
Chapter 8

I/O Devices

A supercomputer is a machine for turning a
compute-bound problem into an I/O-bound problem.

- Ken Batcher (US computer architect)

8.1 Input/Output Basics

8-2 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Main Memory Processor Controller

Bus

Device

Main Memory Processor Controller

Bus

Device

Processor (programmed I/O)
 The processor reads or writes data in bytes or words

 from/into a register in the controller.

Direct Memory Access (DMA)
 The controller can autonomously access the memory via

 the bus.

Control

• Triggering (How does the controller get the requests?)

• The processor loads the corresponding register in the particular

controller:
• Type of operation (e.g. read, write)
• Source
• Target
• Status

• Reaction

• After completion of the I/O operation, the processor needs to be
informed.

• Two possibilities:
• The processor checks occasionally the controller‘s status register

(Polling). (In most cases too inefficient.)
• The processor gets informed about the completion by a special signal

(Interrupt). (Usual approach)

8-3 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Interrupts

• There is at least one interrupt wire for the processor.

• After each instruction the processor checks whether there is a
signal (corresponding voltage level) at this wire.

• If so, it immediately (if interrupts are enabled) jumps to a
subroutine that evaluates the interrupt and performs or
triggers the necessary actions.

8-4 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Normal program
execution

Interrupt handling

Interrupt analysis

• First, we only know the very fact of an interrupt.

• Therefore, we need to find out,
 who (which device) caused the interrupt (source),
 why the interrupt has happened (e.g. end of transmission, error).

• Thus, a subroutine for interrupt handling has the following structure:

8-5 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

source ?

reason? reason?

reason?

reason?

reason?

source ?

reason??

Interrupt processing

• An interrupt can occur at any time and in any situation.
• Especially also during an interrupt processing!
• Two approaches:

• Sequential interrupt processing (FCFS)
• Nested interrupt processing

• The interrupt mechanism is also used for processor
internal (synchronous) events, at which we need
immediate reaction (division by zero, address violation).
In that case, it is usually called exception.

8-6 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Sequential interrupt processing

• Prevent further interrupts during interrupt processing
(disable interrupt).

• The prevention can be limited to specific types of
interrupts (masking).

8-7 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Normal program
execution

Interrupt handling A

Interrupt handling B

The new interrupt B is processed only when
the processing of the current interrupt A has

been completed.

Nested interrupt processing

• Interrupts are classified into different priority
classes according to their type.

• Interrupts of higher priority may interrupt the
processing of lower priority interrupts.

8-8 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Normal program
execution

Interrupt handling A
Interrupt handling B

Nested Interrupts

8-9 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Actions during interrupt processing

The first part corresponds to a regular subroutine call:
 1. save return address (next instruction, PC+1) to stack
 2. load program counter (PC) with entry address of interrupt

 handling routine (from interrupt vector table that contains
 the addresses of all interrupt handlers)

Under control of interrupt handler:
 3. save all register contents to stack
 4. perform necessary actions according to type of interrupt
 5. load register contents from stack
 6. return to interrupted program (by loading the return

 address into program counter)

8-10 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

8.2 Tasks of I/O

• We deal with that part of the OS that is responsible for the
operation of I/O-devices, e.g.
• Keyboard, monitor, mouse
• Hard disks
• Scanner, Printer
• Measuring probes, A/D-transformer
• Network
• …

• To operate an device
• Control positioning of movable parts, set device

parameters, read status
• Transport copy data from central unit (processor, memory)

to device (or vice versa)

8-11 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Diversity of devices

8-12 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Device Purpose Partner Data Rate
(MB/s)

Keyboard input human 0.00001
Mouse input human 0.00004
Laser printer output human 0.3
Voice output output human 0.6
Network-LAN in-/output machine 10-10000
Mass storage storage machine 5-600
Graphic display output human 100-16000

Data rates span several orders of magnitude!

		Device

		Purpose

		Partner

		Data Rate

(MB/s)

		Keyboard

		input

		human

		0.00001

		Mouse

		input

		human

		0.00004

		Laser printer

		output

		human

		0.3

		Voice output

		output

		human

		0.6

		Network-LAN

		in-/output

		machine

		10-10000

		Mass storage

		storage

		machine

		5-600

		Graphic display

		output

		human

		100-16000

Control

• Examples
• set baud rate
• position read/write head
• perform page feed
• rewind tape
• position tape to EOT label
• extract CD-sledge
•

8-13 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

CPU device
Get device
into specific state

8.3 Interaction between CPU and
device

Portioning
• Data transport usually takes place in smaller portions

• Examples

• Bit
 single wire
• Byte (character)
 byte serial interface
• Word

 word parallel interface
• Record (several bytes)
 devices with special geometry (line printer, page printer)
• Block (typical: 512 Byte - 8Kbyte)
 between storage devices

 8-14 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Handling a transport request

8-15 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Device activity

e.g.
1000
bytes

Execute request
Move portion unit by unit

direction,
source, target
number

indicate

CU device

The relation between the control unit (CU) and the device is
obviously a service relation.

Transport request: Parameter

• Direction (read or write)?
• Where are the data (source s)?
• Where to move the data (target t)?
• How much data (length L)?

8-16 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

0

n-1

0

m-1

s:

t:

L

L

CU device

Data transport request

• We distinguish between
• the transport request (trigger)
• the real data transport

• Depending on the type of device more or less bytes are
transmitted.
• If it is only a few bytes, they may be included in the request

itself:
• „output character X “.
• Transport request and data transport are the same.

• If it is many bytes, the request is of the form:
• „output those bytes that can be found in memory from address

d_start to d_end.“
• In this case, the transport request is separated from the actual

data transport.

8-17 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

trigger

Act. data transport

Integration of device activity into
SW service structure

• Problem: How can a device send a message to a thread
 in order to deblock it?

8-18 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

device

activity

CU

S_A

set signal

R_S

signal set ?

delete signal
y

Here
should the
thread be
blocked

Here should
the thread

be
deblocked

Modelling device activity

• as procedure (short activities only)

• as thread (for longer activities)

• The device can be regarded as a processor that executes
exactly one thread. No switching. Active waiting for requests.
 8-19 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

device

activity

CU

I/O instruction - call(...)

device

activity

CU

R_S

S_A

S_A

R_S

Integration of device activity into
thread interaction

• Solution:
• Device sends interrupt upon completion.
• Processor, busy with any activity, gets interrupted and calls

the respective interrupt processing routine (IPR).
• IPR generates respective message and sends it to the

requesting thread (to the channel, at which the thread is
waiting).

8-20 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

device

activity

CU

set signal

R_S

delete signal
y

interrupt
S_A

Any activity

embedded
interrupt handling 1:1-channel

signal set ?

Response

Each request processing must be checked. Many things can happen. The
device provides information. In case of errors we need dedicated error
processing.

Examples:
• Wrong transport parameter memory address
 track number
 head number
 block number
• Wrong operational states device unknown
 no voltage
 no storage media
 mechanical jam
 no formatting
• Transmission error parity error
 synchronization error
• Media error destroyed magnetic surface
 head crash

 8-21 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Technical integration

Control and transport parameter as well as indications and notifications
need to flow across device boundaries: There are basically two
possibilities:

• Deposit in memory

• Dedicated memory addresses are used as registers for device
communication (memory-mapped I/O). They can be read and written by
the device.

• Deposit in device
• The device disposes of registers that can be read and written by the

processor using special I/O instructions.

• Independent of the realization we can model these I/O registers e.g.
in the following way:
struct IO_register {
 PARAMETER_OF_REQUEST IOR;
 START_SIGNAL IOS;
 ERROR_CODE IOE;
 FINISHED_INDICATION IOF;
 };

 8-22 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

8.4 Driver

• To relieve the programmer of tedious details, all device
specific activities should be confined to one single
component.

• This component is called driver.

8-23 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

User program driver device

request request

Data transport

Realization of a driver

a) as procedure

b) as thread

8-24 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

application
program driver device

interrupt S

call S
R

R

application
program driver device

interrupt S

S
R

R

S
R

S

R

Interaction between driver and user
thread

a) Parallelism between user thread and driver

b) Buffering

8-25 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

S
R

R

R
S

S

application
program driver

to / from device

S
R

R

R S

S

application
program driver

to / from device S
R

switch buffer

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Buffering

8-26
Source : Stallings, chap. 11

Coarse structure of a driver thread

8-27 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

R_S

Parameter preprocessing:

Grab parameters
Decompose, if necessary

Load into I/O registers

Progress analysis

S_A
R_S

S_A

from
user thread

to
user thread

to device
from device

Error handling

• The progress analysis mainly checks, if there were
errors. If yes, action is taken, if possible.

• Regarding error handling we can distinguish three types
of errors:
• Delaying:
 Can be fixed by support of user:
 Examples: paper tray empty, no media in drive

• Stochastic:
 Randomly occurring failures can be cured by repetition.
 Examples: parity error, time-out, collision

• Final:
 If the error is not fixable, the request must be aborted:
 Examples: unknown device address, no voltage

8-28 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Progress analysis

8-29 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

correct?

delaying stochastic final

correct ?

error type?

count

too often?
message

wait for response
intermediate request, if necessary

repeat request abort

Progress analysis

yes

yes

yes no

Aggregation / Disaggregation

• For devices operating byte-wise the driver often
performs aggregation or disaggregation, resp., i.e. a
larger set of individual characters are aggregated to a
block or a block is disaggregated into individual
characters.

• Additionally some other tasks are performed:

• For output, control characters are inserted (e.g. end of
record, line feed, block number).

• For input, control characters are filtered out (e.g. delete
character).

8-30 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

driver device

Block-wise Byte-wise

Aggregation

8-31 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

 Aggregation at input Disaggregation at output

R

S
R

more bytes?

S block

byte

R

S
R

all bytes?

S

byte

block

8.5 Strategies for mass storage
drivers

• A driver accepts requests from many different user threads.
• Thus, many requests may line up at its entry channel.

• Usually, requests are processed in the order of their arrival
(FCFS, FIFO).

• Exception: mass storage driver
 8-32 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

S
R

R

S

many
requests
at the same

time
processing in which order?

only one request
at a time

8.5.1 Hard Disk Drives (HDDs)

• A hard disk consists of one or more platters with magnetizable
surfaces that rotate at high speed (ca. 3000-10000 rpm).

• For each magnetizable surface there is a read-write head that can
be moved back and forth across the whole surface. The gadget that
holds the read/write heads is called disk arm.

• If the disk device consists of more than one platter, the different
arms are attached to a broom.

• Each surface consists of concentric tracks (1000-20000), on which
the information is recorded.

• Each track in turn is composed of many sector (50-800).
• Each sector can store a specific amount of data (normally 0.5 or 4

kByte)

• The entirety of all tracks that can be read/written with the same arm
position, is called cylinder. (In case of only one surface, cylinder
and track are the same.)

 8-33 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Geometry of a hard disk

8-34 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

broom

read/write head cylinder

arm/broom
movement

Sectors cylinder

arm

Example: Hitachi Travelstar 7K500

• Capacity (formatted) 320 GB
• Bytes per Sector 512 Bytes
• Positioning time (next track) 1 Milliseconds
• Positioning time (average) 12 Milliseconds
• Positioning time (max) 20 Milliseconds
• average latency 4.2 Milliseconds
• rotational speed 7,200 rpm
• Transmission rate (max.) 1245 Mbit per sec
• Internal buffer 16 MB
• Storage density (max.) 370 Gbit/sq.in.

8-35 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Parameters

• The service time tserv of a disk request (op, n, s) to read or write from sector s
on track n is additively composed of the following components:

 Arm positioning time tpos time needed to move the arm from its
 current position to position n

 Latency tlat waiting time until the target sector
 appears under the head (rotational
 waiting time)

 Read/write time tread time for reading /writing the target
 sector

 Transfer time ttrans time to transmit the block from or to main
 memory

• In addition to this service time tserv we have to calculate the waiting time twait
to get the total response time tresp :

8-36 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

ttrans tread tlat

twait tserv
tresp

time
tpos

Example

• Assume we have a hard disk with the following
parameters:
• Arm positioning time 10 ms
• Rotational speed 10.000 rpm
• Sector size 512 bytes
• Sector number 320/track

• Read request with following parameters:

• 2560 Sectors, i.e. 1,3 Mbytes

• Question: What is the service time?

8-37 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Example

• Case 1:
 File is contiguously stored, i.e. it allocates all sectors on 8

adjacent tracks (8 x 320 = 2560 sectors).

 Arm positioning time 10 ms
 Latency 3 ms (half rotation)
 Reading 320 sectors 6 ms (= 1/ (10.000 / 60) sec)

 Total 19 ms for first track

 The remaining tracks can be read without additional delay, i.e.

the average positioning time is neglectable (zero).
 Thus, for each remaining track we get 6+3=9 ms.
 In total we calculate a service time* of 19 + 7x9 = 82 ms
 * without transfer time to copy data into main memory

 8-38 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Example

• Case 2:
 File is stored randomly, i.e. it occupies sectors on any tracks.

 Arm positioning time 10 ms
 Latency 3 ms
 Reading 1 sector 0.01875 ms (6 ms / 320)

 Total 13.01875 ms for each sector

 Since we have to read 2560 sectors, we get a total service

time of

 2560 x 13.01875 = 33,328 ms = 33.328 Seconds

Lesson learned: Files should occupy contiguous sectors!

8-39 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Strategies for hard disks

a) First come first served (FCFS)
 Processing requests in the order of their arrival

b) Shortest seek time first (SSTF)
 Always select request with the shortest arm
 positioning time

c) Elevator (SCAN)
 Like SSTF, but only in one direction

d) Cyclic Elevator strategy (SCAN-C)
 Like SCAN, but return to track 0 when reaching
 highest track number

8-40 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Example FCFS

• Requests in queue (track number): 98, 183, 37, 122, 14, 124
 65, 67

• Current head position: 53

8-41 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

199 183 124 122 98 67 65 53 37 14 0

Example SSTF

• Requests in queue (track number): 98, 183, 37, 122, 14, 124
 65, 67

• Current head position: 53

8-42 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

199 183 124 122 98 67 65 53 37 14 0

Example SCAN (Elevator)

• Requests in queue (track number): 98, 183, 37, 122, 14, 124
 65, 67

• Current head position: 53
• Current direction: down

8-43 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

199 183 124 122 98 67 65 53 37 14 0

Example SCAN-C

• Requests in queue (track number): 98, 183, 37, 122, 14, 124
 65, 67

• Current head position: 53

8-44 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

199 183 124 122 98 67 65 53 37 14 0

Example

8-45 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Source : Stallings, chap. 11

Remarks

• FCFS requires on the average (uniform distribution) moving across 1/3 of the
tracks.

• SCAN, SCAN-C, SSTF are advantageous for high load since (in the limit) we
have to move only one track.

• SCAN and SSTF discriminate against marginal tracks (inmost and outmost).
• SSTF is generally the best. However, it can lead to starvation of request for

marginal tracks.

8-46 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Mean
Response Time

request rate

FCSF

SCAN

Linux Deadline Scheduler

• The elevator strategy (SCAN) can lead to “starvation”.
• Write accesses are usually asynchronous, read accesses

synchronous. A stream of write accesses can therefore significantly
delay a read access.

• Therefore, each request is furnished with a deadline and additionally
(besides the SCAN-Queue) inserted into a read or write queue.

• In the normal case the SCAN queue is being processed, unless the
first request of one of the FIFO queues becomes overdue (deadline
expired). Then this request (and some more) of the respective FIFO
queue are processed.

8-47 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

SCAN

Read FIFO

Write FIFO

Realization of non-FCFS strategies

Sorting of requests according to track number can be done:

• In the communication operations at the driver‘s entry channel.
 Means special variant of channel (receive).

• In the driver itself,
 i.e. all incoming request are admitted to the driver.

Requires parallelism between

• Request acceptance

• Request processing

 Pipeline!

8-48 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Driver as Pipeline

8-49 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

R
lock

unlock

insert request
according to track number

S

S

R
lock

unlock

next request
in current direction

S
R to

user

to device
from device

from
user

small
number

large
number

insert

request in entry channel

requests in data structure of driver

Delay time reduction

• According to the current state of discussion the driver gets blocked if
it has submitted a request to the device (entering a synchronous
receive).

• Deblocking takes place as part of the interrupt handling, when the
request processing is finished.

• Even if the driver runs at high priority, some time elapses, until the
driver can submit the next request.

8-50 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

request i request i+1
device

processor

driver gets „running“

finishing signal:
driver is being deblocked

delay

next I/O start

Latency Hiding

• At sequential access to disk the time between two successive
requests should not be longer than the time needed to move across
a sector or block gap.

• Otherwise the next sector can be read only after one full rotation.

8-51 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

• We can reduce this latency if the
driver prepares the next request
during the time, when the device is
processing the current request.

• To achieve this, the work has to be
organized such that parallelism
between device and driver is
possible.

• The solution is the driver’s decomposition into two phases, where the
first creates new requests and the second is responsible for progress
analysis.

Sector i Sector i+1

gap

head

Two-Phase-Driver

• The access to device specific data (registers) is then a critical section
that needs to be put under mutual exclusion (locking).

• It is also recommended to give the first driver phase higher priority
(with preemption) to make sure that after releasing the lock the next
request can be submitted immediately.

8-52 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

E

lock(LO)
S

S

E
unlock(LO)

to
user

device

from
user

E

S

driver
phase 1

driver
phase 2

Read-ahead

• Read more than currently requested
• In assumption the next sectors or blocks will be requested

soon.
• Reading of next sectors or blocks with small cost.

• Buffering of not yet requested blocks

• Device cache
• Buffer cache in main memory

• Not appropriate for writing!
• Write back caches

8-53 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

8.5.2 Solid State Drives (SSDs)

• SSDs use integrated circuit assemblies as memory to
store data persistently

• SSDs do not employ moving mechanical components
• Shock and vibration resistant

• Non-Volatile NAND-based flash memory commonly used,
however SSDs can be constructed from RAM but need
additional precautions against power loss

• SSDs are available in the form factor of HDDs in both
physical appearance and connectivity
• HDDs can be easily replaced by SSDs

8-54 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

HDDs vs. SSDs

8-55 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Property HDD SSD
Random access time 2.9ms to 12ms <0.1ms

Start-up time Several seconds (disk spin-
up)

Almost instantaneous

Read latency time Different for every different
seek

Generally low

Data transfer rate ~140 MB/s 100-600 MB/s
(Highest-End several GB/s)

Read performance Depends on required
number of seeks

Consistent on whole SSD

Fragmentation Problematic due to
additional seeks

No Problem

Noise Can be significant (almost) none
Cost per capacity <$0.10 per GB >$0.50 per GB

Number of writes ~1010 per sector ~104-106 per block

Physical Assembly of SSDs

• (logical block
addresses) are mapped
to flash pages by a
controller

• Flash pages can be
reassigned to different
LBAs

• Only blocks of ~64-128
pages are erasable

8-56 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

No Updates In-Place

8-57 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Garbage Collection

8-58 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Wear leveling

• Flash blocks wear out by writing to them
• Some flash blocks may reach their end of life much

earlier than others
• Wear leveling distributes all write accesses over the

medium

• Dynamic wear leveling
• LBAs are initially mapped to a certain flash block
• LBAs are mapped to a different flash block as soon as they

are rewritten

• Static wear leveling
• Additionally to dynamic wear leveling blocks are relocated

and remapped when they are not written for a certain time
 8-59 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Write Amplification

• Write Amplification is a phenomenon where the actual
amount of physical information written is a multiple of
the logical information written

• Write Amplification gets increased by
• Wear leveling
• Random writes

• Write Amplification can be reduced by
• Garbage collection
• Over-provisioning
• TRIM

8-60 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Sustaining write performance

• Random write performance of an SSD is influenced by
the workload history of the SSD.

• Main factor is the number of available empty pages in the SSD.

• The number of available empty blocks can be increased by
• Spare capacity

• total capacity = spare capacity + usable capacity
• A number of blocks that will never be used
• Enforced by the SSD controller (spare capacity not visible for OS)
• Enforced by the OS (spare capacity not visible for user)

• TRIM
• TRIM is an ATA-Command that informs the device of invalid sectors
• Allows an SSD to garbage collect blocks before their mapped sectors

are rewritten

8-61 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Flash in embedded/mobile devices

• Embedded CPUs are normally equip with or connected to
flash memory similar to the flash memory in SSDs
• Ranging from several kB e.g. in small 8-Bit controllers
• To several GB e.g. in smart phones

• Flash memory is directly connected to the CPU – No

controller!

• Most of the tasks of the SSD controller have to be done
by the OS
• Flash-Page mapping
• Garbage collection
• Wear leveling

8-62 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

8.6 RAID

• Access time for hard disks did not improve much compared to
processor cycle times.

• The discrepancy of 6 orders of magnitude (msec vs. nsec) is
still a significant performance obstacle.

• At the same time capacities have increased and costs
plummeted.

• Therefore the questions arises how we can get a performance
benefit by using parallelism of inexpensive disks.

• RAID (Redundant Array of Independent Disks) is a
standardized schema to organize file systems on several
disks.

• Originally, RAID referred to „Redundant Array of Inexpensive
Disks“.

8-63 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

RAID

• Large numbers of disks mean an increased probability of failures.
• RAID has to be realized in fault-tolerant way.
• Properties

• RAID is a set of physical hard disks, that appear to the user as one
device.

• The data is spread across the physical disks.
• Redundant disk capacity may be used to store parity bits.

• RAID (originally) distinguishes 6 different schemes
(RAID Level 0-5), later extended (RAID Level 6, combined levels
such as 1-0 or 0-1)

• Fault model:
If a block is requested, the disk delivers the correct block (fault free
case) or an error message (in case of fault).
RAID does not detect data corruption caused by disk (exception:
RAID level 2 due to error correcting code) but relies on detection at
level of disk (usually done by error correcting codes).

8-64 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

RAID Level 0 („non redundant“)

• Data organized in „Strips“ (e.g. sectors or blocks)
• Strips are distributed around on the disks.
• An I/O request consisting of different strips can be

processed in parallel.
• No redundancy!

8-65 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

strip 12
strip 8
strip 4
strip 0

strip 13
strip 9
strip 5
strip 1

strip 14
strip 10
strip 6
strip 2

strip 15
strip 11
strip 7
strip 3

RAID Level 1 („mirrored“)

• Fault tolerance by complete mirroring of all data.
• Costly, since double capacity required.

8-66 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

strip 3
strip 2
strip 1
strip 0

strip 3
strip 2
strip 1
strip 0

RAID Level 2
(„Error Correcting Code“)

• Strips are small compared to RAID-0 or RAID-1.
• Typically bits or bytes.
• Error correcting codes (e.g. Hamming Codes) are

calculated and stored on redundant disks.
• The number of redundant disks grows logarithmically

with the number of disks.
• Disks need to be synchronized.
• Never used in commercial application.

8-67 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

b1 b2 b3 b4 f1(b) f2(b) f3(b)

RAID Level 3
(„bit-interleaved parity“)

• Since we usually do know, which disk device has failed,
we can use simple parity bits instead of Hamming-
Codes.

• Only one redundant disk to store the parity bits is
needed.

8-68 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

b1 b2 b3 b4 P(b)

RAID Level 4
(„block-interleaved parity“)

• Like RAID Level 3, but with strips of block size
• Only one redundant disk to store parity bits required.
• Since each write operation needs to access the parity

disk, there is a danger of a bottleneck.
• No disk synchronization needed.

8-69 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

P(12-15)
P(8-11)
P(4-7)
P(0-3)

block 12
block 8
block 4
block 0

block 13
block 9
block 5
block 1

block 14
block 10
block 6
block 2

block 15
block 11
block 7
block 3

RAID Level 5
(„block distributed parity“)

• Like RAID Level 4, but distribution of parity data across
all disks

• Avoids bottleneck.

8-70 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

block 19 P(16-19) block 16 block 17 block 18
block 15
block 11
block 7
P(0-3)

block 12
block 8
block 4
block 0

P(12-15)
block 9
block 5
block 1

block 13
P(8-11)
block 6
block 2

block 14
block 10

P(4-7)
block 3

RAID Level 6
(„dual redundancy“)

• RAID Level 5 can tolerate one failed disk at most.
• RAID Level 6 works with two independent checksum

systems (P,Q) and can tolerate up to two disk failures.
• Parity information is stored in a distributed way like

RAID Level 5.

8-71 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

P(12-15)
block 10
block 6
P(0-3)

block 12
P(8-11)
block 4
block 0

block 13
Q(8-11)
block 5
block 1

block 14
block 8
P(4-7)
block 2

block 15
block 9
Q(4-7)
block 3

Q(12-15)
block 11
block 7
Q(0-3)

RAID Comparison

8-72 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Source : Stallings, chap. 11

Further Reading

• Stallings,W.: Operating Systems 6th ed., Prentice Hall,
 2008, Chapter 11

• Rubini, A.: Linux Device Drivers, 3rd ed. O‘Reilly, 2005

• Nutt,G.: Operating Systems, Addison Wesley, 2000,
 Chapter 5

• Wettstein,H.: Systemarchitektur, Hanser, 1993, Kapitel 11

• Thomasian,A; Menon,J: RAID5 performance with distributed
 sparing, IEEE Trans. on Parallel and Distr.
 Systems 8,6 (June 1997), pp. 640-657.

• Iyer,S.; Druschel,P.: Anticipatory scheduling: A disk scheduling
 framework to overcome deceptive idleness in
 synchronous I/O. 18th ACM SOSP 2001

 8-73 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

	Foliennummer 1
	8.1 Input/Output Basics
	Control
	Interrupts
	Interrupt analysis
	Interrupt processing
	Sequential interrupt processing
	Nested interrupt processing
	Nested Interrupts
	Actions during interrupt processing
	8.2 Tasks of I/O
	Diversity of devices
	Control
	8.3 Interaction between CPU and device
	Handling a transport request
	Transport request: Parameter
	Data transport request
	Integration of device activity into �SW service structure
	Modelling device activity
	Integration of device activity into thread interaction
	Response
	Technical integration
	8.4 Driver
	Realization of a driver
	Interaction between driver and user thread
	Buffering
	Coarse structure of a driver thread
	Error handling
	Progress analysis
	Aggregation / Disaggregation
	Aggregation
	8.5 Strategies for mass storage drivers
	8.5.1 Hard Disk Drives (HDDs)
	Geometry of a hard disk
	Example: Hitachi Travelstar 7K500
	Parameters
	Example
	Example
	Example
	Strategies for hard disks
	Example FCFS
	Example SSTF
	Example SCAN (Elevator)
	Example SCAN-C
	Example
	Remarks
	Linux Deadline Scheduler
	Realization of non-FCFS strategies
	Driver as Pipeline
	Delay time reduction
	Latency Hiding
	Two-Phase-Driver
	Read-ahead
	8.5.2 Solid State Drives (SSDs)
	HDDs vs. SSDs
	Physical Assembly of SSDs
	No Updates In-Place
	Garbage Collection
	Wear leveling
	Write Amplification
	Sustaining write performance
	Flash in embedded/mobile devices
	8.6 RAID
	RAID
	RAID Level 0 („non redundant“)
	RAID Level 1 („mirrored“)
	RAID Level 2 �(„Error Correcting Code“)
	RAID Level 3 �(„bit-interleaved parity“)
	RAID Level 4 �(„block-interleaved parity“)
	RAID Level 5 �(„block distributed parity“)
	RAID Level 6 �(„dual redundancy“)
	RAID Comparison
	Further Reading

