
Chapter 7 

Memory Management 
 

"640 Kilobyte ought to be enough for anybody."  
-- Bill Gates, 1981 

"Wir haben so viel Speicher, den müssen wir gar nicht managen."  
-- Abraham Söyler, 2018 



7.1  Allocation strategies 

• Problem 
 
 
 
 
 
 
 
 

• Selection of memory sections/pieces 
• Efficiency of algorithms 
• Memory usage 
• Problem conditions 
• Application area: (real) Main Memory (and Swap Space) 
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Structure of Memory Management 
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Design parameters 

• Memory management strategies can be distinguished 
based on: 
• Sequence of operation 
• Size of pieces 
• Representation of allocation 
• Fragmentation 
• Allocation strategies (with free pieces) 
• (Re-)integration 
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Sequence of operation 

• Allocation and release  
• in same order 

• Queing approaches, FIFO = First In First Out 
• in reverse order 

• Batch approaches, LIFO = Last In First Out 
• in arbitrary order 

• General approach 
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Size of pieces 

• Constant size 
• NUM = 1 (unit size) 

 
• Multiple of constant size 

• NUM = k (unit size) 
 

• Given size of partitions 
• NUM = k1, k2, k3, … 

 
• Arbitrary size 

• NUM = x 
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Representation of allocation  

• How? 
• Vector 
• Table 

• Where? 
• Separated 
• Integrated 

 
    Representation by vector separated 
     and integrated 

• Example 
• Main Memory  128 Mbyte (227 Byte) 
• Unit size  512 Byte (29 Byte) 
• Sum   262144 Units (218) 
• Representation with 8192 words with 32 Bit 
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Representation of allocation  

• Representation by table 
• Separated representation 
• Holding information about allocation in table 
• Sorting by address and/or length 

 
 
 
 

Sorted by address      Sorted by length 
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Address Length 
0 3 
4 4 
14 3 
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Length Address 
3 14 
3 0 
4 4 
13 20 



Representation of allocation  

• Integrated representation (by table) 
• Pieces identify itself, specify length and provide pointer to 

next element of free list. 
 

Sorted by address 
 
 
 
 
Sorted by length 
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Fragmentation 

• Usually memory is allocated for multiple of units. 
• Requests therefore are rounded up to the next multiple 

of units. 
• This come with unused parts of the allocated memory. 
• The unused piece of memory is called internal 

fragmentation fint. 
• Due to the dynamic of allocation and release of pieces it 

may happen the overall amount of free memory can 
satisfy a request, but because of the layout of all of the 
pieces of free memory is cannot be fulfilled.  

• So free memory is created, which is not suitable to be 
used for requests. 

• This is called external fragmentation fext.  
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Fragmentation 
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Allocation strategies 

• First Fit strategy 
 
 
 
 

• Search the free list from start. 
• Take the first piece of free memory satisfying the 

request. 
• Properties 

• Low search effort (in case of almost empty memory space). 
• External fragmentation 
• Concentration of allocated memory at the begin of the 

memory space 
• Increased search effort in loaded situations 
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Allocation strategies 

• Next Fit strategy, Rotating First Fit strategy 
 
 
 
 
 

• Cyclic search of list. 
• Search start at the point of last allocation. 
• Properties 

• Like First Fit, but without concentration at the begin of the 
memory space 

• Therefore slightly reduced search effort (memory space not 
empty). 
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Allocation strategies 

• Best Fit strategy 
 
 

 
• Allocation of the smallest piece of memory satisfying the 

request. 
• Properties 

• If sorted by address the whole free list has to be searched. 
• List should be sorted by size of piece of free memory. 
• Usually reduced external fragmentation, because requests 

for small amount of memory may be served without 
derogation of larger pieces. 

• But produces very small pieces of free memory unsuitable 
for any request (external fragmentation). 
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Allocation strategies 

• Nearest Fit strategy 
 
 
 
 

• A favored address is provided. 
• Search with First Fit from the point of favored allocation. 
• Properties 

• In case of disc space minimizing the movement of  disc 
arm. Especially if the sequence of access is known, the 
movement of the disc arm can be optimized. 

• File directory information can located in the middle of a 
cylinder. 

• In case of expansion of files the blocks to be allocated should 
be located in the neighborhood. 
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Reintegration 

• Instantly after release 
 
 
 
 
 
 

• Delayed aggregation 
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Examples 

• Ring buffer 
 
 
 
 
 
 
 
• Allocation and release in same direction (FIFO) 
• Fix length of pieces 
• No search needed 
• No external fragmentation 
• Automatic and immediate reintegration 
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Examples 

• Stack 
 
 
 
 
 
 

 
• Allocation and release in inverse direction (LIFO) 
• Arbitrary length of pieces 
• No search needed 
• Little external fragmentation 
• Automatic and immediate reintegration 
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Examples 

• Vector based approach 
 
 
 
 
 

 
• Allocation and release in arbitrary direction 
• Fixed length with k * unit size 
• Search for first fitting piece 
• Internal and external fragmentation 
• Automatic and immediate reintegration 
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Examples 

• Boundary tag system 
 free piece 
 
 
 
 
 used piece 
 
 
 
 

 
• Label for pieces 
• Sorted list by size (length) 
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Boundary tag system 

 after release 
 
 
 
 
 
 
 
 after reintegration 
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Boundary tag system 

• Properties 
• Operation in arbitrary order 
• Allocation of pieces with arbitrary size (length) 
• Integration of management and representation of pieces 

• Doubly linked list sorted by size of pieces 
• Best Fit search strategy 
• External fragmentation 
• Explicit immediate reintegration using length field to check 

with neighboring pieces 
• Immediate integration into linked list 
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Optimizations 

• Reduction of management efforts based on small pieces 
 

• Merge requested piece and small piece (transform 
external fragmentation into internal fragmentation) 
 
 
 
 

• Avoid integration of small pieces into free list, but merge 
them with released (big pieces) 
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Optimizations 

• Cost of search on arbitrary order of allocation and release – 
O(n) 

• Reduce search costs 
• Tailored pieces 

• Given size (length) of pieces 
• Provide number of (statistically) frequently used pieces  
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Reduction of search costs 

• Example: access by binary tree 

7-25 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23 

5 5 5 4 2 1 1 1 1 4 

4 

1 

2 

5 



Memory usage 

• Simulation with 32 K units 
• Uniform distribution of requests with mean value A and standard 

deviation SA 

• Uniform distribution of usage time within interval (5, 15) 
 
 
 
 
 
 
 
 
 
 
 

• External fragmentation is increasing with size and variation of request 
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Buddy system 

• Memory is separated in 2kmax units 
• Smaller pieces are created by (continuously) performed 

bisection of bigger pieces 
• Pieces split in one action can be joined by release 
• Properties 

• Allocation and release in arbitrary order 
• Allocation of pieces with unit size of 20, 21, 22, …, 2k 

• Separated representation 
• Limited search costs 
• Internal and external fragmentation 
• Explicit reintegration 
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Buddy system 
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Buddy system 

• Representations as tree 
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Data structures of a Buddy system 

• With separated representation 
 
 
 
 
 
 
 
 
 
 
 

• Array of heads of free lists for pieces with same size 
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Operation of the Buddy system 

• Handling of requests 
• Check for next value with power of two 
• Take first entry of list 
• In case of empty list (recursive): 

• Take first entry of next list with bigger pieces 
• Cut piece in half 
• Insert second half into list of the original size 
• Take remaining piece to satisfy he request 

 

• Handling release 
• Determine buddy of the piece to be released 
• If buddy is used, insert piece into list 
• In case buddy is free: join both (piece and buddy) 
• Insert emerged piece into the next list 
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Buddy system –  
internal fragmentation 

• Requests of size a:  1 2 3 4 5 6 7 8  9  10 … 
• Size of allocated pieces b(a): 1 2 4 4 8 8 8 8 16 16 … 
• pa – probability request is of size a 
• b(a) – size of allocated piece for request of size a 

 
• Def.: Internal fragmentation ratio between the expected 

value of the number of unused pieces and the expected value 
of the number of allocated pieces: 
 
 
 
 

• With    as the  expected values of 
the size of the allocated piece b or of the size requested 
respectively the internal fragmentation is 1 – Sa/Sb. 
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Buddy system –  
internal fragmentation 

• To determine the internal fragmentation an assumption 
about the distribution of the requests is needed. 

• To simplify matters we assume sizes of request are 
uniform distributed over the interval [1, 2n]. So every 
size of request have the same probability         . 
 

• Approximately the average size requested is 
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Buddy system –  
internal fragmentation 

• Keeping in mind the size of the allocated pieces is based 
on the next value with power of two: 
 
 
 
 
 
 
 
 

• Therefore the ratio  
so the allocated pieces are used by ¾ and the internal 
fragmentation is 25%. 
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Buddy system 

• Fast operation with O(1) 
• Adaption to distribution of requests 
• Only limited number of split and join operations after 

transient oscillation.  
• Amount of internal fragmentation fairly large. 
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7.2  Address Translation 

• An address space is a contiguous set of addresses. 
• It holds all necessary instructions and data structures 

needed to execute a program. 
• Parts of the address space may be undefined. Access to 

undefined parts of the address space leads to an error.   
• We distinguish: 

• Logical address space, program address space (from the 
view of the thread/program) 

• Physical address space (defined by the width of the 
address bus) 

• For higher efficiency and security, logical address spaces 
are decomposed into segments (of different size) which 
in turn are cut into pages (equal size) 
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Address Spaces: Examples 

• Address spaces of, e.g., 64 bit machines are not always as expected: 
 

• Linux: cat /proc/cpuinfo  
Here: only small snippets from some example machines 

 
• Intel, mobile CPU, 2007 

model name      : Intel(R) Core(TM)2 Duo CPU     L7700  @ 1.80GHz 
address sizes   : 36 bits physical, 48 bits virtual 

• Intel, desktop CPU, 2011 
model name      : Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz 
address sizes   : 36 bits physical, 48 bits virtual 

• Intel, entry server CPU, 2009 
model name      : Intel(R) Xeon(R) CPU           X3470  @ 2.93GHz 
address sizes   : 36 bits physical, 48 bits virtual 

• Intel, server CPU, 2009 
model name      : Intel(R) Xeon(R) CPU           X5570  @ 2.93GHz 
address sizes   : 40 bits physical, 48 bits virtual 

 
• AMD, desktop CPU, 2008 

model name      : AMD Athlon(tm) 64 X2 Dual Core Processor 5600+ 
address sizes   : 40 bits physical, 48 bits virtual 

• AMD, desktop CPU, 2011 
model name      : AMD FX(tm)-6100 Six-Core Processor  
address sizes   : 48 bits physical, 48 bits virtual 

• AMD, server CPU, 2009 
model name      : Six-Core AMD Opteron(tm) Processor 8435 
address sizes   : 48 bits physical, 48 bits virtual 
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Two-stage hierarchical address 
translation 

• Each segment consists of a variable number of pages. 
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Inverted page table 

• While the Intel I32 processors or ARM processors support multistage 
segment / page tables, PowerPC and UltraSPARC-processors use 
inverted page tables. 
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Page Table: Theoretical Example 

• 32 Bit addresses 
• 4 GB logical address space 
• 64 MB RAM (physical) 
• Pages of 1 KB 
• One page table for the whole logical address space 

 
 
 

• Offset (inside pages): 10 Bit (2^10 = 1 KB) 
• Page addresses: 22 Bit (32-10) 
• Number of entries in page table: 2^22 = 4M 
• Size of an entry: 16 Bit = 2 Byte  

(64 MB = 2^26 B = 2^16 frames) 
• Size of page table (ignoring managament information such as 

dirty bits etc. and ignoring alignment): 8 MB (4M x 2 Byte) 
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Inverted Page Table: Theoretical 
Example 

• 32 Bit addresses 
• 4 GB logical address space 
• 64 MB RAM (physical) 
• Pages of 1 KB 
• One page table for the whole logical address space 
• Offset (inside pages): 10 Bit (2^10 = 1 KB) 
• Number of frames: 65536 = 2^16 
• Frame addresses: 16 Bit 
• Number of entries in inverted page table: 2^16 = 64K 
• Size of an entry: 22 Bit = 2.75 Byte  

(page addresses are 22 bit (32-10)) 
• Size of page table (ignoring managament information such as 

dirty bits etc. and ignoring alignment): 176 KB (64K x 2.75 
Byte) 

• But: Search is much more complicated (e.g. hash function)! 
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Acceleration of address translation 

Problem:  
• Segment and page tables are so large that they have to be 

kept in main memory. 
• To build an effective main memory address, we first need to 

get the page and/or segment address. 
• For each address (instruction or data) we need at least two 

accesses to main memory. 
• Thus, the processing speed is reduced by a factor of 2. 
• To prevent that, the currently used parts of the segment/page 

tables are stored in a fast set of registers. (TLB = Translation 
Lookaside Buffer, part of MMU) 

• The TLB is an associative memory, i.e. a table in which the 
entry to be found is being searched simultaneously in all lines 
of the table. 

• It is used as a sort of cache for page/segment tables. 
• Usually, the search can be performed in one processor cycle.   
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Two stage hierarchical address 
translation with associative register 
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Typical properties of a TLB 

• Line width : 4-8 bytes: Logical page/segment-no.,  
   page frame no., Management bits 
 

• Time for address translation: 
• hit:  ≤  1 processor cycle 
• miss:  10 - 200 processor cycles (depending on 
   memory speed) 

 
• Hit rate:  99.0% - 99.99% 

 
• TLB-size:  32 – 1024 lines (entries) 
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Memory protection for hierarchical 
address translation 

• Table base register and segment table entries are complemented by a 
length field indicating the appropriate amount of memory.  

• Exceeding the length triggers an interrupt (segmentation fault).  
• It is possible to differentiate between read and write access and/or 

different processor modes. 
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7.3  Memory Hierarchy and Locality 
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Operation of Memory Hierarchy 

• Copies of the data object will be generated at time of (first) 
access, so it seems that the data object is “climbing up”. 
 
 
 
 
 

• After modification of the data object changes will be 
propagated (step-by-step, delayed) downwards.  
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Locality 

The memory hierarchy is based on the 
Principle of locality 
• A program limits its accesses within a small time interval ∆t to only a 

small subset of its address space A. 
• Spatial locality: when a program accesses an address a, then 

another access to a nearby address is very likely.  
• Temporal locality: When a program accesses an address a, 

then a repeated access to the same address within short 
time is very likely. 

Why ? 
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• Mostly, instructions are executed sequentially. 
• Programs spend the most time in loops. 
• Some parts of the program are executed only in exceptional cases.   
• Many arrays are only partially filled.  
• 90/10-Rule: A thread spends 90% of its time in 10% of its address 

space. 
 



Design parameters of  
Memory Hierarchy 

• Goal 
• Hold data needed on highest level as possible. 

• Problem 
• Capacity is shrinking on the way up. 

• Questions 
• How it can be known what data object is accessed next? 
 Knowledge about the program behavior 
• Who is responsible for data transport between levels? 
 User/Programmer, Compiler, OS, Hardware 
• What is the size of the data objects feasible for transportation? 
 Bytes, Words, Blocks, Files 
• Is there an automatic mechanism for transportation between levels? 
• Is there an acceleration of the data access (Caching) or enlargement 

of capacity (Virtualization)? 
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Caching vs. Virtualization 

• Usually not all of the levels are recognizable for the 
programmer or user – some are hidden or transparent. 

• So the user has the impression to access Level k only. 
• In case of Caching the access is performed on Level k-1 and 

Level k is visible. 
• In case of Virtualization the access is performed on Level k+1, 

but the user has the impression to access Level k. 
• Cashing is used to accelerate the data access, Virtualization is 

used to enlarge the capacity. 
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Responsibilities 

• During the runtime of the program the transport of data and instructions 
between main memory, cache, and processor is done by the hardware 
(transparent to software).  

• Accesses to the disk are performed by the operating system. 
• Writing files to and reading from archive memory can be done either 

explicitly by the user or automatically by the operating system (file 
system).  
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Volatile vs. permanent Memory 

• Due to the used media the memory on higher levels 
usually is implemented as volatile memory. So the data 
stored within this memory is lost after power cutoff.  

• Therefore higher levels are used to hold temporary data 
(program variables), while the other levels hold 
permanent data (files). 
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Volatile vs. permanent Memory 

• Using Caching and Virtualization led to weaken the 
difference between Main memory (for address spaces 
only) and Disc space (for files only). 
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7.4  Virtual Memory 

• Due to the principle of locality, only those parts of the address 
space that is currently in use by the program, needs to be 
present in the physical memory.  

• The pages needed are loaded only when addressed (demand 
paging). 

• The copy-out and copy-in operations of the pages can be 
automated (by some hardware support).  

• For the user / programmer all these activities are transparent. 
• Programmer has the impression that main memory is available 

in (almost) unlimited size.  
• But this unlimited memory is only virtually existent. 
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Virtual Memory 

 
Requirements for efficient operation: 
• Noncontiguous allocation (page tables) 

• Pages are the units of transfer. 

• Automatic detection of missing pages 
• Access to missing page triggers interrupt. 
• Loading of page from disk is initiated as part of the 

interrupt handling. 
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Involved components  
(Data structures) 

• Page table 
• Function: address transformation 
• Content: for each page 

• usage and presence information 
• physical address (page frame number) 

• Page frame table, inverted page table 
• Function: memory management 
• Content: for each page frame 

• state (free / occupied) 
• owner 
• occupying page 

• Swap area (paging area) 
• Function: areas of storage to store the pages that are swapped 

out 
• Usually mass storage such as magnetic or solid state disks 
• Seldom network devices 
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Page table for virtual memory 

In addition to the physical address, each entry provides 
information whether 
• the page is present in main memory:  

• presence bit, valid bit 
• the page has been accessed:  

• reference bit 
• the page has been modified (write access): 

• modification bit, dirty bit 
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Page table for virtual memory 
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Tasks for virtual memory 
management 
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Page fault 
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Parallelization of paging 

• Paging is a time-critical component, we therefore try to 
speed it up by parallelization. 
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Buffering 

• Since page faults often occur in bulks, it is recommend to have some amount of 
free page frames available to avoid costly page-out operations when time is 
tight. 

• To that purpose we parallelize by applying the buffering principle to get a stock 
of free page frames.  
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7.5  Page replacement strategies 

A small calculation: 
• Let ppf  be the probability of a page fault, tm the memory access time 

and tpf  the time needed for handling a page fault. 
• Then we obtain as effective memory access time teff in the virtual 

memory: 
 

 
• Using roughly realistic numbers, e.g. tm = 20 nsec and tpf = 20 msec 

 
 
 

 
• With a page fault probability of ppf = 0.001, we get an effective 

access time of 20 µsec, i.e. a slow-down  by a factor of 1000! 
• Even with a value of ppf = 10-6  the effective access time doubles. 
• Thus it is of utmost importance to keep the number of page faults 

extremely low. 
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Selection strategy 

• The page fault rate strongly depends on which pages are kept in real 
memory and which are stored on disk.  
 

• Selection strategy: 
 When a page fault occurs and no page frame is free, which page 

frame should be emptied?   
 

• Differentiation 
• Local selection strategy:  
  We clear a page frame of that process that caused 

 the page fault. 
• Global selection strategy:  
  An arbitrary page frame (belonging to other 

 processes) is cleared. 
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Classical Strategies 

• FIFO  (First-In-First-Out) 
 The page that is longest in memory is swapped out.  
 

• LFU (Least Frequently Used) 
 The page that has been least frequently referenced is 

swapped out. 
 

• LRU (Least Recently Used) 
The page not been referenced for the longest period is 
swapped out. 

 

• RNU (Recently Not Used) 
 The page not been referenced within some specified 

time period is swapped out. 
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Second-Chance-Algorithm  
(Clock-Algorithm) 

 
The Clock- Algorithm is smarter, since it resets the reference bits 
not all at once but only smaller subsets: 
• The vector of reference bits is scanned cyclically.  
• For searching the next candidate to be swapped out, the next 

page is selected which has a reference bit of 0.  
• During this linear search all visited reference bits are reset to 0.  
• They have – until the scan pointer revisits the page again 

during the next cycle – a second chance to be referenced and 
stay in memory.  

• That means that the selected page has the property that it has 
not been referenced during the last scan cycle.  
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Second-Chance-Algorithm 
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7.6  Performance aspects of  
virtual memory 

• The virtual memory works the better, the higher the programs‘ 
locality. 

• Locality is good, if few pages are referenced with high probability, 
and many pages with low probability (small a). 
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7.6.1  Modeling paging 

• In memory should only be those pages that are referenced with high 
probability. 
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Modeling paging 

• Let be 
 s number of available frames 
 s0 size of address space 
• The s most frequently referenced pages are assumed to be in 

memory (i.e., in the s  available frames). 
 
Then we have: 
• Hit probability     

 
• Page fault probability    

 
Normalized to size of address space:   

 
• Memory offer       

 

• Normalized page fault probability  
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Dependence of page fault probability 
on memory offer 
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Multiprogramming 

K  number of memory frames 
n  number of programs in memory 
  (Multiprogramming Level, MPL) 
s0  size of program address space (in pages) 
ts  time between two page faults 
tT  page transfer time 
s  memory offer in pages 
σ = s/s0 memory offer normalized to program 

address space 
 
• For n identical programs the following holds: 
  s(n) = K / n       or     σ (n) = K / (n s0), resp. 
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Inter page fault time 

 
 
 
 
 
 
 
 
 
 

• The time between two page faults depends on the amount of available 
memory 

• Left of the „knee“ the function can be approximated by a parabola: 
 

 
 i.e. ts decreases with growing n  
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Interleaving of compute and page 
transfer phases 

• In the second case, we experience phases where the processor is idle 
since all processes wait for their pages to be swapped in.  
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7.6.2  Thrashing Effect 

• The system is completely occupied with paging and 
cannot perform regular useful work. 
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Thrashing Curve 

 
 
 
 
 
 
 
 
 
 
 

• We have to take care that the system does not enter the 
overload region. 
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Overload phenomena 

• Thrashing is a special variant of an overload 
phenomenon that can be found in many areas (not only 
in computer science) and always leads to a performance 
collapse. 

 
• Examples: 

• Computer networks  too many packets 
• Telephone networks:  too many calls 
• Database systems:  too many transactions  
• Road traffic   too many cars 
• Parallel computing  too many processors 
 

• Reason:  
  Overhead for coordination grows overlinearly. 
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Overload prevention 

• To prevent the thrashing effect, the multiprogramming 
level must be limited. 
 
 

 
 

 
• Problem: How to find an optimal nmax ? 
• Difficulty: 
 Program behavior changes over time: 

• Individual program behavior changes 
• Combination of program set in memory changes 

(multiprogramming mix) 
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Thrashing curve dynamics 
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Thrashing prevention 

• The optimal nmax turns out in operation and has to be adopted 
dynamically. 

• Thrashing prevention is therefore done by feedback control. 
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Thrashing prevention 

Two strategic approaches: 
• Indirect  or local strategy 
 For each process i a reasonable number of frames si is 

determined dynamically. 
 The maximum multiprogramming level can be found 

indirectly: 
 

  
 
 

• Direct  or global  strategy 
 The measurement of the global paging activity leads to the 

calculation of an optimal nmax. 
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7.6.3  Local control of paging activity 

• The Working-Set Model 
• The Working-Set of a program i  is defined as the set of pages that 

have been referenced within the last τ  time units. 
 
 
 
 
 

• With suitable choice of t the size of the working set                       
indicates the number of page frames that the process needs for 
efficient work. 

•       is estimated using the reference information for each 
process.  

• A new process x is loaded into memory, only if 

 
 

• It is the goal of the algorithm that all processes can accommodate 
their particular working sets in the memory.   
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The Page-Fault-Frequency Model (PFF) 

 
 
 

• For each process,  
 the page fault rate  
 (#page faults per time  
 unit) is measured and  
 serves to adjust the  
 number of frames. 

 
• Control mechanism:      

 
 

• The multiprogramming level can be calculated indirectly as with the  
Working-Set algorithm. 
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7.6.4  Global control of paging activity 

The criterion of the interpagefault time (L=S-criterion) 
 

• The time between two page faults ts (or L resp.) should be 
roughly the same as the page transfer time tT (or S, resp.). 
 
 
 
The resulting operation point  

 is in most cases too far at the  
 right which can be taken into  
 account in the control laws. 
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The 50%-Rule 

• Thrashing happens, when many processes are blocked due to paging, i.e. 
when the mean queue length at the paging device is larger than 1. 

• According to queuing theory this corresponds to a device utilization of > 50%. 
• New processes are loaded to main memory only if the utilization of the disk 

(measured over a longer time period) is below 50%. 
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Parabola approximation 

• The thrashing curve can be approximated by a parabola in the 
region of the maximum. 
 

7-88 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23 

n 

1 Processor utilization 

estimated parabola 

  
real 
thrashing curve 

Measurements 



Parabola approximation 

• Approximation formula  
 

• The coefficients   are dynamically estimated based on 
measurements . 

• The apex n* of the parabola can be calculated and used as 
upper bound of the multiprogramming level. 

• If the estimation results in parabola that opens upward, the 
apex (extreme point) cannot be used as optimum.  

• In this case the first derivative indicates the slope, i.e. 
whether we are left or right of the optimum.  

• The current upper bound can then be incremented or 
decremented.  
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7.7 Examples 
7.7.1 Memory management in Unix 

Swapping 
• Early Unix systems did not have a virtual memory. 
• The main memory had been managed as a resource with 

preemption, i.e. processes and their address spaces were 
swapped to disk, if 
• No space for process generation (fork) was available, 
• A dynamic memory request could not be satisfied.  

• The process to be swapped out was chosen according to the 
following criteria: 
• State – blocked processes were favored for swapping out 
• Priority and residence time in memory 

• Priority and time since its last swap-in are added. 
• The process with the highest value is swapped out. 
• Management of memory and swap area is done using a 

separate list-based mechanism with First-Fit. 
 

7-90 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23 



Paging 

• Today‘s Unix Systems all provide virtual memory 
(demand paging). 

• When a page fault occurs the missing page is loaded 
into an empty page frame. 

• A special server process (page-daemon) has to take 
care that a sufficient number of empty frames (lotsfree) 
is always available. 

• If there are too few empty frames available, the page 
daemon starts to flush pages to disk. 

• For that, a global  Second-Chance-Algorithm is used. 
• The different Unix-systems use different variants. 
• To prevent thrashing, Unix uses swapping, i.e. entire 

processes (address spaces) are swapped out. 
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Activating the Page daemon 

• AT&T System V: 
•  Original Second-chance-Algorithm 
•  Instead of lotsfree two parameters min and max are used 

• Activation, if current no. of frame < min 
• stop, if current no. of frame > max 

 
• 4.3BSD:  

•  Modified Second-chance-Algorithm (Two-Hand-Clock-
 Algorithm) 

•  Parameter lotsfree  
• Activation, if current no. of frame < lotsfree 
• stop, if current no. of frame > lotsfree 
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Modified “Second Chance”-Algorithm  
(Two-Hand-Clock-Algorithm, Unix 4.2BSD) 
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Solaris 

• Solaris (Sun Microsystems/Oracle) also uses the 2-Hand-Clock (page 
out) with the following parameters 
• hand spread: difference between the two hands (# Frames) 
• scan speed: speed of frame scanning 

   (slow: 100 frames/sec, fast: 8192 frames/sec) 
• lotsfree:  amount at which paging sets in 
    (e.g. 1/64 of total number of frames) 
• desfree:  desirable amount of empty frames 
• minfree:  minimal amount of empty frames 
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7.7.2  Memory management in 
Windows 

In contrast to Unix, Windows uses a local paging strategy : 
• If, as a consequence of a page fault, a page needs to be 

swapped out, always a page of that process which 
caused the page fault is chosen.  

• Not only the missing page, but also some more of the 
„neighborhood“ of that page is swapped in (clustering). 

• The set of all currently loaded pages of a process is 
called working set. 
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Memory management in Windows 

• The paging strategy depends on the hardware: 
• FIFO (modified) for Alpha processors and Intel 

multiprocessor systems 
• Clock for Intel monoprocessors 

 
• The size of the working sets is initialized by default 

values (Min and Max). 
• On demand Working Sets can grow beyond the 

maximum (Working set expansion) and shrink again 
(Working set trimming). 

• Both are dependent on the page fault rate and on the 
number of free frames.   

• For the OS itself also a working set mechanism is used.  
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