
Chapter 5

Thread interaction

There's an old story about the person who wished his computer were as easy to use
as his telephone. That wish has come true, since I no longer know how to use my
telephone.
-- Bjarne Stroustrup

5.1 Types of Interaction

Threads as parts of complex program systems need to:
• call each other
• wait for each other
• deblock each other
• coordinate each other
.... they need to interact.

5-2

Thread management Interaction

threads

Kernel interface

OS-Kernel

Operations for thread interaction are (besides thread management) the second
important functional area of an OS microkernel

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Types of Interaction

• Thread interaction has a functional and a temporal aspect:
• We differentiate:

• Temporal aspect: Coordination (Synchronization)
• Functional aspect: Information exchange

• Communication
• Cooperation

5-3

D 2 D 1 copy

P1 P2

(directed relation)

D 2 D 1

P1 P2

Shared area

(undirected relation)

Communication
(= explicit data transport)

Cooperation
(= access to shared data)

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Relations

• Of the three basic forms of interaction, coordination is the most
fundamental and elementary one, since for both communication
and cooperation, a coordination in time is needed between the
partners.

5-4

Communication Cooperation

Coordination

We therefore start with coordination.

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Relations

5-5

More than 2 threads may participate in an interaction

 1:1- Interaction m:n - Interaction

A thread may participate in more then 2 interactions

1 interaction object many interaction objects

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

[image: image1.wmf]

[image: image1.wmf]

Assignment

The interaction object may be located

• At the source thread (sender)

• At the target thread (receiver)

• Between the threads

5-6 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

5.2 Coordination

Remark:

• The concept of coordination is already known from the
discussion about the mutual exclusion at kernel entry.

• Therefore, we do not need to care about how the
interaction operations access shared data, since they –
as kernel operations – are already under mutual
exclusion.

• In the following, we deal with coordination outside the
kernel for which we fall back to atomic kernel
operations.

 5-7 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

5.2.1 Signaling

• The goal of signaling is to establish a temporal order of activities.
• A section A in thread T1 is to be executed prior to a section B in

another thread T2.
• To that end, the kernel offers operations signal and wait that use a

shared binary variable s.

5-8

A

signal(s)

B

wait(s)

T1 T2

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Signaling: Example

5-9

Example: Control of a technical process:

A: Fill a liquid into a tank (valve open)

B: Heat (voltage at heating element)

Thread T1 Thread T2

A

B

T2 waits for signal from T1
Signal

Wait

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Basic Form of Signaling

5-10

In the most simple form the operations can be realized in the following way:

That means busy waiting at the signaling variable s. If the waiting time is
long, the processor should be released:
(Signaling with waiting state, only one thread can wait)

set s

reset s

signal(s)

s set ?

wait(s)

no

reset(s)

signal(s)

s set ?

wait(s)
yes

block no
set s

thread waiting ?

deblock thread

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Example for signaling object

5-11

// signalization with wait state;

struct signal_object {
 boolean s = false; // initialization
 Thread *wt = NULL;
}

void signal (signal_object *so) {
 so->s = true;
 if (so->wt != NULL) // a thread is waiting
 deblock(&so->wt); // deblock it
}

void wait (signal_object *so) {
 if (so->s == false)
 block(&so->wt); // wait for signal
 so->s = false;
}

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Mutual Synchronization

5-12

A symmetric usage of the signaling operations has the effect that both A1 and
A2 are executed, before B1 or B2 are executed.

Threads T1 and T2 synchronize each other at this point. The operation pair can
be combined to a single operation sync :

Since T1 and T2 wait for each other at this point, it is also known as a rendezvous.

A1
signal(s1)
wait(s2)

T1 T2

B 1

A2
signal(s2)
wait(s1)

B 2

A1
T1 T2

B1

A2

B2

sync(s) sync(s)

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Example Implementation

5-13

 struct sync_object { // rendezvous synchronization
 Thread *wt = NULL; // initialization
 }

 void sync (sync_object *so) {
 if (so->wt == NULL) { // I am first and
 block(&so->wt); // wait for my partner
 } else { // I am second and
 deblock(&so->wt); // deblock my waiting partner
 }
 }
 // end of rendezvous synchronization.

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Group signaling

5-14

More than 2 threads can participate in a signaling operation:

 AND-Signaling: A thread is allowed to proceed only when several
 threads have sent a signal
 (AND-operation at signaling side)

 AND-Wait: Several threads wait for a signal from another
 thread
 (AND-operation at wait side)

w
s

s
s

w s
w

w

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

AND-Signalising

5-15

The AND-operation can take place at both sides:
All threads on the right hand side can continue only if all threads
on the left hand side have deposited their signals at the signaling object.

By combination we get in total 4 different cases:

• one-to-one signaling
• many-to-one signaling
• one-to-many signaling
• many-to-many signaling

s

s
s

w
w

w

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Example Implementation

5-16

struct signal_object {
 boolean s[ks] = { false, …, false };
 Queue wt[kw] = { EMPTY, …, EMPTY };
}

void and_signal (signal_object *so, int q) {
 so->s[q] = true;
 if (∀i: so->s[i]==true & ∀j: so->wt[j] != EMPTY) {
 ∀i: so->s[i] = false;
 ∀j: deblock(so->wt[j])
 }
}

void and_wait (signal_object *so; int p) {
 if (∃i so->s[i] == false ∨ ∃j/=p: so->wt[j] == EMPTY)
 block(so->wt[p]);
 else {
 ∀i: so->s[i] = false;
 ∀j/=p: deblock(so->wt[j])
 }
}

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Signaling with Buffering

5-17

The relationships between threads can be even more diverse:

n:1 Many threads may deposit signals at a signaling object.
 A waiting thread is deblocked if at least one signal is stored.

1:m Many threads may wait at a signaling object.
 When a signal arrives, one of these (e.g. the first one) is deblocked.

Both cases combined lead to arbitrary n:m-relations.

w
s

s
s from any

w
w

w
s

to any

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Signaling with Buffering (2)

• Now:
• More than one signal may be buffered or
• More than one thread may be waiting

 We have to provide the necessary capacity in the data
structure for the signaling object:

Capacity
• exactly 1 (as previously)
• a constant c (capacity is determined at object creation

time)
• unlimited (capacity needs to be increased at runtime)

5-18 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Example Implementation

5-19

struct signal_object {
 int s = 0; // initialization
 Queue wt = EMPTY;
}

void signal (signal_object *so) {
 if (so->wt != EMPTY) // a thread is waiting
 deblock(so->wt) // deblock first of queue
 else
 so->s++;
}

void wait (signal_object *so) {
 if (so->s ≤ 0)
 block(so->wt); // enqueue thread
 else
 so->s--;
}

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Attention:

5-20

Don't mix it up!

 2:3-one:one-signaling

 1:1-many2:many3-signaling

s

s
w

w
w

s

s
w

w
w

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Mutual Group Synchronization

5-21

sync(s)

All threads synchronize mutually at the same point.

The threads may continue only when all other threads have reached
the synchronization point.
(synchronization barrier, barrier synchronization, group rendezvous)

T1
T2

T3
T4

sync(s)

sync(s)
sync(s)

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Example implementation

5-22

// barrier-synchronization

 struct barrier_object {
 int number = m; // number of threads
 int count = 0;
 Queue wt = EMPTY;
 }

 void barrier_sync(barrier_object *bo) {
 bo->count++;
 if (bo->count < bo->number)
 block(bo->wt); // wait for partner threads
 else {
 while (bo->wt != EMPTY)
 deblock(bo->wt);
 bo->count = 0;
 }
 }

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

5.2.2 Locks

• Let us consider the following usage of signaling operations:

• A and B cannot be executed concurrently:
 Either A before B or B before A, i.e. there is no overlap in execution

of A and B. The execution of A and B are mutual exclusive.

• The signaling operations can obviously be used to secure critical
sections.

5-23

T1
s = set

T2

A B

signal(s)

wait(s) wait(s)

signal(s)

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

 Locks

• Suitably, we give these operations the appropriate names: lock and
unlock

• Regarding the structure the lock corresponds to the wait and the
unlock the signal.

• Remark:
 Unlike the formulation of the signal on slide 5-10, the variable s is

being checked here in a loop to consider the case that between
deblocking of the thread waiting and setting the lock another thread
may interfere by setting the lock and entering.

5-24

reset s

set s

unlock(s) lock(s)

no

thread waiting ?
deblock thread

no block
s set ?

Initialization: s = reset

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Example Implemenation

5-25

struct lock_object {
 boolean l = false; // initialization
 Queue wt = EMPTY;
}

void lock (lock_object *lo) {
 while (lo->l == true)
 block(lo->wt); // enqueue thread
 lo->l = true;
}

void unlock (lock_object *lo) {
 lo->l = false;
 if (lo->wt != NULL) // a thread is waiting
 deblock(lo->wt); // deblock first of queue
}

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

5.3 Channel

5.3.1 Introduction
• A channel is a data object that provides the operations send and

receive.
• Parameters:

• Name of channel object (CO)

• Address of buffer

• Sender: Address of message to be sent (buffer send (Bs)).
 (Instead of the address we can also put here the
 message itself.)

• Receiver: Address where the received message should be written
 (buffer receive (Br)).

5-26

P1 P2

SEND(CO,Bs) RECEIVE(CO,Br)

CO Operations

Data

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Temporal conditions

• Since sender and receiver may call their respective operations at any
time, two cases have to be considered:

 1. First send, then receive
 2. First receive, then send

• If the calling threads are not blocked in the operations, we have to

make sure that the message (or its address) is buffered in the
channel.

• Sender first: The message (or its address) is stored in the channel
 and can be retrieved later as part of the receive
 operation.
• Receiver first: The address of the target buffer is stored. The send
 operation coming later can copy the message to that
 address.

• The channel as a data structure must provide variables to store all this

information.

5-27 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Temporal conditions (2)

• Receiver first:

5-28

P1 P2

C O

Bs

D r D s

first

Message or
address of source buffer

SEND(CO,Bs) RECEIVE(CO,Br)

P1 P2

C O

Dr

first

Address target buffer D s

Br

RECEIVE(CO,Br) SEND(CO,Bs)

• Sender first:

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Variants of message transfer

5-29

By value: The message itself is buffered in the channel (two copy operations)
Sender

Channel

Receiver

By reference: The address of the message is buffered in the channel (one copy
operation)

Sender

Channel

Receiver

By mapping: the part of the sender's address space that contains the message is
mapped into the receiver's address space (no copy at all)

Sender

Channel

Receiver

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Basic form of Communication

5-30

SEND(CO,MSG) RECEIVE(CO,BR)

message MSG available ?
N N

R

delete message and target
buffer address

address of target
buffer BR available?

copy message to
target buffer

deposit address of target
buffer BR at channel

copy message to
target buffer

delete message and target
buffer address

deposit message MSG at channel

(by value)

R

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Example implementation

5-31

struct channel_object { // by value
 message ds; // message to be sent
 address *dr; // address where the message should be copied
}

void send(channel_object *co, message *msg){
 memcpy(&(co->ds), msg, sizeof(message)); // deposit message
 if (co->dr != undefined) { // target already available
 memcpy(co->dr, &(co->ds), sizeof(message));
 // message transport
 co->ds = undefined; co->dr = undefined; // reset
 }
}

void receive(channel_object *co, address *br){
 co->dr = br; // deposit target address
 if (co->ds != undefined) { // source already available
 memcpy(co->dr, &(co->ds), sizeof(message));
 // message transport
 co->ds = undefined; co->dr = undefined; // reset
 }
}

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

5.3.2 Coordinated Communication

5-32

Until now, we did not require any temporal coordination between sender
and receiver.

• Both call their respective operation, deposit some data in the
channel, leave the operation and continue without waiting for the
communication partner.

• This is called asynchronous communication (asynchronous send,
asynchronous receive)

In may cases, however, the receiver needs to receive the message in
order to continue. It cannot proceed without receipt of the message.

• It is therefore blocked in the receive operation until the message
arrives.

• This way it synchronizes with the sender (i.e. waits for it).
• This is called synchronous receive.
• Analogously, we can specify a synchronous send, where the

sender is blocked until the corresponding receive operation is
called.

By combination we get 4 variants.
Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Variants of coordinated
communication

5-33

Ts

SEND

Tr

RECEIVE

Ts

SEND

Tr

RECEIVE
SIGNAL SIGNAL
WAIT WAIT

Ts

SEND

Tr

RECEIVE

SIGNAL WAIT

Ts

SEND

Tr

RECEIVE

SIGNAL WAIT

asynchronous
send

asynchronous
send

synchronous
send

synchronous
send

asynchronous
receive

asynchronous
receive

synchronous
receive

synchronous
receive

„Rendezvous“

A:A A:S

S:A S:S

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Implementation example
struct channel_object { // by reference

 address *ds; // address of message to be sent
 address *dr; // address where the message should be copied

 Queue *wp; // queue of blocked receiver thread
}

void send_a(channel_object *co, address *bs){ // asynchronous

 co->ds = bs; // deposit source address
 if (co->dr != undefined) { // target already available

 memcpy(co->dr, co->ds, sizeof(message));
 // message transport

 co->ds = undefined; co->dr = undefined; // reset
 deblock(co->wp); // deblock receiver

 }

}

void receive_s(channel_object *co, address *br){ // synchronous

 co->dr = br; // deposit target address

 if (co->ds == undefined) block(co->wp);
 else { // source already available

 memcpy(co->dr, co->ds, sizeof(message));
 // message transport

 co->ds = undefined; co->dr = undefined; // reset
 }

}

5-34 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Occasionally you only want to check whether a message has been sent.
If yes, you take it (copy); if no, nothing happens.

struct channel_object { // asynchronous send, trying receive

 address *ds; // address of message to be sent

}

void send_a(channel_object *co, address *bs){ // asynchronous

 co->ds = bs; // deposit source address

}

void receive_t(channel_object *co, address *br){ // asynchronous

 if (co.ds != undefined) { // source already available

 memcpy(br, co->ds, sizeof(message));

 // message transport

 co->ds = undefined; // reset

 }

}

5-35

Variant: Trying Send or receive
(polling, probing)

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Further Variants

Interrupting (redirecting) send or receive.

Idea:
 After successful message delivery the communication partner is

interrupted and redirected to some prespecified piece of code.

How it works:
 The thread coming first deposits not only the buffer address but also

a redirection address.

 When the partner (operation) arrives, the message is copied and the

thread is forced to continue at the specified code address.

(similar to the so-called „active messages“)

5-36 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

5.3.3 Capacity

Until now, a channel can store only one message or one target buffer
address.

Desirable: Ability to buffer more than one message
Example: Many threads send messages to a central server thread

5-37

S

S

S

R

e.g. central server

n:1-channel

P

P

P

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Capacity at receive side

Desirable: ability to buffer many receive operations

Example: Server consists of many replicated threads that receive their

 requests from a shared channel

5-38

S

R

e.g. replicated server

1 :n-channel
P

R R

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Data structures and their capacity

• The data structures need to be extended for that purpose.
• In case of a n:n/S:S-channel (many sender, many receiver,

synchronous send and synchronous receive) we need
 Queue for waiting senders
 Queue for stored messages
 Queue for waiting receivers
 Queue for stored target buffer addresses

• The question for capacity affects the efficiency and semantic of the

operations:
 Unlimited capacity: requires dynamic memory management within the

communication operations: memory must be allocated and released
 Limited capacity: requires mechanisms for overflow:

• Possible solutions for overflow (depending on application):

 Overwriting
 Refusing operation
 Blocking of caller until capacity is available again

5-39 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

5.3.4 Physical assignment

• A channel is an autonomous communication object that
can exist independent of any sender or receiver.

• In many cases, however, it is useful to (statically) assign
a channel to a thread.

• This can be done at sending side or receiving side:
• If a thread owns a channel to deposit all outgoing

messages, it is called exit port.
• If a thread owns a channel from which it receives all

messages it is called an entry port.
• (Entry) ports are the communication objects mostly

used in today's operating systems.
• Entry ports are n:1-channels, exit ports are 1:n-

channels.

5-40 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

No Binding

Binding to Sender

Binding to receiver

5-41

„channel“

n:n thread thread

1:n

Exit port

thread thread

n:1

entry port

thread thread

Binding of Communication Objects to
Threads

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

5.3.5 Group communication

• Although many threads may be involved at both sides of the
communication, we so far only talked about one-to-one
communication in the sense that exactly one thread sends a message
which is received by exactly one other thread.

• In many situations, however, a thread may want to send identical
messages to many receiver threads in one operation.

• Symmetrically, there may be situations where many threads may send
messages to one receiver thread that receives a combination of the
messages in one operation.

• This is called group communication (in contrast to one-to-one
communication).

• By combination we obtain 4 cases:
• one-to one-channel (single cast, as before)
• one-to-many-channel (broadcast, multicast)
• many-to-one-channel (combine)
• many-to-many-channel (all-to-all-broadcast)

5-42 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Group communication
(schematically)

5-43

Group at receiver side: message delivered to many receivers

Group at sender side: many messages are combined to one message

:

S
R

R

R

replication

:

S
combination

S

S

R

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Type of Combination

5-44

• While replication is semantically well defined (identical copies), the
combination is not. We have to specify the type of combination when
designing the communication object (or provide an operational
parameter in the operation)

• Actually, there are manifold variants (examples):

„a“
„5“
„k“

„a5k“ concat

• Concatenation:

„5“
„3“
„4“

„12“

• Arithmetic operation:

„true“ „false“

• Logical operation:

&

Σ

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

5-45

// 1:1/G:G/A:S-channel;
struct channel_object {
 message QDS[ks];
 address *QDR[kr];
 thread *QPR[kr];
}
void G_SEND_A(channel_object *CO, int ps, message BS){
 CO->QDS[ps] = BS;
 if (∀i: CO->QDS[i] != undefined ∧ ∀j: CO->QPR[j] != undefined){
 // sender thread is last of all threads involved
 ∀j: memcpy(CO->QDR[j], &(CO->QDS[]), sizeof(message));
 // copy complete array
 ∀j: CO->QDR[j] = undefined; // reset
 ∀i: CO->QDS[i] = undefined; // reset
 ∀j: DEBLOCK(CO->QPR[j])
 }
}
void G_RECEIVE_S(channel_object *CO, int pr, address *BR){
 CO->QDR[pr] = BR;
 if (∃i:CO->QDS[i]==undefined v ∃j!=pr: CO->QPR[j]==undefined){
 BLOCK(CO->QPR[pr])
 else { // receiver thread is last of all threads involved
 ∀j: memcpy(CO->QDR[j], CO->QDS[], sizeof(message));
 // copy complete array
 ∀j: CO->QDR[j] = undefined; // reset
 ∀i: CO->QDS[i] = undefined; // reset
 ∀j!=pr: DEBLOCK(CO->QPR[j])
 }
}
// 1:1/G:G/A:S-channel

Example for Implementation (using
Receiver-Rendezvous)

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

5.4 Cooperation

Cooperation happens, when several threads access shared data.
To prevent errors and inconsistencies, the accesses must be coordinated.
Example: List operation “insert”, resolved in single steps

 (a)

 (b) (c)

 (d) (e)
In situation c) and d) the list structure is inconsistent. Another thread
simultaneously processing the list would see a faulty data structure.

5-46 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

[image: image1.wmf]

[image: image1.wmf]

[image: image1.wmf]

[image: image1.wmf]

[image: image1.wmf]

5.4.1 Locks

• Cooperation of threads on shared data is another example of a
critical section which needs to be put under mutual exclusion.

• A critical section is a sequence of operations that can lead to errors
when executed by several threads concurrently.

• To secure critical sections, we may use the lock operations from
above.

5-47

P1

Critical section

LOCK(S)

P2

LOCK(S)

UNLOCK(S) UNLOCK(S)

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

5.4.2 Monitor
• The usage of locks is error-prone.
• A safer solution would be an automatic lock and release for access to shared

data.
• An object that guarantees mutual exclusion without requiring the programmer

to explicitly insert lock and unlock operations is called monitor (Hoare).
• A monitor is an object consisting of procedures (methods) and data structures

that ensures that at any time it is used by not more than one thread.
• The microkernel of an OS with a global kernel lock is nothing else but a

monitor.

5-48

proc n

Lock proc 3

proc 2

proc 1

Data

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Monitor example: Bounded Buffer

• Several threads access a shared buffer concurrently:
• Threads may deposit data in the buffer: deposit(data)
• Threads may remove data from the buffer: fetch(data)

• Besides ensuring mutual exclusion other conditions need
to be met:
• deposit may only be called if there is enough space in the

buffer.
• fetch may only be called if the buffer is not empty.

5-49

head tail
fetch deposit

occupied free

1 n

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Monitor example: Bounded Buffer

5-50

monitor bounded_buffer {
public deposit, fetch;
 struct buffer_object {
 dataType buffer[n];
 int head = 1;
 int tail = 1;
 int count = 0;
 queue *WTD, *WTF;
 }
 void deposit(buffer_object *BB, dataType *data) {
 lock (s);
 while (BB->count == n) block(BB->WTD);
 BB->buffer[BB->tail] = &data;
 BB->tail = (BB->tail % n) + 1; BB->count++;
 if (BB->WPF != NULL) deblock(BB->WTF);
 unlock (s);
 }

 void fetch(buffer_object *BB, dataType *result) {
 lock (s);
 while (BB->count == 0) block(BB->WTF);
 &result = BB->buffer[BB->head];
 BB->head = (BB->head % n) + 1; BB->count--;
 if (BB->WPD != NULL) deblock(BB->WTD);
 unlock (s);
 }
} // bounded_buffer;

blocks also the monitor

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Condition variables

• While a thread waits for a condition to become true (in the example:
not empty / not full), the monitor must be released for other threads.

• The solution shown on the previous slide thus leads to mutual
blocking (deadlock).

• To solve the problem the monitor offers the concept of a condition
variable:

• Two operations are provided to realize the synchronization based on
condition variables:

 cwait(c) thread releases monitor and waits for the subsequent
 csignal(c), i.e. the fulfillment of condition c.

 After that it continues in the monitor.
 The thread is blocked in any case!
 csignal(c) A waiting thread is deblocked.
 The monitor is occupied again.
 If there is no thread waiting, the procedure is void.
• The waiting threads are managed (as with signaling or semaphores)

using a queue.
• Note the difference to signaling operations signal / wait!

5-51 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Example implementation

struct cond {

 Queue *wt;

}

void cwait(cond *c) {

 release_monitor_lock;

 block(c->wt); // enqueue process

 acquire_monitor_lock;

}

void csignal(cond *c) {

 if (c->wt != NULL) // a process is waiting

 deblock(c->wt); // deblock first of queue

}

5-52 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Monitor with condition variables

5-53

proc n
Lock

proc 2

proc 1

Data

Queues for condition variables

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

5-54

monitor bounded_buffer {
public deposit, fetch;
 struct buffer_object {
 dataType buffer[n];
 int head = 1;
 int tail = 1;
 int count =0;
 cond not_full;
 cond not_empty;
 queue *WTD, *WTF;
 }
 void deposit(buffer_object *BB, dataType *data) {
 while (BB->count == n) cwait(BB->not_full);
 BB->buffer[BB->tail] = &data;
 BB->tail= (BB->tail % n) + 1; BB->count++;
 csignal(BB->not_empty);
 }
 void fetch(buffer_object *BB, dataType *result) {
 while (BB->count == 0) cwait(BB->not_empty);
 &result = BB->buffer[BB->head];
 BB->head = (BB->head % n) + 1; BB->count--;
 csignal(BB->not_full);
 }
} // bounded_buffer

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Bounded Buffer II (condition
variables)

• A cooperation section is characterized by the fact that at any time at
most one thread is executing it.

• This principle can be extended by allowing capacities larger than "1".
• We may specify upper bounds for the "admitted" threads and for the

waiting threads as well:
• 1
• c>1 constant
• n arbitrary

• Reasons to limit the number of threads in some area:

• lack of space
• performance degradation

5-55

5.4.3 Cooperation with bounded
capacity

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Bounded Cooperation (2)

• We simply modify the lock/unlock operations by using a counter
instead of a binary variable:

5-56

capacity_lock

count < upper_bound ?

block

count = count + 1

capacity_unlock

thread waiting ?

deblock

count = count - 1
yes

no

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Reader-Writer Cooperation

• Not all threads need write access to shared data.
Some are only reading.

• Read accesses are harmless and do not need to run
under mutual exclusion.

• In the cooperation section we may admit
• either at most 1 writer
• or an arbitrary number of readers.

• Lock compatibility:

5-57

Read Write

Read + –

Write – –

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

5-58

monitor reader_writer_cooperation { // reader priority
 public lock, unlock;
 enum access_type {reader, writer};
 struct lock_object {
 int r_count = 0; // counts readers
 int w_count = 0; // counts writers
 queue *wrt = empty; // waiting reader threads
 queue *wwt = empty; // waiting writer threads
 }
 void lock(lock_object *lo, access_type t) {
 if (t == reader) {
 while (lo->w_count>0) block(lo->wrt);
 lo->r_count++;
 } else {
 while (lo->w_count>0 || lo->wrt != NULL) block(lo->wwt);
 lo->w_count++;
 }
 }
 void unlock(lock_object *lo, access_type t) {
 if (t == reader) {
 lo->r_count--;
 if (lo->r_count==0 && lo->wwt != NULL) deblock(lo->wwt);
 } else {
 lo->w_count--;
 if (lo->wrt != NULL) {
 while (lo->wrt!=NULL) deblock(lo->wrt);
 } else if (lo->wwt != NULL) deblock(lo->wwt);
 }
 } // reader_writer_cooperation

Reader-Writer Cooperation
(reader priority)

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Reader-Writer Cooperation
(writer priority)

5-59

monitor reader_writer_cooperation { //writer priority
 public lock, unlock;
 enum access_type {reader, writer};
 struct lock_object {
 int r_count = 0; // counts readers
 int w_count = 0; // counts writers
 queue *wrt = empty; // waiting reader threads
 queue *wwt = empty; // waiting writer threads
 }
 void lock(lock_object *lo; access_type t) {
 if (t == reader) {
 while (lo->w_count>0 || lo->wwt != NULL) block(lo->wrt);
 lo->r_count++;
 } else {
 while (lo->w_count>0 || lo->r_count>0) block(lo->wwt);
 lo->w_count++;
 }
 }
 void unlock(lock_object *lo; acess_type t) {
 if (t == reader) {
 lo->r_count--;
 if (lo->r_count==0 && lo->wwt != NULL) deblock(lo->wwt);
 } else {
 lo->w_count--;
 if (lo->wwt != NULL) deblock(lo->wwt);
 else while (lo->wrt != NULL) deblock(lo->wrt);
 }
 } // reader_writer_cooperation

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

5.4.4 Semaphore

• Lock objects to secure critical sections are also known as
semaphores.

• Introduced ca. 1965 by E.W. Dijkstra, a semaphore is a
capacity lock S, with operations P(S) and V(S) instead of
LOCK(S) and UNLOCK(S).
• P and V are atomic operations. (Their atomicity may be enforced

by either spin-locks or atomic hardware operations)
• P (corresponding to lock) decrements a counter, V (corresponding

to unlock) increments the counter. (Therefore some people use
the names UP(S) and DOWN(S).)

• Semaphores are available in different variants

• counter/ binary variable
• Initialization with 0 / with value k > 0

• They can also be used to solve simple resource management
problems.

 5-60 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Example Implementation Semaphore

5-61

struct semaphore {

 int count; // thread counter

 Queue *wt; // count=1: free, count<=0: occupied

} // if count<0 : |count| is the

 // number of waiting threads

void init (semaphore *s, int i) {

 s->count = i; // set i=1 for mutual exclusion

 s->wp = NULL;

}

void P(semaphore *s) {

 s->count--;

 if (s->count < 0) block(s->wt); // enqueue thread

}

void V(semaphore *s) {

 s->count++;

 if (s->count <= 0) deblock(s->wt) // deblock first of

} // queue

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Remark

• The collection of interaction mechanisms has to be regarded as a
toolbox from which we may select appropriate solutions depending
on the needs.

• In an operating system not all variants need to be offered.
• But the programmer should have some choice.

5-62

1:1 - channels

Monitor Barrier synchronization

Reader-Writer Cooperation 1 :n - AND - Signaling

m:n- channels

Locks

Rendezvous Synchronization

Kernel interface

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

5.5 Examples

Coordination and cooperation operations in Windows
Windows offers four different synchronization objects:

semaphore, event, mutex, critical section.

• Semaphore

• Initialized with a positive values and used in the sense of a
capacity lock for simple resource management problems.

• With CreateSemaphore() the object is created and can be used
after issuing OpenSemaphore().

• Using WaitForSingleObject() (corresponds to P-operation) the
counter is decremented and using ReleaseSemaphore()
(corresponds to V-operation) it is incremented.

• When the counter reaches a value of 0, the wait operation blocks.
• Semaphore can be used between threads of different processes

(address spaces).

5-63 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

• Event
• Also used for signaling.
• A synchronization object is created by CreateEvent() and

can be used after OpenEvent().
• SetEvent() corresponds to signal and for wait the general

wait function of Windows like WaitForSingleObject() can be
employed.

• A ResetEvent() explicitly resets the signal.
• Usually the event works as group signaling, i.e. the signal

deblocks all waiting threads.
• If, however, we use the AutoReset-Option when creating

the event object, the signal deblocks only one thread from
the queue

5-64

Coordination and Cooperation in
Windows

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

• Mutex
• A mutex is used to ensure mutual exclusion.
• After CreateMutex() and OpenMutex() a wait operation (e.g.

WaitForSingleObject()) can be used to enter the critical section.
• When leaving the critical section the lock is released by

ReleaseMutex().
• A mutex can be used by arbitrary threads in the system.

• Critical Section
• A critical-section object is simplified and efficient variant of a

mutex especially for mutual exclusion in the same address space
(i.e. threads in the same process)

• With InitializeCriticalSection() the object is created. To enter the
critical section, EnterCriticalSection() is called and by using
LeaveCriticalSection() we leave it.

5-65

Coordination and Cooperation in
Windows

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

For Pthreads several synchronization objects are available.
Mutex
• A mutex is used for mutual exclusion.

• pthread_mutex_init() initializes a mutex object
• pthread_mutex_lock() is called when entering the critical section. It

 blocks, if the critical section (CS) is occupied.
• pthread_mutex_trylock() is the non-blocking variant: If free, the CS is

 locked. If occupied (locked), we return with the
 corresponding remark

• pthread_mutex_unlock() to leave the CS
Cond
• A condition variable is used for synchronization

• pthread_cond_wait() blocks (and releases mutex)
• pthread_cond_timedwait() with an additional time-out
• pthread_cond_signal() deblocks the first thread (priority or FCFS)

 waiting at the cond variable
• pthread_cond_broadcast() sets signal and deblocks all waiting threads

• In addition Reader/Writer-Locks are offered

5-66

Coordination and Cooperation for
POSIX-Threads (IEEE POSIX-Standard)

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Further reading

• Stallings, W.: Operating Systems 5th ed.,
 Prentice Hall, Chapter 5
• Bacon, J., Harris, T.: Operating Systems,
 Chap 9-14
• Stevens, R.: Unix Network Programming,

 Vol1+2, Prentice Hall

5-67 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

	Chapter 5
	5.1 Types of Interaction
	Types of Interaction
	Relations
	Relations
	Assignment
	5.2 Coordination
	5.2.1 Signaling
	Signaling: Example
	Basic Form of Signaling
	Example for signaling object
	Mutual Synchronization
	Example Implementation
	Group signaling
	AND-Signalising
	Example Implementation
	Signaling with Buffering
	Signaling with Buffering (2)
	Example Implementation
	Attention:
	Mutual Group Synchronization
	Example implementation
	5.2.2 Locks
	 Locks
	Example Implemenation
	5.3 Channel
	Temporal conditions
	Temporal conditions (2)
	Variants of message transfer
	Basic form of Communication
	Example implementation
	5.3.2 Coordinated Communication
	Variants of coordinated communication
	Implementation example
	Variant: Trying Send or receive (polling, probing)
	Further Variants
	5.3.3 Capacity
	Capacity at receive side
	Data structures and their capacity
	5.3.4 Physical assignment
	Binding of Communication Objects to Threads
	5.3.5 Group communication
	Group communication (schematically)
	Type of Combination
	Example for Implementation (using Receiver-Rendezvous)
	5.4 Cooperation
	5.4.1 Locks
	5.4.2 Monitor
	Monitor example: Bounded Buffer
	Monitor example: Bounded Buffer
	Condition variables
	Example implementation
	Monitor with condition variables
	Bounded Buffer II (condition variables)
	5.4.3 Cooperation with bounded capacity
	Bounded Cooperation (2)
	Reader-Writer Cooperation
	Reader-Writer Cooperation �(reader priority)
	Reader-Writer Cooperation �(writer priority)
	5.4.4 Semaphore
	Example Implementation Semaphore
	Remark
	5.5 Examples
	Coordination and Cooperation in Windows
	Coordination and Cooperation in Windows
	Coordination and Cooperation for POSIX-Threads (IEEE POSIX-Standard)
	Further reading

