
Chapter 9 

Resource Management 
 



9.1 Introduction and Overview 

• Every entity needed by a thread to run can be called a resource. 
• Resources can lead to problems if they are limited, or if they can 

used exclusively only. 
• There are different kinds of resources and therefore different 

approaches to manage them. 
 

• Example 1: 
• A thread needs the program code to be executed accessible in main 

memory. 
• The program code is a resource of the thread. 
• Other threads may execute the same program code. These threads can 

access the code as well. There is no need to manage the access to the 
resource. 

  

• Example 2: 
• Threads need memory to store some data. 
• Memory is limited and should be assigned exclusively. Therefore the 

memory must be managed. 
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Uncoordinated usage 

• Uncoordinated usage of a resource may lead to 
undesirable effects. 
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Coordination by Resource Manager 

• Using a resource manager for instance the exclusive 
access can be ensured. 
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Resource Management 

• Separation of usage and management! 
• Wrapping usage by management operations! 
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What is resource mangement? 
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• Limited amount of resources 
• Exclusive usage 
• Management is reasonable 



Resource management in  
everyday life 

 
 
 
 
 
 
 
 
 

• Solution 1: 
 Central authority decides (resource mangement).
 Traffic lights, gates 
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Traffic bottleneck as resource. 



Solution 1: Resource Management 

• Usage of a resource only after  
 allocation. 
• Allocation before usage enforced  
 by intermediate instance. 

 
• Examples 

• 2-phase locking for transaction based systems  
 (Access to data as a resource managed exclusively by the scheduler) 
• (Main) memory management  
 (Access to allocated segments only) 
• Monitor  
 (Call of entry procedure only after release of monitor) 
• Printer  
 (Access to printer only via driver as resource manager) 
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Resource management in  
everyday life 

 
 
 
 
 
 
 
 

• Solution 2: 
 Agreement between all parties (rules, negotiation, 
 protocol) 
 Traffic sign, hand signal, flash light 
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Solution 2: Agreement 

• Applicants agree about access 
 to resource (protocol). 

 
 

• Critical section 
 Involved processes agree to implement mutual exclusion by 

usage of lock. 
• Decentralized Bus Arbitration 
 Access to bus as shared communication media must be 

managed. Agreement about special protocol to coordinate bus 
arbitration in case of requesting component. 

• Distributed systems – global serialization 
 Nodes  apply for global serialization by broadcast. 

Coordination of access sequence based on logical time. 
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Resource management in  
everyday life 

 
 
 
 
 
 
 
 

• Solution 3: 
 No action (uncoordinated usage) 
 Risk of collision 
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Traffic bottleneck as resource. 



Solution 3: Uncoordinated usage 

• Without coordination collisions  
 are possible. 
• Collisions have to dissolve properly. 

 
 
 

• The effort to handle collisions may be smaller than to 
avoid collision permanently. 

• Can be used in case: 
• Collision is unlikely or seldom and 
• the “damage” done by collision can be fixed afterwards. 
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Solution 3: Uncoordinated usage 

• Optimistic synchronization of transactions (Validation) 
• Transaction don‘t implement locks, but perform access 
• Access is recorded (Log) 
• At the end of transaction (Commit) check for collision (access by different 

processes) is performed (Validation) 
• Abort and roll-back in case of collision 

• LAN (CSMA/CD)  
• Listen to the medium 
• Sending if medium is free, otherwise wait until it’s free 
• Listening while sending 
• Packets are destroyed by other packets on the medium 
• In case of collision sender have to wait and send again 
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Classification 

• Forms 
• real / logical / virtual 

 

• Real resources are physically existent.  
 Real resources are base for virtual and logical resources. 
 Examples: Main memory, Disc drive, Processor 
• In order to offer more or higher capacity of real resource a 

virtual resource is built. 
 Usage is often intermittent, i.e. virtual resource is mapped to the real 

resource only for short time (Multiplexing). 
 Examples: Virtual memory, Virtual processor 
• Logical resources extend virtual or real resource in order to 

provide “higher” level of service via comfortable interface or 
with interface with enhanced functionality. 

 Logical resource is kind of abstraction of the real one. 
 Examples: File, Window 
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Classification 

• Persistence 
• Reusable 
 Resources usually are released after usage and can be 

used by other processes. 
• Consumable 
 Some logical resources are consumed by usage and are not 

usable afterwards. 
 Examples: Signals, Messages, Times stamps 

• Capacity 
• Limited 
 Amount of usage of the resource has to be managed 

(allocation/release). 
• Unlimited 
 No management of amount of usage needed; management 

of access only. 
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Classification 

• Acquisition 
• Process requests usage of resource for itself. 
• Some different instance requests allocation of resource for 

the process (request for memory for forked process). 
 

• Implementation of resource management 
• As procedure 
 without parallel execution to the requesting process 
• As process 
 with parallel execution to the requesting process 
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RM – interim status 

• Resource 
 Term for all entities needed by a process to run. 
• Resource management 
 All tasks before and after usage of a resource needed to implement a correct 

execution.  
 
 
 
 
 
• Goals to resource management 

• Correct execution 
• No deadlock 
• No starvation 
• High level of parallel execution 
• High level of resource usage 

• In real live leads to complex optimization problems. 
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Example: Parallel computer 
• Parallel programs run on a given amount of processors or compute nodes for 

a specific time span: allocate (num_processors, processing_time).  
• Requests can be seen as a rectangle (number of processors x time). 
• So the search for the optimal utilization is a Bin Packing Problem (Knapsack 

problem). 
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9.2 Central resource management 
9.2.1 One-exemplar resources 

• Usage of a one-exemplar resource can be seen as 
critical section. 

• So resource management is like handling a coordination 
problem. 

• Operations of resource management allocate and 
release do have same structure as operation for 
coordination at a critical section with lock and unlock. 
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Snapshot of allocation 
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Data for resource management 

• Required data 
• State of allocation (free, allocated) 
• Waiting processes (blocked at allocation request) 

 
• Additional data (optional) 

• Allocating processes (current owner) 
• Number of allocations 
• Average length of allocation time 
• Degree of utilization 
• Start of current allocation 
• … 

 
• Data needed to implement strategies for assignment or 

revocation. 
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Example of implementation 

module single_unit_resource; 
    export ALLOCATE_R, RELEASE_R; 
    import BLOCK, DEBLOCK; 
  
    var single_unit_R = 
       record 
          STATE: (free,occupied) = free; 
          WP: queue of process = empty 
       end; 
  
    procedure ALLOCATE_R(R: single_unit_R); 
       begin 
       while R.STATE = occupied do 
          BLOCK(R.WP); 
       R.STATE := occupied 
       end; 
  
    procedure RELEASE_R(R: single_unit_R); 
       begin 
       R.STATE := free; 
       if R.WP /= empty then 
          DEBLOCK(R.WP); 
       end; 
 end single_unit_resource. 
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9.2.2 Multi-exemplar resources 

• Amount of identical exemplars (drive cases for storage 
media) 
 
 
 

• Assumption: Single allocation 
• ALLOCATE_S (ID) 

• ID – Name or number of the allocated exemplar (return value) 
• RELEASE_S (ID) 

• ID – Name or number of the allocated exemplar (input value) 
 

• In this simple case a Semaphore initialized with amount of 
exemplars available would be sufficient. 
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Multi-exemplar resources 

• Divisible resources 
• Memory (one-dimensional divisible resource) 

 
 
 
 

• Processors (in Parallel Computers; two-dimensional 
divisible resource) 
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Interface 

• Usually these divisible resources are allocated 
contiguously.  

• In this case the area or amount of resources is 
determined by start address and number of parts 
exactly. 
 

• ALLOCATE_R (START, NUM) 
• START – Index to the begin of allocated area (return value) 
• NUM – Number of units requested (input value) 

• RELEASE_R (START, NUM) 
• Release an area starting with START and with length of 

NUM units 
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Representation of allocation 

• Status of allocation is stored using a data structure.  
• Simple case: Bit list  

 
 
 
 

• Operations to change the status of allocation: 
• FREE (NUM) 
 Check if amount of NUM units are available 
• SET_OCCUPIED (START, NUM) 
 Set given NUM bits from START to “used” 
• SET_FREE (START, NUM) 
 Set given NUM bits from START to “free” 
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Structure of management for a 
divisible resource 

 

9-27 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23 

ALLOCATE _R(START,NUM) RELEASE _R(START,NUM) 

FREE(NUM) 

SET_OCCUPIED(START,NUM) 

SET_FREE (START,NUM) 

Y Y WP  = empty 

DEBLOCK(WP) BLOCK(WP) 

R R 



Example of implementation 
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module Multi_unit_resource; 
export ALLOCATE_R, RELEASE_R; 
   import BLOCK; DEBLOCK,  
          FREE, SET_OCCUPIED, SET_FREE; 
   var multi_unit_R = 
      record 
         STATE: array[0..v-1] of (free,occupied) = all free; 
         WP: queue of process = empty 
      end; 
  
   procedure ALLOCATE_R(R: multi_unit_R; 
                        START: address; NUM: int); 
      begin 
      while ¬ FREE(R,NUM) do BLOCK(R.WP); 
      SET_OCCUPIED(R,START,NUM) 
      end; 
  
   procedure RELEASE_R(R: multi_unit_R; START: address; NUM: int);                           
      begin 
      SET_FREE(R,START,NUM); 
      while R.WP /= empty do DEBLOCK(R.WP); 
      end; 
end Multi_unit_resource. 



Expansion 

• With many processes waiting the process with feasible 
request should be chosen. 

• Therefore the request have to be stored at the resource 
manager (waiting requests). 

• If requesting processes are sorted by size of request 
(amount of units), allocation can be combined with 
release. 

• As the allocation is done be the releasing process it’s 
called foreign-allocation (in contrast to self-allocation). 

• There should be no additional check for resources within 
the ALLOCATE procedure. 
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Management of  
multi-exemplar resources 

 
 
 
 
 
 
 
 
 
 
 

• The implemented DEBLOCK operation is enhanced by a suffix 
_S (for select) as a specific process – other than the first one 
– is to be deblocked.  
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Example of implementation 
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module multi_unit_resource; 
      export ALLOCATE_R, RELEASE_R; 
      import BLOCK; DEBLOCK_S, INSERT, REMOVE, FIRST, ELEM, FREE,    

 SET_OCCUPIED, SET_FREE; 
      var multi_unit_r = 
     record 
            STATE: array[0..v-1] of (free,occupied) = all free; 
            WP: list of process = empty; 
            WR: list of record  PROC: process; 
                            START: address; 
                               NUM: int 
                           end = empty 
         end; 
      procedure ALLOCATE_R(R: multi_unit_r; START: address; NUM: int); 
         var P:process; S:address;  N:int; 
         begin 
            if FREE(R, NUM) 
            then SET_OCCUPIED(START,NUM) 
            else begin INSERT(R.WR,<P_RUN,START,NUM>); 
                   BLOCK(R.WP)  
                 end 
         end; 
      procedure RELEASE_R(R: multi_unit_r; START: address; NUM: int); 
         var P:process; A:address; L:int; 
         begin 
         SET_FREE(R,START,NUM); 
         while ∃ELEM ∈ R.WR: FREE(ELEM(R.WR).NUM) do 
            begin   REMOVE(R.WR,ELEM(R.WR),<P,S,N>); 
              SET_OCCUPIED(S,N); 
              DEBLOCK_S(R.WP,P) 
            end end; 
   end multi_unit_resource. 



9.3 Selection strategies 

• Debating foreign-allocation introduced strategy differed 
from FCFS principle.  

• Strategies can be used to  
• get high utilization of the resource 
• treat the requesting processes fair. 

 
• Given 

• nf(t) number of free units of resource at time t 
• n(i) number of units requested by process i 
• W(t) amount of waiting processes (requests) at time t 
 W(t) can be implemented as queue; new requesting 

processes are inserted at the end. 
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Selection strategies 

• FIFO (First-In-First-Out) or FCFS (First-Come-First-Served) 
• If n(i) ≤ nf(t) for the request n(i) units are allocated, otherwise 

nothing no action is performed. 
• Disadvantages:  

• Low utilization in case of large first request. 
• Because of the first large request smaller – satisfiable – request are 

not served. 

• First-Fit-Request 
• Searching the queue from head to find a satisfiable request with 

n(i) ≤ nf(t). 
• Best-Fit-Request 

• Queue is searched until end and the request fitting to  
     is chosen. 
• The request minimizing the amount of remaining free units is 

chosen. 
• Disadvantages of First-Fit- and Best-Fit-Request: 

• Processes with large requests may be penalized (starvation). 
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Selection strategies 

• Iterative procedure 
• After release of a large amount of units more than one 

request may be satisfied. 
• So the strategies may be applied until no more request can 

satisfied. 
• Windowing 

• To reduce effort the search may be limited by a window of 
the size L and therefore only the first L positions of the 
queue are investigated. 
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Solution for the problem of 
starvation 

• Using a dynamic size of the window the problem of starvation 
in case of large requests (for First-Fit- or Best-Fit-Request) 
can be solved. 

• Given Lmax as maximal window size (initial value). 
• The size of the window is adapted at every (successful) 

allocation: 
 
 

• Therefore after max. L-1 omissions the first request is served 
(windows size == 1).  
 
 
 
 

• With L converges to 1 the Best-Fit- and First-Fit-Request 
converge to FCFS. 
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9.4 Deadlock 
9.4.1 Characterization 

• Examples: 
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Deadlock 

• Management of one-exemplar resource 
 
 
 
 
 
 

• Management of multi-exemplar resource with 10 units 
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Deadlock 

• More than one requesting processes 
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Deadlock in everyday life 
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Deadlock resolution 
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Another example for a deadlock 
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Wait-for graph 

• Directed graph with processes as nodes and edges show 
the relation if a process waits for a resource allocated by 
another process. 

• A cycle in graph indicates a deadlock. 
       with 6 processes 
 
    with 2 processes 
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Deadlock 

• Deadlocks can occur in different situations. 
• In context of resource management these three 

requirements are necessary for a deadlock: 
1. Resources are used exclusive. 
2. Processes hold allocation of a resource and try to 

allocate another. 
3. There is no preemption. 
With these requirements fulfilled the following constraint 
may occur and together with the first requirements this 
is sufficient for a deadlock: 
4. There is a cycle in the wait-for graph. 
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Deadlock 

 
• To deal with a deadlock different counteractions have to 

be provided: 
• Prevention 
• Avoidance 
• Detection 
• Resolution, Recovery 
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9.4.2 Deadlock prevention 

• Prevention stands for a methodic procedure handle 
resource assignment restrict in a way no deadlock can 
occur. 

• Pre-claiming 
• All resources needed by a process are requested (and 

allocated) at start time. 
 
 
 
 
 
 

• In dynamic systems the overall demand is difficult to predict. 
• Uneconomical approach as resources are occupied longer 

than needed. 
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Deadlock prevention 

• Overall release at request 
 
 
 
 
 
 
 
 
 

 
• As the process does not possess any resource at allocation 

the cycle in wait-for graph is prevented, too. 
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Deadlock prevention 

• Allocation by (given) order 
• Resource are sorted (Res1, Res2, Res3, …). 
• Resource allocation is performed in order only. 

 
 
 
 
 
 
 
 
 
 

• With this approach cycles in the wait-for graph are 
prevented successfully. 
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9.4.3 Depiction of resource allocation 

• P   Set of processes, |P| = m 
• Rs   Set of resource types, |Rs| = n 
•     Available resources 
• Requests:   Assignments: 

 
 
 

• Overall request (maximum of all requests): 
 
 
 

• Quintuple  represents current resource allocation. 
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Constrains 

1.      no more than available resources can be 
    allocated. 
 

2.           
          
Requests can only contain amount of resource available. 
 

3. Requesting processes are blocked until allocation. 
 

4. Only non-blocked processes can request another resource 
(see 3.). 
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Additional identifier 

• Free resources 
 

 with 
 free res. = (existing) res. – allocated res. 
 
• Remaining requests 

 
 

 
 with 
  remaining req. = overall req. – allocated res. 
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Notation 

• Row vector instead of matrix 
•    𝑎𝑎𝑖𝑖 := (𝑎𝑎𝑖𝑖𝑖, 𝑎𝑎𝑖𝑖𝑖, …, 𝑎𝑎𝑖𝑖𝑖𝑖)  request of process i  
•    𝑏𝑏𝑖𝑖  := (𝑏𝑏𝑖𝑖𝑖, 𝑏𝑏𝑖𝑖𝑖, …, 𝑏𝑏𝑖𝑖𝑖𝑖)  allocated resources of process i 
•    𝑔𝑔𝑖𝑖 := (𝑔𝑔𝑖𝑖𝑖, 𝑔𝑔𝑖𝑖𝑖, …, 𝑔𝑔𝑖𝑖𝑖𝑖)  overall request of process i  
•    𝑟𝑟𝑖𝑖 := (𝑟𝑟𝑖𝑖𝑖, 𝑟𝑟𝑖𝑖𝑖, …, 𝑟𝑟𝑖𝑖𝑖𝑖)  remaining request of process i 

 
• Relational operators 

•   
•   
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Definitions 

• Process Pi is blocked if   , the current 
request cannot be satisfied.  

• Set of processes P = {P1, P2, …, Pm} is in a deadlock if 
     , there is a subset of 
processes that requests could no be satisfied by the 
amount of resource not allocated by the processes of P. 

• The subset I is also called to be in a deadlock. 
• Example: 
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Resource graph 

• With resource graph the request and allocation status 
can be formally described. 

• P is set of processes, Rs is set of resource types. 
• A resource graph is a directed graph (V, E) with  

 V=P ∪ Rs and  
• (p, r) ∈ E ⇔ Process p make a request for a unit of  

 resource type r 
• (r, p) ∈ E ⇔ Process p holds allocation of a unit of  

 resource type r 
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Resource graph 

• Resource graph is bipartite regarding P (cycles) and 
resources Rs (rectangles), so there are edges between P 
and Rs only. 

• The number of units provided by a resource type is 
depicted as node weight (points within the rectangle) 
and determines the max. number of units that can be 
allocated by processes. 
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Resource graph 
Properties and Operations 

• Resource graph depict a specific status of system, shows the 
current resource status. 

• Comparable to the wait-for graph a cycle points to a deadlock 
condition. 

• But in difference to the wait-for graph with a cycle in the 
resource graph there is no necessity to have a deadlock, but it 
is necessary to have such a cycle to get one. 

• Every operation of resource management (request, allocation, 
release) imply a transformation of the graph (add or remove 
edge). 

• A process only can perform such a operation if it’s not 
blocked. 

• In case all of the remaining request can be fulfilled the 
process may finish successfully (termination).  

• With termination of a process all allocated resources are 
released. 
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Resource graph - Reduction 

• A process p can reduce the resource graph by removing 
all of the edges for allocation if it’s not isolated or 
blocked. 

• A resource graph can be reduced completely if there is 
an order of reductions (processes reducing the graph by 
releasing the resources) so that all edges will be 
removed at the end. 
 

• Theorem of deadlocks for resource graphs 
• There is a deadlock if the  
 resource graph cannot be  
 reduced completely.  
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Resource graph - Reduction 
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9.4.4 Deadlock avoidance 

• The definition of a deadlock describes a current system 
situation. 

• To avoid such a deadlock the remaining requests of the 
processes have to be known. 

• In worst case all of the remaining requests occur at the same 
time. 

• If all of these remaining requests can be satisfied the situation 
is safe. 

• Otherwise the situation is unsafe. 
• The system status is unsafe if there is a subset of processes 

that have remaining requests that cannot be satisfied with the 
resource currently available. 

• There might be some requests that can be satisfied, but in 
worst case of orders of allocation and release a deadlock may 
occur. 
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Allocation trajectory (with deadlock) 
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Allocation trajectory  
(without deadlock) 
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Deadlock avoidance 

• Deadlock avoidance implement the resource 
management in such a way no unsafe situation can 
occur. So requests are satisfied only if it leads to a safe 
situation. 

• A set of processes P = {P1, P2, …, Pm} is called safe if 
     with 
 
 or 
 
 i.e. there is a order of process termination so the 
 remaining request of the other processes can be 
 satisfied. 
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Example 
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Deadlock avoidance 

• Check for every request if the allocation would lead to an unsafe 
situation. 

• If case the request would lead to an unsafe situation postpone 
request. 

• In order to perform the check for the current situation the Banker’s 
Algorithm can be used: 

 
procedure deadlock_avoidance (P: set of processes, v: vector, 

r:matrix,b:matrix, var answer: state, DP: set of processes) 
var f: vector; 
begin 
 answer := undefined; 
 DP := P; 
                 ; 
  
 while answer = undefined do 
  if ∃ Pi ∈ DP: ri ≤ f    
   then begin 
    DP := DP – {Pi}; 
    f := f + bi  ; 
    if DP = ∅ then answer:= safe; 
        end 
   else answer := unsafe; 
end; 
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Complexity and Example 

• Complexity of the Banker’s Algorithm 
• Selection of a process (pass loop): O (m n) 
• with max. m processes:   O (m2 n) 

• Example 
• Given system with m=4 processes (i=1,..,4) and n=2 type of resources 

(j=1,2). Current status: 
 Allocation  Overall requests  Free resources 
 
 
 
 
 
 
So the Remaining requests can be calculated as R and the overall available 
resources v: 
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Is this a safe situation? 

• Following the algorithm: 
  

 1. P3 can terminate successfully: r3 = (0  1) ≤ f = (3  2) 
  f := f + b3 = (3  2) + (3  0) = (6  2) 
 2. P1 can terminate successfully: r1 = (4  2) ≤ f = (6  2) 
   f := f + b1 = (6  2) + (0  4) = (6  6) 
 3. P2 can terminate successfully: r2 = (1  4) ≤ f = (6  6) 
   f := f + b2 = (6  6) + (1  0) = (7  6) 
 4. P4 can terminate successfully: r4 = (5  2) ≤ f = (7  6) 
   f := f + b4 = (7  6) + (5  4) = (12  10) = v 
 
• As there is a order to terminate the processes 

successfully (P3, P1, P2, P4) the situation is safe! 
• (P3, P1, P4, P2 is also possible.) 
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8.4.5 Deadlock detection 

• In case there is no knowledge available about the remaining 
requests Deadlock avoidance cannot be performed. 

• So deadlocks may occur. 
• At least the occurrence of a deadlock has to be detected. 
• This can be done by searching for all of the processes that are 

not involved in a deadlock situation. 
• The Processes P1, P2, …, Pm are not involved in a deadlock 

situation if       with 
 

 or 
 
 
 there is a order of termination of the processes in such kind 

all request can be satisfied by free resources or by resources 
released earlier. 
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Deadlock detection 

• The approaches to avoid a deadlock enforcing safe situations only and 
the deadlock detection are nearly the same. 

• In case of deadlock avoidance a permutation is searched for that can 
be executed if all of the remaining requests occur at the same time. 

• For deadlock detection the same operations are performed for the 
current request. 

• So we can use the Banker’s Algorithm for deadlock detection too. 
• We do have to replace the remaining requests with the current 

requests. 
• The algorithm has to consider all of the processes.  
• The Banker’s Algorithm for deadlock detection can run at: 

• every new request 
• periodically 
• as part of the Idle process 
• in case of suspicion (maybe manually) 
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Algorithm for deadlock detection 

procedure deadlock_detection(P: set of processes, v: vector, 
a:matrix, b:matrix, var answer: state, DP: set of 
processes) 

var f: vector; 
begin 
 answer := undefined; 
 DP := P; 
              ; 
  
 while answer = undefined do 
  if ∃ Pi ∈ DP: ai ≤ f    
   then begin 
    DP := DP – {Pi}; 
    f := f + bi  ; 
    if DP = ∅ then answer:= no_deadlock; 
        end 
  else answer := deadlock; 
end; 
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Special case: One-exemplar resource 

• In case of a one-exemplar resource: aij, bij ∈ {0,1}. 
• Relationship at the wait-for graph can be determined: 

Process i is waiting for process j ⇔  wij = 1  ⇔   
∃k: aik x bjk = 1  

• The matrix W = (wij) can be seen as adjacency matrix of 
the wait-for graph. 
 

• Proposition 
• There is a deadlock in case there is a cycle within the 

wait-for graph. 
 

• Deadlock detection is reduced cycle detection (depth-
first search with complexity  O (|edges| + |nodes|)). 
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9.4.6 Deadlock resolution 

• Every deadlock resolution focuses on cutting the cycle in 
the wait-for graph. 

• In case it is impossible to (controlled) withdraw the 
resource the abort of the process is necessary. 

• Then there is the question which process is to be 
aborted. 

• Criteria: 
• Size of request 
• Amount of resources allocated 
• Urgency 
• User- vs. system process 
• Effort of abort 
• Wasted work 
• Remaining answer time 
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