
Chapter 7

Memory Management

"640 Kilobyte ought to be enough for anybody."
-- Bill Gates, 1981

"Wir haben so viel Speicher, den müssen wir gar nicht managen."
-- Abraham Söyler, 2018

7.1 Allocation strategies

• Problem

• Selection of memory sections/pieces
• Efficiency of algorithms
• Memory usage
• Problem conditions
• Application area: (real) Main Memory (and Swap Space)

7-2 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

allocated

available/free

Memory

Structure of Memory Management

7-3 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Memory Management

allocate release

free set_occupied set_free

interface

autonomous algorithms

data object for memory management

Design parameters

• Memory management strategies can be distinguished
based on:
• Sequence of operation
• Size of pieces
• Representation of allocation
• Fragmentation
• Allocation strategies (with free pieces)
• (Re-)integration

7-4 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Sequence of operation

• Allocation and release
• in same order

• Queing approaches, FIFO = First In First Out
• in reverse order

• Batch approaches, LIFO = Last In First Out
• in arbitrary order

• General approach

7-5 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Size of pieces

• Constant size
• NUM = 1 (unit size)

• Multiple of constant size

• NUM = k (unit size)

• Given size of partitions
• NUM = k1, k2, k3, …

• Arbitrary size

• NUM = x

7-6 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Representation of allocation

• How?
• Vector
• Table

• Where?
• Separated
• Integrated

 Representation by vector separated
 and integrated

• Example
• Main Memory 128 Mbyte (227 Byte)
• Unit size 512 Byte (29 Byte)
• Sum 262144 Units (218)
• Representation with 8192 words with 32 Bit

7-7 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

1 1 1 1 0 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0

1 1 1 1 0 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0

Representation of allocation

• Representation by table
• Separated representation
• Holding information about allocation in table
• Sorting by address and/or length

Sorted by address Sorted by length

7-8 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

0 1 2 3 4 8 10 14 17 20

Address Length
0 3
4 4
14 3
20 13

Length Address
3 14
3 0
4 4
13 20

Representation of allocation

• Integrated representation (by table)
• Pieces identify itself, specify length and provide pointer to

next element of free list.

Sorted by address

Sorted by length

7-9 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

0 3 4 8 10 14 17 20
3 4 3 13

0 3 4 8 10 14 17 20
3 4 3 13

Fragmentation

• Usually memory is allocated for multiple of units.
• Requests therefore are rounded up to the next multiple

of units.
• This come with unused parts of the allocated memory.
• The unused piece of memory is called internal

fragmentation fint.
• Due to the dynamic of allocation and release of pieces it

may happen the overall amount of free memory can
satisfy a request, but because of the layout of all of the
pieces of free memory is cannot be fulfilled.

• So free memory is created, which is not suitable to be
used for requests.

• This is called external fragmentation fext.

7-10 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Fragmentation

7-11 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

allocated

free, but not allocatable (external fragmentation)

allocated and used
allocated, but unused (internal fragmentation)

Allocation strategies

• First Fit strategy

• Search the free list from start.
• Take the first piece of free memory satisfying the

request.
• Properties

• Low search effort (in case of almost empty memory space).
• External fragmentation
• Concentration of allocated memory at the begin of the

memory space
• Increased search effort in loaded situations

7-12 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

0 3 4 8 10 14 17 20
3 4 3 2

25
1

27
6

Allocation strategies

• Next Fit strategy, Rotating First Fit strategy

• Cyclic search of list.
• Search start at the point of last allocation.
• Properties

• Like First Fit, but without concentration at the begin of the
memory space

• Therefore slightly reduced search effort (memory space not
empty).

7-13 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

0 3 4 8 10 14 17 20
3 4 3 2

25
1

27
6

Point of last allocation

Allocation strategies

• Best Fit strategy

• Allocation of the smallest piece of memory satisfying the

request.
• Properties

• If sorted by address the whole free list has to be searched.
• List should be sorted by size of piece of free memory.
• Usually reduced external fragmentation, because requests

for small amount of memory may be served without
derogation of larger pieces.

• But produces very small pieces of free memory unsuitable
for any request (external fragmentation).

7-14 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

0 3 4 8 10 14 17 20
3 4 3 2

25
1

27
6

Allocation strategies

• Nearest Fit strategy

• A favored address is provided.
• Search with First Fit from the point of favored allocation.
• Properties

• In case of disc space minimizing the movement of disc
arm. Especially if the sequence of access is known, the
movement of the disc arm can be optimized.

• File directory information can located in the middle of a
cylinder.

• In case of expansion of files the blocks to be allocated should
be located in the neighborhood.

7-15 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

0 3 4 8 10 14 17 20
3 4 3 2

25
1

27
6

Point of favored allocation

Reintegration

• Instantly after release

• Delayed aggregation

7-16 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

used free free used

release

used free used

used used

used used

Examples

• Ring buffer

• Allocation and release in same direction (FIFO)
• Fix length of pieces
• No search needed
• No external fragmentation
• Automatic and immediate reintegration

7-17 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Begin of allocation End of allocation
release allocate

Examples

• Stack

• Allocation and release in inverse direction (LIFO)
• Arbitrary length of pieces
• No search needed
• Little external fragmentation
• Automatic and immediate reintegration

7-18 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Begin of stack End of stack

release

allocate

Examples

• Vector based approach

• Allocation and release in arbitrary direction
• Fixed length with k * unit size
• Search for first fitting piece
• Internal and external fragmentation
• Automatic and immediate reintegration

7-19 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

1 1 1 1 0 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 0 0

search
allocate

: = 1
release

: = 0

Examples

• Boundary tag system
 free piece

 used piece

• Label for pieces
• Sorted list by size (length)

7-20 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

used free used

Pointer to previous piece
length
„free“

length
„free“

Pointer to next free piece

used

length
„used“

length
„used“

Boundary tag system

 after release

 after reintegration

7-21 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

L 1 f f f f f f

released

L 1 L 2 L 2 L 3 L 3

L f f L

Boundary tag system

• Properties
• Operation in arbitrary order
• Allocation of pieces with arbitrary size (length)
• Integration of management and representation of pieces

• Doubly linked list sorted by size of pieces
• Best Fit search strategy
• External fragmentation
• Explicit immediate reintegration using length field to check

with neighboring pieces
• Immediate integration into linked list

7-22 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Optimizations

• Reduction of management efforts based on small pieces

• Merge requested piece and small piece (transform
external fragmentation into internal fragmentation)

• Avoid integration of small pieces into free list, but merge
them with released (big pieces)

7-23 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

used used free requested

too small

Optimizations

• Cost of search on arbitrary order of allocation and release –
O(n)

• Reduce search costs
• Tailored pieces

• Given size (length) of pieces
• Provide number of (statistically) frequently used pieces

7-24 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

1 2 3 4

Reduction of search costs

• Example: access by binary tree

7-25 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

5 5 5 4 2 1 1 1 1 4

4

1

2

5

Memory usage

• Simulation with 32 K units
• Uniform distribution of requests with mean value A and standard

deviation SA

• Uniform distribution of usage time within interval (5, 15)

• External fragmentation is increasing with size and variation of request

7-26 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

95%

90%

85 %

8 0%

512 1024 2048 4096

Best-Fit

First-Fit

S A =256

A

η

90%

89 %

88%

8 7 %

64 128 256 512

8 6 %

Best-Fit

First-Fit

S A

η

A=1024

Buddy system

• Memory is separated in 2kmax units
• Smaller pieces are created by (continuously) performed

bisection of bigger pieces
• Pieces split in one action can be joined by release
• Properties

• Allocation and release in arbitrary order
• Allocation of pieces with unit size of 20, 21, 22, …, 2k

• Separated representation
• Limited search costs
• Internal and external fragmentation
• Explicit reintegration

7-27 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Buddy system

7-28 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

32M 16 M 8 M 4 M 2 M

Request: 3M

Request: 800K

Request: 12M

Release : 12M

Request: 3,5M

Release : 3M

Release : 800K

Release : 3,5M

Start:

Buddy system

• Representations as tree

7-29 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

32 M

16 M

 8 M

 4 M

2 M

1 M

Buddies have the same parent node.

Data structures of a Buddy system

• With separated representation

• Array of heads of free lists for pieces with same size

7-30 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

2 n

2 n-1

2 0

2 1

2 2

2 3

Operation of the Buddy system

• Handling of requests
• Check for next value with power of two
• Take first entry of list
• In case of empty list (recursive):

• Take first entry of next list with bigger pieces
• Cut piece in half
• Insert second half into list of the original size
• Take remaining piece to satisfy he request

• Handling release
• Determine buddy of the piece to be released
• If buddy is used, insert piece into list
• In case buddy is free: join both (piece and buddy)
• Insert emerged piece into the next list

7-31 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Buddy system –
internal fragmentation

• Requests of size a: 1 2 3 4 5 6 7 8 9 10 …
• Size of allocated pieces b(a): 1 2 4 4 8 8 8 8 16 16 …
• pa – probability request is of size a
• b(a) – size of allocated piece for request of size a

• Def.: Internal fragmentation ratio between the expected

value of the number of unused pieces and the expected value
of the number of allocated pieces:

• With as the expected values of
the size of the allocated piece b or of the size requested
respectively the internal fragmentation is 1 – Sa/Sb.

7-32 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

()()

()∑

∑

=

=
−

max

max

1

1
a

a
a

a

a
a

abp

aabp

() ∑∑
==

==
maxmax

11
: and :

a

a
aa

a

a
ab apSabpS

Buddy system –
internal fragmentation

• To determine the internal fragmentation an assumption
about the distribution of the requests is needed.

• To simplify matters we assume sizes of request are
uniform distributed over the interval [1, 2n]. So every
size of request have the same probability .

• Approximately the average size requested is

7-33 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

n
ap −= 2

() 11
2

1
2

2
12

2
122

2
1

2
1 −−

=
≈+=

+
== ∑ nn

nn

n
i

na

n

iS

Buddy system –
internal fragmentation

• Keeping in mind the size of the allocated pieces is based
on the next value with power of two:

• Therefore the ratio
so the allocated pieces are used by ¾ and the internal
fragmentation is 25%.

7-34 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

()

3
2

3
12

2
1

12
1221

2
1221

2
1

228442211
2
1

2288884421
2
1

112

2

21

0

2

1

 times2 1

++

−

=

−

≈
+

=

−
−

+=

+=

++⋅+⋅+⋅+=

+++++++++++=

∑

−

nn

n

n

n

n

i

i
n

nn
n

nn
nb

n

S

43223 11 //S/S nn
ba =⋅≈ +−

Buddy system

• Fast operation with O(1)
• Adaption to distribution of requests
• Only limited number of split and join operations after

transient oscillation.
• Amount of internal fragmentation fairly large.

7-35 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

25% int. fragmentation

Mean

Requests with uniform distribution:
Minimum

Maximum

7.2 Address Translation

• An address space is a contiguous set of addresses.
• It holds all necessary instructions and data structures

needed to execute a program.
• Parts of the address space may be undefined. Access to

undefined parts of the address space leads to an error.
• We distinguish:

• Logical address space, program address space (from the
view of the thread/program)

• Physical address space (defined by the width of the
address bus)

• For higher efficiency and security, logical address spaces
are decomposed into segments (of different size) which
in turn are cut into pages (equal size)

7-36 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Address Spaces: Examples

• Address spaces of, e.g., 64 bit machines are not always as expected:

• Linux: cat /proc/cpuinfo
Here: only small snippets from some example machines

• Intel, mobile CPU, 2007

model name : Intel(R) Core(TM)2 Duo CPU L7700 @ 1.80GHz
address sizes : 36 bits physical, 48 bits virtual

• Intel, desktop CPU, 2011
model name : Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz
address sizes : 36 bits physical, 48 bits virtual

• Intel, entry server CPU, 2009
model name : Intel(R) Xeon(R) CPU X3470 @ 2.93GHz
address sizes : 36 bits physical, 48 bits virtual

• Intel, server CPU, 2009
model name : Intel(R) Xeon(R) CPU X5570 @ 2.93GHz
address sizes : 40 bits physical, 48 bits virtual

• AMD, desktop CPU, 2008

model name : AMD Athlon(tm) 64 X2 Dual Core Processor 5600+
address sizes : 40 bits physical, 48 bits virtual

• AMD, desktop CPU, 2011
model name : AMD FX(tm)-6100 Six-Core Processor
address sizes : 48 bits physical, 48 bits virtual

• AMD, server CPU, 2009
model name : Six-Core AMD Opteron(tm) Processor 8435
address sizes : 48 bits physical, 48 bits virtual

 7-38 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Two-stage hierarchical address
translation

• Each segment consists of a variable number of pages.

7-39 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

segment byte

table base address

+
memory

+

page
K

segment table

page table

Program/Data address

Inverted page table

• While the Intel I32 processors or ARM processors support multistage
segment / page tables, PowerPC and UltraSPARC-processors use
inverted page tables.

7-40 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

byte

Hash function memory

page
K

Inverted page tables

program/data address

n bits

m bits

page# process#

Control
bits

chaining

i

j

2m -1

0

Page Table: Theoretical Example

• 32 Bit addresses
• 4 GB logical address space
• 64 MB RAM (physical)
• Pages of 1 KB
• One page table for the whole logical address space

• Offset (inside pages): 10 Bit (2^10 = 1 KB)
• Page addresses: 22 Bit (32-10)
• Number of entries in page table: 2^22 = 4M
• Size of an entry: 16 Bit = 2 Byte

(64 MB = 2^26 B = 2^16 frames)
• Size of page table (ignoring managament information such as

dirty bits etc. and ignoring alignment): 8 MB (4M x 2 Byte)
 7-41 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

address (32 Bit)

page address (22 Bit) offset in page (10 Bit)

Inverted Page Table: Theoretical
Example

• 32 Bit addresses
• 4 GB logical address space
• 64 MB RAM (physical)
• Pages of 1 KB
• One page table for the whole logical address space
• Offset (inside pages): 10 Bit (2^10 = 1 KB)
• Number of frames: 65536 = 2^16
• Frame addresses: 16 Bit
• Number of entries in inverted page table: 2^16 = 64K
• Size of an entry: 22 Bit = 2.75 Byte

(page addresses are 22 bit (32-10))
• Size of page table (ignoring managament information such as

dirty bits etc. and ignoring alignment): 176 KB (64K x 2.75
Byte)

• But: Search is much more complicated (e.g. hash function)!
 7-42 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Acceleration of address translation

Problem:
• Segment and page tables are so large that they have to be

kept in main memory.
• To build an effective main memory address, we first need to

get the page and/or segment address.
• For each address (instruction or data) we need at least two

accesses to main memory.
• Thus, the processing speed is reduced by a factor of 2.
• To prevent that, the currently used parts of the segment/page

tables are stored in a fast set of registers. (TLB = Translation
Lookaside Buffer, part of MMU)

• The TLB is an associative memory, i.e. a table in which the
entry to be found is being searched simultaneously in all lines
of the table.

• It is used as a sort of cache for page/segment tables.
• Usually, the search can be performed in one processor cycle.

7-43 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Two stage hierarchical address
translation with associative register

7-44 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

segment byte

Table base address

+

memory

+

page
K

segment table

page table

page frame segment page
TLB (associative memory)

program/data address

Typical properties of a TLB

• Line width : 4-8 bytes: Logical page/segment-no.,
 page frame no., Management bits

• Time for address translation:
• hit: ≤ 1 processor cycle
• miss: 10 - 200 processor cycles (depending on
 memory speed)

• Hit rate: 99.0% - 99.99%

• TLB-size: 32 – 1024 lines (entries)

7-45 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Memory protection for hierarchical
address translation

• Table base register and segment table entries are complemented by a
length field indicating the appropriate amount of memory.

• Exceeding the length triggers an interrupt (segmentation fault).
• It is possible to differentiate between read and write access and/or

different processor modes.

7-46 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

segment byte

Table base address

+

memory
+

page
K

segment table

page table

length base

? <
≥

length base R

?
≥
<

Access rights (optional)

7.3 Memory Hierarchy and Locality

7-47 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Register
Caches

(multiple levels)

Main memory

Magnetic or solid state disk

Archive (DVD, tape,...)

Processing

faster, smaller,
more expensive

slower, larger,
cheaper

Operation of Memory Hierarchy

• Copies of the data object will be generated at time of (first)
access, so it seems that the data object is “climbing up”.

• After modification of the data object changes will be
propagated (step-by-step, delayed) downwards.

7-48 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Level 1

Level n-1

Level n Original

Copy

Copy

Access

Level 1

Level n-1

Level n Original

Copy

Copy

Modification

Locality

The memory hierarchy is based on the
Principle of locality
• A program limits its accesses within a small time interval ∆t to only a

small subset of its address space A.
• Spatial locality: when a program accesses an address a, then

another access to a nearby address is very likely.
• Temporal locality: When a program accesses an address a,

then a repeated access to the same address within short
time is very likely.

Why ?

7-49 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

• Mostly, instructions are executed sequentially.
• Programs spend the most time in loops.
• Some parts of the program are executed only in exceptional cases.
• Many arrays are only partially filled.
• 90/10-Rule: A thread spends 90% of its time in 10% of its address

space.

Design parameters of
Memory Hierarchy

• Goal
• Hold data needed on highest level as possible.

• Problem
• Capacity is shrinking on the way up.

• Questions
• How it can be known what data object is accessed next?
 Knowledge about the program behavior
• Who is responsible for data transport between levels?
 User/Programmer, Compiler, OS, Hardware
• What is the size of the data objects feasible for transportation?
 Bytes, Words, Blocks, Files
• Is there an automatic mechanism for transportation between levels?
• Is there an acceleration of the data access (Caching) or enlargement

of capacity (Virtualization)?

7-50 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Caching vs. Virtualization

• Usually not all of the levels are recognizable for the
programmer or user – some are hidden or transparent.

• So the user has the impression to access Level k only.
• In case of Caching the access is performed on Level k-1 and

Level k is visible.
• In case of Virtualization the access is performed on Level k+1,

but the user has the impression to access Level k.
• Cashing is used to accelerate the data access, Virtualization is

used to enlarge the capacity.

7-51 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Level k-1

Level k

Level k+1

visible

transparent

transparent

Virtualization

Caching

Responsibilities

• During the runtime of the program the transport of data and instructions
between main memory, cache, and processor is done by the hardware
(transparent to software).

• Accesses to the disk are performed by the operating system.
• Writing files to and reading from archive memory can be done either

explicitly by the user or automatically by the operating system (file
system).

 7-52 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Processor register

Cache

Main memory

Disk

Magnetic tape
File (variable)

Block (e.g. 4KByte)

Cache-Line (e.g. 64 Byte)

Word (e.g. 8 Byte)

Unit of transport responsibility

Hardware

Hardware

Operating system

Operating system, user

Volatile vs. permanent Memory

• Due to the used media the memory on higher levels
usually is implemented as volatile memory. So the data
stored within this memory is lost after power cutoff.

• Therefore higher levels are used to hold temporary data
(program variables), while the other levels hold
permanent data (files).

7-53 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Processor register

Cache

Main memory

Disc

Magnetic tape

volatile memory
temporary data
(program variables)

permanent memory
permanent data
(files)

Volatile vs. permanent Memory

• Using Caching and Virtualization led to weaken the
difference between Main memory (for address spaces
only) and Disc space (for files only).

7-54 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

volatile memory
temporary data
(program variables)

permanent memory
permanent data
(files)

Disc

Main memory

Paging area

File-Cache

Files

Program AS
Caching Virtualization

7.4 Virtual Memory

• Due to the principle of locality, only those parts of the address
space that is currently in use by the program, needs to be
present in the physical memory.

• The pages needed are loaded only when addressed (demand
paging).

• The copy-out and copy-in operations of the pages can be
automated (by some hardware support).

• For the user / programmer all these activities are transparent.
• Programmer has the impression that main memory is available

in (almost) unlimited size.
• But this unlimited memory is only virtually existent.

7-55 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Virtual Memory

Requirements for efficient operation:
• Noncontiguous allocation (page tables)

• Pages are the units of transfer.

• Automatic detection of missing pages
• Access to missing page triggers interrupt.
• Loading of page from disk is initiated as part of the

interrupt handling.

7-56 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Involved components
(Data structures)

• Page table
• Function: address transformation
• Content: for each page

• usage and presence information
• physical address (page frame number)

• Page frame table, inverted page table
• Function: memory management
• Content: for each page frame

• state (free / occupied)
• owner
• occupying page

• Swap area (paging area)
• Function: areas of storage to store the pages that are swapped

out
• Usually mass storage such as magnetic or solid state disks
• Seldom network devices

 7-57 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Page table for virtual memory

In addition to the physical address, each entry provides
information whether
• the page is present in main memory:

• presence bit, valid bit
• the page has been accessed:

• reference bit
• the page has been modified (write access):

• modification bit, dirty bit

7-58 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Page table for virtual memory

7-59 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Modification
Access (Reference)
Presence

1
1
0
1
0
1

1
0
0
1
0
1

1
0
0
0
0
1

pages memory (frames)

page table

Tasks for virtual memory
management

7-60 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Allocate_VM

allocate
swap area

initialize
 swap area

page present ?

Access Release_VM

release allocated
page frames

release
swap area

Y

N

Page fault

Page fault

7-61 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Page fault

Free page frame available?

Select page frame to be cleared

Content of frame (page) modified ?

Move page to page area

Load new page from disk

Entry page frame table

Entry page table

Yes

No

Yes

No
Strategy issue

Time consuming!
Thread switch!

pa
ge

 o
ut

pa

ge
 in

Parallelization of paging

• Paging is a time-critical component, we therefore try to
speed it up by parallelization.

7-62 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

S_A(Paging_Ch, <PN, PID, RC>)

R_S(RC, < >)

R _S(Paging_Ch, <Page_No, P, Ret_Ch>

Swap_out(Frame_No)

Swap_in(Frame_No)

S_A(Ret_Ch, < >)

Page fault Pager

Buffering

• Since page faults often occur in bulks, it is recommend to have some amount of
free page frames available to avoid costly page-out operations when time is
tight.

• To that purpose we parallelize by applying the buffering principle to get a stock
of free page frames.

7-63 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

S_A(PIC, < >)

R_S(BC, < >)
R_S(PIC, < >)

swap_in()

S_A(BC, < >)

Page fault Page_in

S_A(POC, < >)
S_A(POC, < >)

S_A(POC, < >)
 p times

R_S(PIBC, < >)

Page_out

stock:= number

R_S(POC, < >)

stock≤ p?

stock:=stock+1

S _A(PIBC, < >)

S_A(POC, < >)
stock:=stock-1

swap_out()

7.5 Page replacement strategies

A small calculation:
• Let ppf be the probability of a page fault, tm the memory access time

and tpf the time needed for handling a page fault.
• Then we obtain as effective memory access time teff in the virtual

memory:

• Using roughly realistic numbers, e.g. tm = 20 nsec and tpf = 20 msec

• With a page fault probability of ppf = 0.001, we get an effective

access time of 20 µsec, i.e. a slow-down by a factor of 1000!
• Even with a value of ppf = 10-6 the effective access time doubles.
• Thus it is of utmost importance to keep the number of page faults

extremely low.

7-64 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

() pfpfmpfeff tptp:t ⋅+⋅−= 1

()
pf

pfpfeff

p..
..ppt

⋅+=

⋅+⋅−=

9809991920
00000020201

Selection strategy

• The page fault rate strongly depends on which pages are kept in real
memory and which are stored on disk.

• Selection strategy:
 When a page fault occurs and no page frame is free, which page

frame should be emptied?

• Differentiation
• Local selection strategy:
 We clear a page frame of that process that caused

 the page fault.
• Global selection strategy:
 An arbitrary page frame (belonging to other

 processes) is cleared.

7-65 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Classical Strategies

• FIFO (First-In-First-Out)
 The page that is longest in memory is swapped out.

• LFU (Least Frequently Used)
 The page that has been least frequently referenced is

swapped out.

• LRU (Least Recently Used)
The page not been referenced for the longest period is
swapped out.

• RNU (Recently Not Used)
 The page not been referenced within some specified

time period is swapped out.
 7-66 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Second-Chance-Algorithm
(Clock-Algorithm)

The Clock- Algorithm is smarter, since it resets the reference bits
not all at once but only smaller subsets:
• The vector of reference bits is scanned cyclically.
• For searching the next candidate to be swapped out, the next

page is selected which has a reference bit of 0.
• During this linear search all visited reference bits are reset to 0.
• They have – until the scan pointer revisits the page again

during the next cycle – a second chance to be referenced and
stay in memory.

• That means that the selected page has the property that it has
not been referenced during the last scan cycle.

7-67 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Second-Chance-Algorithm

7-68 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

0
0

1
1

0

1
1
1
1
0

1
0

0
0

1
1

0

0
0
0
0
1

1
0

1
0

1
1

0

0
1
1
0
1

1
1

Scan pointer

Scan pointer
Scan pointer

Reference bits

Before selection After selection, but
before moving pointer

After further references

7.6 Performance aspects of
virtual memory

• The virtual memory works the better, the higher the programs‘
locality.

• Locality is good, if few pages are referenced with high probability,
and many pages with low probability (small a).

7-69 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

0

s

Page reference probability

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 p(s)

a = 0.1

a = 0.2

a = 0.3

a = 0.5
a = 1.0

s 0 Pages sorted by reference probability

a: Parameter expressing dispersion

7.6.1 Modeling paging

• In memory should only be those pages that are referenced with high
probability.

7-70 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

in memory on disk

page fault

hit

s

page reference probability p(s)

0

0.1

0.2

0.3

0.4

0.5

s 0

Pages sorted by reference probability

Modeling paging

• Let be
 s number of available frames
 s0 size of address space
• The s most frequently referenced pages are assumed to be in

memory (i.e., in the s available frames).

Then we have:
• Hit probability

• Page fault probability

Normalized to size of address space:

• Memory offer

• Normalized page fault probability
 7-71 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

() ()dzzpsp
s

hit ∫=
0

() ()spsp hitpf −= 1

0ss=σ

() ()spp pfpf =σ′

Dependence of page fault probability
on memory offer

7-72 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

0 0.2 0.4 0.6 0.8 1
 σ

p'pf (σ) page fault probability

0.2

0.4

0.6

0.8

1

a = 0.1

a = 0.2

a = 0.3

a = 0.5

a = 1.0

Multiprogramming

K number of memory frames
n number of programs in memory
 (Multiprogramming Level, MPL)
s0 size of program address space (in pages)
ts time between two page faults
tT page transfer time
s memory offer in pages
σ = s/s0 memory offer normalized to program

address space

• For n identical programs the following holds:
 s(n) = K / n or σ (n) = K / (n s0), resp.

 7-73 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Inter page fault time

• The time between two page faults depends on the amount of available
memory

• Left of the „knee“ the function can be approximated by a parabola:

 i.e. ts decreases with growing n

7-74 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

σ

t s time between two page faults

Memory offer

„Lifetime-Function“

2

0

2

⋅

⋅=σ⋅≈
sn

Kaat s

Interleaving of compute and page
transfer phases

• In the second case, we experience phases where the processor is idle
since all processes wait for their pages to be swapped in.

7-75 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

t S t T ...

t

Case: tT < tS

t S t T

t S t T

t S t T

t S t T

t S t T

P1

P2

P3

t

t S t T

t S t T

t S t T

t S t T

t S t T

t S t T

t S t T

t S t T

t S t T

t S t T

t S t T

t S t T

Case: tT > tS

Processor idle

P1

P2

P3

7.6.2 Thrashing Effect

• The system is completely occupied with paging and
cannot perform regular useful work.

7-76 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Blocked (wait for page)

running ready

Thrashing

7-77 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Goal: High processor utilization

Many programs executed simultaneously

High multiprogramming degree n

Low memory space s per process

Short time between successive page faults

Congestion at paging device (disk)

Almost all processes blocked

 Result: poor processor utilization

Thrashing Curve

• We have to take care that the system does not enter the
overload region.

7-78 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Thrashing area

Multiprogramming degree n

Processor utilization

n max

Overload phenomena

• Thrashing is a special variant of an overload
phenomenon that can be found in many areas (not only
in computer science) and always leads to a performance
collapse.

• Examples:

• Computer networks too many packets
• Telephone networks: too many calls
• Database systems: too many transactions
• Road traffic too many cars
• Parallel computing too many processors

• Reason:
 Overhead for coordination grows overlinearly.

 7-79 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Overload prevention

• To prevent the thrashing effect, the multiprogramming
level must be limited.

• Problem: How to find an optimal nmax ?
• Difficulty:
 Program behavior changes over time:

• Individual program behavior changes
• Combination of program set in memory changes

(multiprogramming mix)
 7-80 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Virtual memory Wait
n < n max

n ≥ n max

Thrashing curve dynamics

7-81 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Multiprogramming level n

Processor utilization

n max

t=0 t=2 t=1

t – thread/task set

Thrashing prevention

• The optimal nmax turns out in operation and has to be adopted
dynamically.

• Thrashing prevention is therefore done by feedback control.

7-82 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Virtual memory Wait
n < n max

n ≥ nmax

control

Thrashing prevention

Two strategic approaches:
• Indirect or local strategy
 For each process i a reasonable number of frames si is

determined dynamically.
 The maximum multiprogramming level can be found

indirectly:

• Direct or global strategy
 The measurement of the global paging activity leads to the

calculation of an optimal nmax.

7-83 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

≤= ∑
=

Ksnmax:n
n

i
imax

1

7.6.3 Local control of paging activity

• The Working-Set Model
• The Working-Set of a program i is defined as the set of pages that

have been referenced within the last τ time units.

• With suitable choice of t the size of the working set
indicates the number of page frames that the process needs for
efficient work.

• is estimated using the reference information for each
process.

• A new process x is loaded into memory, only if

• It is the goal of the algorithm that all processes can accommodate
their particular working sets in the memory.

 7-84 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

r t r t-1 r t-2 r t-3 r t-4 r t- τ +1 r t- τ r t- τ -1

Time window of size τ

time
() ()τ=τ ,tW:,tw ii

()τ,tw i

()∑
=

τ−≤
n

i
ix twKw

1
,

The Page-Fault-Frequency Model (PFF)

• For each process,
 the page fault rate
 (#page faults per time
 unit) is measured and
 serves to adjust the
 number of frames.

• Control mechanism:

• The multiprogramming level can be calculated indirectly as with the
Working-Set algorithm.

 7-85 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

1
1

2

1

+=>

−=<

s:s:
s:s:

ρρ
ρρ

Page fault rate

ρ 1

ρ 2

ρ

Increase s

Decrease s

s Number of Frames

7.6.4 Global control of paging activity

The criterion of the interpagefault time (L=S-criterion)

• The time between two page faults ts (or L resp.) should be
roughly the same as the page transfer time tT (or S, resp.).

The resulting operation point

 is in most cases too far at the
 right which can be taken into
 account in the control laws.

7-86 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

n

1

Processor utilization

n opt n L=S

t S / t T

The 50%-Rule

• Thrashing happens, when many processes are blocked due to paging, i.e.
when the mean queue length at the paging device is larger than 1.

• According to queuing theory this corresponds to a device utilization of > 50%.
• New processes are loaded to main memory only if the utilization of the disk

(measured over a longer time period) is below 50%.

7-87 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

n

1
utilization

n opt n 50%

0,5

Paging disk

Processor

Parabola approximation

• The thrashing curve can be approximated by a parabola in the
region of the maximum.

7-88 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

n

1 Processor utilization

estimated parabola

real
thrashing curve

Measurements

Parabola approximation

• Approximation formula

• The coefficients are dynamically estimated based on
measurements .

• The apex n* of the parabola can be calculated and used as
upper bound of the multiprogramming level.

• If the estimation results in parabola that opens upward, the
apex (extreme point) cannot be used as optimum.

• In this case the first derivative indicates the slope, i.e.
whether we are left or right of the optimum.

• The current upper bound can then be incremented or
decremented.

7-89 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

210 a,a,a

2
210 nanaa ++=η

()tt n,η

7.7 Examples
7.7.1 Memory management in Unix

Swapping
• Early Unix systems did not have a virtual memory.
• The main memory had been managed as a resource with

preemption, i.e. processes and their address spaces were
swapped to disk, if
• No space for process generation (fork) was available,
• A dynamic memory request could not be satisfied.

• The process to be swapped out was chosen according to the
following criteria:
• State – blocked processes were favored for swapping out
• Priority and residence time in memory

• Priority and time since its last swap-in are added.
• The process with the highest value is swapped out.
• Management of memory and swap area is done using a

separate list-based mechanism with First-Fit.

7-90 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Paging

• Today‘s Unix Systems all provide virtual memory
(demand paging).

• When a page fault occurs the missing page is loaded
into an empty page frame.

• A special server process (page-daemon) has to take
care that a sufficient number of empty frames (lotsfree)
is always available.

• If there are too few empty frames available, the page
daemon starts to flush pages to disk.

• For that, a global Second-Chance-Algorithm is used.
• The different Unix-systems use different variants.
• To prevent thrashing, Unix uses swapping, i.e. entire

processes (address spaces) are swapped out.

7-91 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Activating the Page daemon

• AT&T System V:
• Original Second-chance-Algorithm
• Instead of lotsfree two parameters min and max are used

• Activation, if current no. of frame < min
• stop, if current no. of frame > max

• 4.3BSD:

• Modified Second-chance-Algorithm (Two-Hand-Clock-
 Algorithm)

• Parameter lotsfree
• Activation, if current no. of frame < lotsfree
• stop, if current no. of frame > lotsfree

7-92 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Modified “Second Chance”-Algorithm
(Two-Hand-Clock-Algorithm, Unix 4.2BSD)

7-93 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

0

0

1

1

0

1

1
1

1

0

1

0

0

0

1

1

0

0

0
0

0

1

1

0

1

0

1

1

0

0

1
1

0

1

1

1

pointer 1:
reset

Reference bits

before activation
of page daemon

pointer 2:
flush

pointer 1:
reset

pointer 2:
flush

pointer 1:
reset

pointer 2:
flush

after activation
of page daemon

before next activation
 of page daemon

hand spread

Solaris

• Solaris (Sun Microsystems/Oracle) also uses the 2-Hand-Clock (page
out) with the following parameters
• hand spread: difference between the two hands (# Frames)
• scan speed: speed of frame scanning

 (slow: 100 frames/sec, fast: 8192 frames/sec)
• lotsfree: amount at which paging sets in
 (e.g. 1/64 of total number of frames)
• desfree: desirable amount of empty frames
• minfree: minimal amount of empty frames

7-94 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

minfree desfree lotsfree

slowscan

fastscan

free page frames

scan speed

pageout
act. 4/sec

pageout
act. 100/sec

pageout
activated
for each
page
request

no pageout

starts
swapping

7.7.2 Memory management in
Windows

In contrast to Unix, Windows uses a local paging strategy :
• If, as a consequence of a page fault, a page needs to be

swapped out, always a page of that process which
caused the page fault is chosen.

• Not only the missing page, but also some more of the
„neighborhood“ of that page is swapped in (clustering).

• The set of all currently loaded pages of a process is
called working set.

7-95 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Memory management in Windows

• The paging strategy depends on the hardware:
• FIFO (modified) for Alpha processors and Intel

multiprocessor systems
• Clock for Intel monoprocessors

• The size of the working sets is initialized by default

values (Min and Max).
• On demand Working Sets can grow beyond the

maximum (Working set expansion) and shrink again
(Working set trimming).

• Both are dependent on the page fault rate and on the
number of free frames.

• For the OS itself also a working set mechanism is used.

 7-96 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Further reading

• Stallings,W.: Operating Systems, 5th ed., Prentice Hall,
 2005, Chapter 7 (7.1+7.2) , Chapter 8

• Tanenbaum, A.: Moderne Betriebssysteme, 2.Aufl., Hanser,
 1995, Kapitel 3, Abschnitt 3.1+3.2

• Knuth, D.E.: The Art of Computer Programming, Vol. 1,
 3rd ed., 1997, pp. 435-451

• Peterson, J.; Norman T. A.:
 Buddy systems. CACM 20, 6 (June 1977, pp.

 421-431
• Shore, J.E.: Anomalous behavior of the fifty-percent rule

 in dynamic memory allocation. CACM 20, 11
 (Nov. 1977) pp. 812 - 820

• Denning,P.J.: Working Sets Past and Present, IEEE TOSE,
 Vol 6, (Jan. 1980) pp. 64-84.

7-97 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Further reading

• Heiss, H.-U.: Verhinderung von Überlast in
 Rechensystemen, Springer
 (Informatik-Fachberichte), 1988

• Heiss, H.-U.: Overload Effects and their Prevention.
 Performance Evaluation Vol.12, No.4 (July
 1991), S. 219-235.

• Markatos, E.: Visualizing Working Sets, ACM Operating
 Systems Review 31,4 (1997), pp.3-11

• Megiddo,N.; Modha,D.S.:
 Outperforming LRU with an Adaptive
 Replacement Cache Algorithm, IEEE
 Computer, April 2004

7-98 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

	Chapter 7
	7.1 Allocation strategies
	Structure of Memory Management
	Design parameters
	Sequence of operation
	Size of pieces
	Representation of allocation
	Representation of allocation
	Representation of allocation
	Fragmentation
	Fragmentation
	Allocation strategies
	Allocation strategies
	Allocation strategies
	Allocation strategies
	Reintegration
	Examples
	Examples
	Examples
	Examples
	Boundary tag system
	Boundary tag system
	Optimizations
	Optimizations
	Reduction of search costs
	Memory usage
	Buddy system
	Buddy system
	Buddy system
	Data structures of a Buddy system
	Operation of the Buddy system
	Buddy system – �internal fragmentation
	Buddy system – �internal fragmentation
	Buddy system – �internal fragmentation
	Buddy system
	7.2 Address Translation
	Address Spaces: Examples
	Two-stage hierarchical address translation
	Inverted page table
	Page Table: Theoretical Example
	Inverted Page Table: Theoretical Example
	Acceleration of address translation
	Two stage hierarchical address translation with associative register
	Typical properties of a TLB
	Memory protection for hierarchical address translation
	7.3 Memory Hierarchy and Locality
	Operation of Memory Hierarchy
	Locality
	Design parameters of �Memory Hierarchy
	Caching vs. Virtualization
	Responsibilities
	Volatile vs. permanent Memory
	Volatile vs. permanent Memory
	7.4 Virtual Memory
	Virtual Memory
	Involved components �(Data structures)
	Page table for virtual memory
	Page table for virtual memory
	Tasks for virtual memory management
	Page fault
	Parallelization of paging
	Buffering
	7.5 Page replacement strategies
	Selection strategy
	Classical Strategies
	Second-Chance-Algorithm �(Clock-Algorithm)
	Second-Chance-Algorithm
	7.6 Performance aspects of �virtual memory
	7.6.1 Modeling paging
	Modeling paging
	Dependence of page fault probability on memory offer
	Multiprogramming
	Inter page fault time
	Interleaving of compute and page transfer phases
	7.6.2 Thrashing Effect
	Thrashing
	Thrashing Curve
	Overload phenomena
	Overload prevention
	Thrashing curve dynamics
	Thrashing prevention
	Thrashing prevention
	7.6.3 Local control of paging activity
	The Page-Fault-Frequency Model (PFF)
	7.6.4 Global control of paging activity
	The 50%-Rule
	Parabola approximation
	Parabola approximation
	7.7 Examples�7.7.1 Memory management in Unix
	Paging
	Activating the Page daemon
	Modified “Second Chance”-Algorithm �(Two-Hand-Clock-Algorithm, Unix 4.2BSD)
	Solaris
	7.7.2 Memory management in Windows
	Memory management in Windows
	Further reading
	Further reading

