b:matrix, var answer: state, DP: set of
processes)

var f: vector;
begin
 answer := undefined;
 DP := P;
 ;

 while answer = undefined do
 if ∃ Pi ∈ DP: ai ≤ f
 then begin
 DP := DP – {Pi};
 f := f + bi ;
 if DP = ∅ then answer:= no_deadlock;
 end
 else answer := deadlock;
end;

 9-68 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

∑
=

−=
m

1i
ibvf:

Special case: One-exemplar resource

• In case of a one-exemplar resource: aij, bij ∈ {0,1}.
• Relationship at the wait-for graph can be determined:

Process i is waiting for process j ⇔ wij = 1 ⇔
∃k: aik x bjk = 1

• The matrix W = (wij) can be seen as adjacency matrix of
the wait-for graph.

• Proposition
• There is a deadlock in case there is a cycle within the

wait-for graph.

• Deadlock detection is reduced cycle detection (depth-
first search with complexity O (|edges| + |nodes|)).

 9-69 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

9.4.6 Deadlock resolution

• Every deadlock resolution focuses on cutting the cycle in
the wait-for graph.

• In case it is impossible to (controlled) withdraw the
resource the abort of the process is necessary.

• Then there is the question which process is to be
aborted.

• Criteria:
• Size of request
• Amount of resources allocated
• Urgency
• User- vs. system process
• Effort of abort
• Wasted work
• Remaining answer time

 9-70 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Further References

• Stallings,W.: Operating Systems, Prentice Hall, 2001,
 Chapter 6

• Tanenbaum, A.: Moderne Betriebssysteme, 2.Aufl., Hanser,
 1995, Kapitel 6

• Bacon,J.: Concurrent Systems, Addison Wesley, 1997
 Chapter 17
• Nehmer,J.; Sturm,P.: Systemsoftware, dpunkt-Verlag,

 2001, Kapitel 8
• Holt, R.: Some Deadlock Properties of Computer

 Systems. Computer Surveys, Sept. 1972
• Isloor,S.; Marsland, T.: The Deadlock Problem: An Overview.

 Computer, Sept. 1980

9-71 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

	Foliennummer 1
	9.1 Introduction and Overview
	Uncoordinated usage
	Coordination by Resource Manager
	Resource Management
	What is resource mangement?
	Resource management in �everyday life
	Solution 1: Resource Management
	Resource management in �everyday life
	Solution 2: Agreement
	Resource management in �everyday life
	Solution 3: Uncoordinated usage
	Solution 3: Uncoordinated usage
	Classification
	Classification
	Classification
	RM – interim status
	Example: Parallel computer
	9.2 Central resource management�9.2.1 One-exemplar resources
	Snapshot of allocation
	Data for resource management
	Example of implementation
	9.2.2 Multi-exemplar resources
	Multi-exemplar resources
	Interface
	Representation of allocation
	Structure of management for a divisible resource
	Example of implementation
	Expansion
	Management of �multi-exemplar resources
	Example of implementation
	9.3 Selection strategies
	Selection strategies
	Selection strategies
	Solution for the problem of starvation
	9.4 Deadlock�9.4.1 Characterization
	Deadlock
	Deadlock
	Deadlock in everyday life
	Deadlock resolution
	Another example for a deadlock
	Wait-for graph
	Deadlock
	Deadlock
	9.4.2 Deadlock prevention
	Deadlock prevention
	Deadlock prevention
	9.4.3 Depiction of resource allocation
	Constrains
	Additional identifier
	Notation
	Definitions
	Resource graph
	Resource graph
	Resource graph�Properties and Operations
	Resource graph - Reduction
	Resource graph - Reduction
	9.4.4 Deadlock avoidance
	Allocation trajectory (with deadlock)
	Allocation trajectory �(without deadlock)
	Deadlock avoidance
	Example
	Deadlock avoidance
	Complexity and Example
	Is this a safe situation?
	8.4.5 Deadlock detection
	Deadlock detection
	Algorithm for deadlock detection
	Special case: One-exemplar resource
	9.4.6 Deadlock resolution
	Further References

