
Chapter 5 

Thread interaction 
 

There's an old story about the person who wished his computer were as easy to use  
as his telephone. That wish has come true, since I no longer know how to use my  
telephone. 
-- Bjarne Stroustrup 



5.1  Types of Interaction 

Threads as parts of complex program systems need to: 
• call each other 
• wait for each other  
• deblock each other 
• coordinate each other 
.... they need to interact. 
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Thread management Interaction 

threads 

Kernel interface 

OS-Kernel 

Operations for thread interaction are (besides thread management) the second 
important functional area of an OS microkernel 
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Types of Interaction 

• Thread interaction has a functional and a temporal aspect: 
• We differentiate: 

• Temporal aspect: Coordination (Synchronization) 
• Functional aspect: Information exchange 

• Communication 
• Cooperation 
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D 2 D 1 copy 

P1 P2 

(directed relation) 

D 2 D 1 

P1 P2 

Shared area 

(undirected relation) 

Communication  
( = explicit data transport)  

Cooperation  
( = access to shared data)  
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Relations 

• Of the three basic forms of interaction, coordination is the most 
fundamental and elementary one, since for both communication 
and cooperation, a coordination in time is needed between the 
partners. 
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Communication Cooperation 

Coordination 

We therefore start with coordination. 
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Relations 
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More than 2 threads may participate in an interaction 
 

 1:1- Interaction m:n - Interaction 

A thread may participate in more then 2 interactions 

1 interaction object   many interaction objects 
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Assignment 

The interaction object may be located 
 

• At the source thread (sender)  
 
 
 

• At the target thread (receiver) 
 

 
 
• Between the threads 
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5.2  Coordination 

Remark: 
 

• The concept of coordination is already known from the 
discussion about the mutual exclusion at kernel entry. 
 

• Therefore, we do not need to care about how the 
interaction operations access shared data, since they – 
as kernel operations – are already under mutual 
exclusion.  
 

• In the following, we deal with coordination outside the 
kernel for which we fall back to atomic kernel 
operations. 
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5.2.1 Signaling 

• The goal of signaling is to establish a temporal order of activities.  
• A section A in thread T1 is to be executed prior to a section B in 

another thread T2. 
• To that end, the kernel offers operations signal and wait  that use a 

shared binary variable s. 
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A 

signal(s) 

B 

wait(s) 

T1 T2 
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Signaling: Example 
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Example: Control of a technical process: 
 
A: Fill a liquid into a tank (valve open) 
 
B: Heat (voltage at heating element) 
 

Thread T1 Thread T2 

A 

B 

T2 waits for signal from T1 
Signal  

Wait 
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Basic Form of Signaling 
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In the most simple form the operations can be realized in the following way: 
 

That means busy waiting at the signaling variable s. If the waiting time is 
long, the processor should be released:  
(Signaling with waiting state, only one thread can wait) 
 

set s 

reset s 

signal(s) 

s set ? 

wait(s) 

no 

reset(s) 

signal(s) 

s set ? 

wait(s) 
yes 

block no 
set s 

thread waiting ? 

deblock thread 
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Example for signaling object 
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// signalization with wait state; 
 
struct signal_object { 
    boolean  s = false;  // initialization 
    Thread *wt = NULL; 
} 
 
void signal (signal_object *so) { 
    so->s = true; 
    if (so->wt != NULL)      // a thread is waiting 
          deblock(&so->wt);  // deblock it 
} 
  
void wait (signal_object *so) { 
    if (so->s == false) 
       block(&so->wt);     // wait for signal 
     so->s = false; 
} 
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Mutual Synchronization 
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A symmetric usage of the signaling operations has the effect that both A1 and 
A2 are executed, before B1 or B2 are executed. 

Threads T1 and T2 synchronize each other at this point. The operation pair can 
be combined to a single operation sync : 

Since T1 and T2 wait for each other at this point, it is also known as a rendezvous. 

A1 
signal(s1) 
wait(s2) 

T1 T2 

B 1 

A2 
signal(s2) 
wait(s1) 

B 2 

A1 
T1 T2 

B1 

A2 

B2 

sync(s) sync(s) 
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Example Implementation 
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 struct sync_object { // rendezvous synchronization 
       Thread *wt = NULL;  // initialization 
 } 
 
 void sync (sync_object *so) { 
      if (so->wt == NULL) {  // I am first and 
          block(&so->wt); // wait for my partner 
      } else {    // I am second and 
   deblock(&so->wt); // deblock my waiting partner  
     }       
 } 
 // end of rendezvous synchronization. 
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Group signaling 
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More than 2 threads can participate in a signaling operation: 
 
 AND-Signaling:  A thread is allowed to proceed only when several  
  threads have sent a signal 
  (AND-operation at signaling side) 
 
 
 
 
 
 
 AND-Wait: Several threads wait for a signal from another    
  thread 
  (AND-operation at wait side) 

w 
s 

s 
s 

w s 
w 

w 
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AND-Signalising 
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The AND-operation can take place at both sides: 
All threads on the right hand side can continue only if all threads 
on the left hand side have deposited their signals at the signaling object. 
 
 
 
 
 
 
 
 
By combination we get in total 4 different cases: 

• one-to-one signaling 
• many-to-one signaling 
• one-to-many signaling 
• many-to-many signaling 

s 

s 
s 

w 
w 

w 

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23 



Example Implementation 
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struct signal_object { 
 boolean s[ks] = { false, …, false };                 
 Queue wt[kw] = { EMPTY, …, EMPTY }; 
} 
 
void and_signal (signal_object *so, int q) { 
       so->s[q] = true; 
 if (∀i: so->s[i]==true & ∀j: so->wt[j] != EMPTY) { 
                             ∀i: so->s[i] = false; 
          ∀j: deblock(so->wt[j]) 
       } 
} 
 
void and_wait (signal_object *so; int p) { 
       if (∃i  so->s[i] == false ∨ ∃j/=p: so->wt[j] == EMPTY) 
  block(so->wt[p]); 
        else {  
               ∀i: so->s[i] = false; 
               ∀j/=p: deblock(so->wt[j]) 
       }    
} 
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Signaling with Buffering 

5-17 

The relationships between threads can be even more diverse: 
 
n:1  Many threads may deposit signals at a signaling object.  
  A waiting thread is deblocked if at least one signal is stored.  
 
 
 
 
 
 
 
1:m Many threads may wait at a signaling object. 
  When a signal arrives, one of these (e.g. the first one) is deblocked. 
 
 
 
 
 
 
Both cases combined lead to arbitrary n:m-relations. 

w 
s 

s 
s from any 

w 
w 

w 
s 

to  any 
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Signaling with Buffering (2) 

• Now:  
• More than one signal may be buffered or  
• More than one thread may be waiting 

 We have to provide the necessary capacity in the data 
structure for the signaling object: 
 

Capacity 
• exactly 1 (as previously) 
• a constant c (capacity is determined at object creation 

time) 
• unlimited (capacity needs to be increased at runtime) 
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Example Implementation 
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struct signal_object { 
  int s = 0;  // initialization 
  Queue wt = EMPTY; 
} 
 
void signal (signal_object *so) { 
  if (so->wt != EMPTY)    // a thread is waiting 
   deblock(so->wt)      // deblock first of queue 
  else 
    so->s++; 
} 
 
void wait (signal_object *so) { 
  if (so->s ≤ 0)  
   block(so->wt); // enqueue thread 
  else 
   so->s--; 
} 
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Attention: 
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Don't mix it up! 
 
 2:3-one:one-signaling 
 
 
 
 
  
 
 1:1-many2:many3-signaling 
 

s 

s 
w 

w 
w 

s 

s 
w 

w 
w 
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Mutual Group Synchronization   
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sync(s) 

 
All threads synchronize mutually at the same point. 
 
The threads may continue only when all other threads have reached 
the synchronization point.  
(synchronization barrier, barrier synchronization, group rendezvous) 

T1 
T2 

T3 
T4 

sync(s) 

sync(s) 
sync(s) 
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Example implementation 
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// barrier-synchronization 
 
 struct barrier_object { 
   int number = m; // number of threads 
     int count = 0; 
   Queue wt = EMPTY; 
 } 
 
 void barrier_sync(barrier_object *bo) { 
  bo->count++; 
  if (bo->count < bo->number)  
   block(bo->wt); // wait for partner threads 
  else {  
   while (bo->wt != EMPTY)  
    deblock(bo->wt);  
   bo->count = 0; 
  } 
 } 
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5.2.2 Locks 

• Let us consider the following usage of signaling operations: 
 
 

 
 
 
 
 
 

• A and B cannot be executed concurrently: 
 Either A before B or B before A, i.e. there is no overlap in execution 

of  A and B. The execution of A and B are mutual exclusive. 
 

• The signaling operations can obviously be used to secure critical 
sections. 
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T1 
s = set 

T2 

A B 

signal(s) 

wait(s) wait(s) 

signal(s) 
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 Locks 

• Suitably, we give these operations the appropriate names: lock and 
unlock 

 
 

 
 
 
 
 
 
 

• Regarding the structure the lock corresponds to the wait and the 
unlock the signal.  

• Remark: 
 Unlike the formulation of the signal on slide 5-10, the variable s is 

being checked here in a loop to consider the case that between 
deblocking of the thread waiting and setting the lock another thread 
may interfere by setting the lock and entering.  
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reset s 

set s 

unlock(s) lock(s) 

no 

thread waiting ? 
deblock thread 

no block 
s set ? 

Initialization:  s = reset 

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23 



Example Implemenation 
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struct lock_object { 
 boolean l = false;      // initialization 
 Queue wt = EMPTY; 
} 
     
void lock (lock_object *lo) { 
 while (lo->l == true) 
    block(lo->wt);  // enqueue thread 
 lo->l = true; 
} 
 
void unlock (lock_object *lo) { 
  lo->l = false; 
  if (lo->wt != NULL)          // a thread is waiting 
     deblock(lo->wt);       // deblock first of queue 
} 
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5.3 Channel 

5.3.1 Introduction 
• A channel is a data object that provides the operations send and 

receive. 
• Parameters:  

• Name of channel object (CO) 

• Address of buffer 

• Sender:  Address of message to be sent (buffer send (Bs)).  
  (Instead of the address we can also put here the  
  message itself.) 

• Receiver:  Address where the received message should be written 
  (buffer receive (Br)). 
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P1 P2 

SEND(CO,Bs) RECEIVE(CO,Br) 

CO Operations 

Data 
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Temporal conditions 

• Since sender and receiver may call their respective operations at any 
time, two cases have to be considered: 

 1. First send, then receive 
 2. First receive, then send 

 
• If the calling threads are not blocked in the operations, we have to 

make sure that the message (or its address) is buffered in the 
channel.   
 

• Sender first: The message (or its address) is stored in the channel 
    and can be retrieved later as part of the receive  
    operation. 
• Receiver first:  The address of the target buffer is stored. The send  
    operation coming later can copy the message to that 
    address.  

 
• The channel as a data structure must provide variables to store all this 

information.  
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Temporal conditions  (2) 

• Receiver first: 

5-28 

P1 P2 

C O 

Bs 

D r D s 

first 

Message or  
address of source buffer 

SEND(CO,Bs) RECEIVE(CO,Br) 

P1 P2 

C O 

Dr 

first 

Address target buffer D s 

Br 

RECEIVE(CO,Br) SEND(CO,Bs) 

• Sender first: 
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Variants of message transfer 
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By value: The message itself is buffered in the channel (two copy operations) 
Sender 

Channel 

Receiver 

By reference: The address of the message is buffered in the channel (one copy 
operation) 

Sender 

Channel 

Receiver 

By mapping: the part of the sender's address space that contains the message is 
mapped into the receiver's address space (no copy at all) 

Sender 

Channel 

Receiver 
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Basic form of  Communication 
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SEND(CO,MSG) RECEIVE(CO,BR) 

message MSG available ? 
N N 

R 

delete message and target 
buffer address 

address of target 
buffer BR available? 

copy message to 
target buffer 

deposit address of target 
buffer BR at channel 

copy message to 
target buffer 

delete message and target 
buffer address 

deposit message MSG at channel 

(by value) 

R 
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Example implementation 
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struct channel_object { // by value 
   message ds;  // message to be sent 
   address *dr; // address where the message should be copied 
} 
  
void send(channel_object *co, message *msg){ 
   memcpy(&(co->ds), msg, sizeof(message));  // deposit message 
   if (co->dr != undefined) {   // target already available 
      memcpy(co->dr, &(co->ds), sizeof(message)); 
      // message transport 
      co->ds = undefined; co->dr = undefined; // reset 
   } 
} 
  
void receive(channel_object *co, address *br){ 
   co->dr = br;                 // deposit target address 
   if (co->ds != undefined) {   // source already available 
      memcpy(co->dr, &(co->ds), sizeof(message)); 
      // message transport  
      co->ds = undefined; co->dr = undefined; // reset 
   } 
} 
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5.3.2  Coordinated Communication 
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Until now, we did not require any temporal coordination between sender 
and receiver. 

• Both call their respective operation, deposit some data in the 
channel, leave the operation and continue without waiting for the 
communication partner. 

• This is called asynchronous communication (asynchronous send, 
asynchronous receive) 

In may cases, however, the receiver needs to receive the message in 
order to continue. It cannot proceed without receipt of the message.  

• It is therefore blocked in the receive operation until the message 
arrives. 

• This way it synchronizes  with the sender (i.e. waits for it). 
• This is called synchronous receive. 
• Analogously, we can specify a synchronous send, where the 

sender is blocked until the corresponding receive operation is 
called.   

 
By combination we get 4 variants. 
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Variants of coordinated 
communication 
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Ts 

SEND 
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RECEIVE 
SIGNAL SIGNAL 
WAIT WAIT 

Ts 

SEND 
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SIGNAL WAIT 
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SEND 

Tr 

RECEIVE 

SIGNAL WAIT 

asynchronous  
send 

asynchronous 
send 

synchronous 
send 

synchronous 
send 
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receive 

asynchronous 
receive 

synchronous 
receive 
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„Rendezvous“ 

A:A A:S 

S:A S:S 

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23 



Implementation example 
struct channel_object {  // by reference 

   address *ds;  // address of message to be sent 
   address *dr;  // address where the message should be copied 

   Queue *wp;    // queue of blocked receiver thread 
} 
 

void send_a(channel_object *co, address *bs){  // asynchronous 

   co->ds = bs;                 // deposit source address 
   if (co->dr != undefined) {   // target already available 

      memcpy(co->dr, co->ds, sizeof(message)); 
      // message transport 

      co->ds = undefined; co->dr = undefined; // reset 
      deblock(co->wp);          // deblock receiver 

   } 

} 
 

void receive_s(channel_object *co, address *br){ // synchronous 

   co->dr = br;                 // deposit target address 

   if (co->ds == undefined) block(co->wp); 
   else {                       // source already available 

      memcpy(co->dr, co->ds, sizeof(message)); 
      // message transport  

      co->ds = undefined; co->dr = undefined; // reset 
   } 

} 
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Occasionally you only want to check whether a message has been sent.  
If yes, you take it (copy); if no, nothing happens.  
 
struct channel_object { // asynchronous send, trying receive 

   address *ds;         // address of message to be sent 

} 

  

void send_a(channel_object *co, address *bs){  // asynchronous 

   co->ds = bs;                 // deposit source address 

} 

  
void receive_t(channel_object *co, address *br){ // asynchronous 

   if (co.ds != undefined) {    // source already available 

      memcpy(br, co->ds, sizeof(message)); 

       // message transport  

      co->ds = undefined;       // reset 

   } 

} 
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Variant: Trying Send or receive 
(polling, probing) 
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Further Variants 

Interrupting (redirecting) send or receive.  
 
Idea: 
 After successful message delivery the communication partner is 

interrupted and redirected to some prespecified piece of code.   
 
How it works: 
 The thread coming first deposits not only the buffer address but also 

a redirection address.  
 
 When the partner (operation) arrives, the message is copied and the 

thread is forced to continue at the specified code address.  
 
(similar to the so-called „active messages“) 
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5.3.3  Capacity 

Until now, a channel can store only one message or one target buffer 
address.  

 
Desirable:   Ability to buffer more than one message 
Example: Many threads send messages to a central server thread 
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e.g. central server 

n:1-channel 

P 

P 

P 
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Capacity at receive side 

Desirable: ability to buffer many receive operations 
 
Example:  Server consists of many replicated threads that receive their 

    requests from a shared channel 
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S 

R 

e.g. replicated server 

1 :n-channel 
P 

R R 
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Data structures and their capacity 

• The data structures need to be extended for that purpose. 
• In case of a n:n/S:S-channel (many sender, many receiver, 

synchronous send and synchronous receive) we need 
   Queue for waiting senders 
   Queue for stored messages 
   Queue for waiting receivers 
   Queue for stored target buffer addresses 

 
• The question for capacity affects the efficiency and semantic of the 

operations: 
 Unlimited capacity: requires dynamic memory management within the 

communication operations: memory must be allocated and released 
 Limited  capacity: requires mechanisms for overflow: 

 
• Possible solutions for overflow (depending on application): 

 Overwriting 
 Refusing operation 
 Blocking of caller until capacity is available again 
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5.3.4  Physical assignment 

• A channel is an autonomous communication object that 
can exist independent of any sender or receiver.  

• In many cases, however, it is useful to (statically) assign 
a channel to a thread. 

• This can be done at sending side or receiving side: 
• If a thread owns a channel to deposit all outgoing 

messages, it is called exit port. 
• If a thread owns a channel from which it receives all 

messages it is called an entry port.  
• (Entry) ports are the communication objects mostly 

used in today's operating systems. 
• Entry ports are n:1-channels, exit ports are 1:n-

channels. 
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No Binding 

 

 

 

Binding to Sender 

 

 

 

 

Binding to receiver 
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„channel“ 

n:n thread thread 

1:n 

Exit port 

thread thread 

n:1 

entry port 

thread thread 

Binding of Communication Objects to 
Threads 
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5.3.5  Group communication 

• Although many threads may be involved at both sides of the 
communication, we so far only talked about one-to-one 
communication in the sense that exactly one thread sends a message 
which is received by exactly one other thread. 

• In many situations, however, a thread may want to send identical 
messages to many receiver threads in one operation.  

• Symmetrically, there may be situations where many threads may send 
messages to one receiver thread that receives a combination of the 
messages in one operation.  
 

• This is called group communication (in contrast to one-to-one 
communication). 
 

• By combination we obtain 4 cases: 
• one-to one-channel  (single cast, as before) 
• one-to-many-channel    (broadcast, multicast) 
• many-to-one-channel    (combine) 
• many-to-many-channel  (all-to-all-broadcast) 
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Group communication 
(schematically) 
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Group at receiver side: message delivered to many receivers 
 
 
 
 
 
 
 
Group at sender side: many messages are combined to one message 

: 

S 
R 

R 

R 

replication 

: 

S 
combination 

S 

S 

R 
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Type of Combination 
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• While replication is semantically well defined (identical copies), the 
combination is not. We have to specify the type of combination when 
designing the communication object (or provide an operational 
parameter in the operation) 

• Actually, there are manifold variants (examples): 
 

„a“ 
„5“ 
„k“ 

„a5k“ concat 

• Concatenation: 

„5“ 
„3“ 
„4“ 

„12“ 

 
• Arithmetic operation: 

„true“ „false“ 

 
• Logical operation: 

& 

Σ 
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// 1:1/G:G/A:S-channel; 
struct channel_object { 
  message QDS[ks]; 
  address *QDR[kr];  
         thread  *QPR[kr]; 
} 
void G_SEND_A(channel_object *CO, int ps, message BS){ 
   CO->QDS[ps] = BS; 
   if (∀i: CO->QDS[i] != undefined ∧ ∀j: CO->QPR[j] != undefined){ 
        // sender thread is last of all threads involved 
      ∀j: memcpy(CO->QDR[j], &(CO->QDS[]), sizeof(message));  
        // copy complete array 
      ∀j: CO->QDR[j] = undefined;    // reset 
      ∀i: CO->QDS[i] = undefined;    // reset 
      ∀j: DEBLOCK(CO->QPR[j]) 
   } 
} 
void G_RECEIVE_S(channel_object *CO, int pr, address *BR){ 
 CO->QDR[pr] = BR; 
   if (∃i:CO->QDS[i]==undefined v ∃j!=pr: CO->QPR[j]==undefined){  
       BLOCK(CO->QPR[pr]) 
   else {    // receiver thread is last of all threads involved 
      ∀j: memcpy(CO->QDR[j], CO->QDS[], sizeof(message)); 
        // copy complete array 
      ∀j: CO->QDR[j] = undefined;    // reset 
      ∀i: CO->QDS[i] = undefined;    // reset 
      ∀j!=pr: DEBLOCK(CO->QPR[j]) 
   } 
} 
// 1:1/G:G/A:S-channel 
 

Example for Implementation (using 
Receiver-Rendezvous) 
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5.4 Cooperation 

Cooperation happens, when several threads access shared data.  
To prevent errors and inconsistencies, the accesses must be coordinated. 
Example: List operation “insert”, resolved in single steps 
 
 
 
   
   (a) 
 
 
 
   (b)    (c) 
 
 
 
   (d)    (e) 
In situation c) and d) the list structure is inconsistent. Another thread 
simultaneously processing the list would see a faulty data structure. 
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5.4.1 Locks 

• Cooperation of threads on shared data is another example of a 
critical section which needs to be put under mutual exclusion. 

• A critical section is a sequence of operations that can lead to errors 
when executed by several threads concurrently. 

• To secure critical sections, we may use the lock operations from 
above. 
 

5-47 

P1 

Critical section 
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LOCK(S) 

UNLOCK(S) UNLOCK(S) 
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5.4.2 Monitor 
• The usage of locks is error-prone. 
• A safer solution would be an automatic lock and release for access to shared 

data. 
• An object that guarantees mutual exclusion without requiring the programmer 

to explicitly insert lock and unlock operations is called monitor (Hoare). 
• A monitor is an object consisting of procedures (methods) and data structures 

that ensures that at any time it is used by not more than one thread.  
• The microkernel of an OS with a global kernel lock is nothing else but a 

monitor. 
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Monitor example: Bounded Buffer 

• Several threads access a shared buffer concurrently:  
• Threads may deposit data in the buffer:   deposit(data) 
• Threads may remove data from the buffer:  fetch(data) 

• Besides ensuring mutual exclusion other conditions need 
to be met: 
• deposit may only be called if there is enough space in the 

buffer. 
• fetch may only be called if the buffer is not empty.  
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Monitor example: Bounded Buffer 
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monitor bounded_buffer {   
public deposit, fetch;   
 struct buffer_object { 
  dataType buffer[n]; 
  int head = 1;  
  int tail = 1;  
   int count = 0; 
  queue *WTD, *WTF; 
 } 
 void deposit(buffer_object *BB, dataType *data) { 
  lock (s); 
  while (BB->count == n) block(BB->WTD); 
  BB->buffer[BB->tail] = &data; 
  BB->tail = (BB->tail % n) + 1; BB->count++; 
  if (BB->WPF != NULL) deblock(BB->WTF); 
  unlock (s); 
   } 
  
 void fetch(buffer_object *BB, dataType *result) { 
  lock (s); 
  while (BB->count == 0) block(BB->WTF); 
  &result = BB->buffer[BB->head]; 
  BB->head = (BB->head % n) + 1; BB->count--; 
  if (BB->WPD != NULL) deblock(BB->WTD); 
  unlock (s); 
   } 
} // bounded_buffer; 

blocks also the monitor 
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Condition variables 

• While a thread waits for a condition to become true (in the example: 
not empty / not full), the monitor must be released for other threads.  

• The solution shown on the previous slide thus leads to mutual 
blocking (deadlock). 

• To solve the problem the monitor offers the concept of a condition 
variable: 

• Two operations are provided to realize the synchronization based on 
condition variables: 

 cwait(c) thread releases monitor and waits for the subsequent  
  csignal(c), i.e. the fulfillment of condition c. 

   After that it continues in the monitor. 
   The thread is blocked in any case! 
 csignal(c)  A waiting thread is deblocked.  
   The monitor is occupied again.   
   If there is no thread waiting, the procedure is void.  
• The waiting threads are managed (as with signaling or semaphores) 

using a queue. 
• Note the difference to signaling operations signal / wait! 
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Example implementation 

struct cond { 

 Queue *wt; 

}     

 

void cwait(cond *c) { 

 release_monitor_lock;            

 block(c->wt);      // enqueue process 

 acquire_monitor_lock; 

} 

 

void csignal(cond *c) { 

  if (c->wt != NULL)         // a process is waiting 

     deblock(c->wt);     // deblock first of queue 

} 
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Monitor with condition variables 
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monitor bounded_buffer {  
public deposit, fetch;  
 struct buffer_object { 
  dataType buffer[n]; 
  int head = 1;  
  int tail = 1;  
   int count =0; 
  cond not_full; 
  cond not_empty; 
  queue *WTD, *WTF; 
 } 
 void deposit(buffer_object *BB, dataType *data) { 
  while (BB->count == n) cwait(BB->not_full); 
  BB->buffer[BB->tail] = &data; 
  BB->tail= (BB->tail % n) + 1; BB->count++; 
  csignal(BB->not_empty); 
   } 
 void fetch(buffer_object *BB, dataType *result) { 
  while (BB->count == 0) cwait(BB->not_empty);  
  &result = BB->buffer[BB->head]; 
  BB->head = (BB->head % n) + 1; BB->count--; 
  csignal(BB->not_full);  
   } 
} // bounded_buffer 
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• A cooperation section is characterized by the fact that at any time at 
most one thread is executing it.   

• This principle can be extended by allowing capacities larger than "1".   
• We may specify upper bounds for the "admitted" threads and for the 

waiting threads as well: 
•  1 
•  c>1 constant 
•  n arbitrary 

 
• Reasons to limit the number of threads in some area: 

•  lack of space 
•  performance degradation 
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5.4.3 Cooperation with bounded 
capacity 
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Bounded Cooperation (2) 

• We simply modify the lock/unlock operations by using a counter 
instead of a binary variable: 
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Reader-Writer Cooperation 

• Not all threads need write access to shared data. 
Some are only reading. 

• Read accesses are harmless and do not need to run 
under mutual exclusion. 

• In the cooperation section we may admit 
•  either at most 1 writer 
•  or an arbitrary number of readers. 

• Lock compatibility: 
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Read Write 

Read + – 

Write – – 
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monitor reader_writer_cooperation { // reader priority 
 public lock, unlock;  
 enum access_type {reader, writer};  
 struct lock_object { 
  int r_count = 0;   // counts readers 
  int w_count = 0;   // counts writers 
        queue *wrt = empty;   // waiting reader threads  
  queue *wwt = empty;   // waiting writer threads 
 } 
 void lock(lock_object *lo, access_type t) { 
  if (t == reader) {  
      while (lo->w_count>0) block(lo->wrt); 
      lo->r_count++; 
  } else {  
           while (lo->w_count>0 || lo->wrt != NULL) block(lo->wwt); 
      lo->w_count++; 
  } 
 } 
 void unlock(lock_object *lo, access_type t) { 
  if (t == reader) {       
           lo->r_count--; 
      if (lo->r_count==0 && lo->wwt != NULL) deblock(lo->wwt); 
  } else  { 
      lo->w_count--; 
      if (lo->wrt != NULL) { 
         while (lo->wrt!=NULL) deblock(lo->wrt); 
      } else if (lo->wwt != NULL) deblock(lo->wwt); 
  }   
 }                            // reader_writer_cooperation 

Reader-Writer Cooperation  
(reader priority) 
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Reader-Writer Cooperation  
(writer priority) 
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monitor reader_writer_cooperation {  //writer priority 
 public lock, unlock;  
 enum access_type {reader, writer}; 
 struct lock_object { 
  int r_count = 0;   // counts readers 
  int w_count = 0;   // counts writers 
     queue *wrt = empty;    // waiting reader threads  
  queue *wwt = empty;    // waiting writer threads 
 } 
 void lock(lock_object *lo; access_type t) { 
  if (t == reader) {  
      while (lo->w_count>0 || lo->wwt != NULL) block(lo->wrt); 
      lo->r_count++; 
  } else {  
           while (lo->w_count>0 || lo->r_count>0) block(lo->wwt); 
      lo->w_count++; 
  } 
 } 
 void unlock(lock_object *lo; acess_type t) { 
  if (t == reader) {       
           lo->r_count--; 
      if (lo->r_count==0 && lo->wwt != NULL) deblock(lo->wwt); 
  } else  { 
      lo->w_count--; 
      if (lo->wwt != NULL) deblock(lo->wwt); 
      else while (lo->wrt != NULL) deblock(lo->wrt); 
  } 
 }                                 // reader_writer_cooperation 
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5.4.4 Semaphore 

• Lock objects to secure critical sections are also known as 
semaphores. 

• Introduced ca. 1965 by E.W. Dijkstra, a semaphore is a 
capacity lock S, with operations P(S) and V(S) instead of 
LOCK(S) and UNLOCK(S). 
• P and V are atomic operations. (Their atomicity may be enforced 

by either spin-locks or atomic hardware operations) 
• P (corresponding to lock) decrements a counter, V (corresponding 

to unlock) increments the counter. (Therefore some people use 
the names UP(S) and DOWN(S).) 

 
• Semaphores are available in different variants 

• counter/ binary variable 
• Initialization with 0 / with value k > 0 

• They can also be used to solve simple resource management 
problems.   
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Example Implementation Semaphore 
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struct semaphore { 

 int count;  // thread counter 

 Queue *wt;  // count=1: free, count<=0: occupied 

}     // if count<0 : |count| is the   

    // number of waiting threads 

void init (semaphore *s, int i) { 

   s->count = i;    // set i=1 for mutual exclusion 

   s->wp = NULL; 

} 

void P(semaphore *s) {  

  s->count--;   

  if (s->count < 0) block(s->wt);  // enqueue thread 

} 

void V(semaphore *s) { 

  s->count++; 

  if (s->count <= 0) deblock(s->wt) // deblock first of 

}                // queue 
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Remark 

• The collection of interaction mechanisms has to be regarded as a 
toolbox from which we may select appropriate solutions depending 
on the needs.  

• In an operating system not all variants need to be offered.  
• But the programmer should have some choice. 
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5.5  Examples  

Coordination and cooperation operations in Windows 
Windows offers four different synchronization objects: 

semaphore, event, mutex, critical section. 
 
• Semaphore  

• Initialized with a positive values and used in the sense of  a 
capacity lock for simple resource management problems. 

• With CreateSemaphore() the object is created and can be used 
after issuing OpenSemaphore(). 

• Using WaitForSingleObject() (corresponds to P-operation) the 
counter is decremented  and using ReleaseSemaphore() 
(corresponds to V-operation) it is incremented. 

• When the counter reaches a value of 0, the wait operation blocks. 
• Semaphore can be used between threads of different processes 

(address spaces). 
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• Event   
• Also used for signaling.    
• A synchronization object is created by CreateEvent() and 

can be used after OpenEvent().  
• SetEvent() corresponds to signal and for wait the general 

wait function of Windows like WaitForSingleObject() can be 
employed.  

• A ResetEvent() explicitly resets the signal. 
• Usually the event works as group signaling, i.e. the signal 

deblocks all waiting threads. 
• If, however, we use the AutoReset-Option when creating 

the event object, the signal deblocks only one thread from 
the queue 
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• Mutex    
• A mutex is used to ensure mutual exclusion. 
• After CreateMutex() and OpenMutex() a wait operation (e.g. 

WaitForSingleObject()) can be used to enter the critical section.  
• When leaving the critical section the lock is released by 

ReleaseMutex(). 
• A mutex can be used by arbitrary threads in the system.  
 

• Critical Section  
• A critical-section object is simplified and efficient variant of a 

mutex especially for mutual exclusion in the same address space 
(i.e. threads in the same process) 

• With InitializeCriticalSection() the object is created. To enter the 
critical section, EnterCriticalSection() is called and by using 
LeaveCriticalSection() we leave it. 
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For Pthreads several synchronization objects are available. 
Mutex   
• A mutex is used for mutual exclusion. 

• pthread_mutex_init()  initializes a mutex object 
• pthread_mutex_lock()  is called when entering the critical section. It 

    blocks, if the critical section (CS) is occupied.  
• pthread_mutex_trylock()  is the non-blocking variant: If free, the CS is 

    locked. If occupied (locked), we return with the 
    corresponding remark 

• pthread_mutex_unlock() to leave the CS 
Cond   
• A condition variable is used for synchronization 

• pthread_cond_wait() blocks (and releases mutex)  
• pthread_cond_timedwait() with an additional time-out 
• pthread_cond_signal() deblocks the first thread (priority or  FCFS)  

    waiting at the cond variable 
• pthread_cond_broadcast() sets signal and deblocks all waiting threads 

     
• In addition Reader/Writer-Locks are offered 
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Further reading 

• Stallings, W.:  Operating Systems 5th ed.,  
    Prentice Hall, Chapter 5 
• Bacon, J., Harris, T.: Operating Systems,  
    Chap 9-14 
• Stevens, R.:  Unix Network Programming,  

    Vol1+2, Prentice Hall  
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