
Chapter 4

Scheduling

P1 T4 T5

T1 T3 P2
T2 T6 P3

Furious activity is no substitute for understanding.
-- H. H. Williams

4.1 Overview

• Scheduling means the allocation of activities to
functional units that can execute these activities in time
and space.

• In operating systems scheduling usually means the
assignment of threads to processors.

• The scheduling problem can be found at different
granularity levels:
• Processes as complete user programs have to be executed

on a mono- or multiprocessor system.
• Threads as pieces of a parallel program have to be

executed on a parallel computer.
• Mini-threads as single operations or short operation

sequences have to executed on the parallel units of a
processor (pipelining, superscalar architectures).

4-2 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Examples

• Multi-user OS: Several threads are ready to run (ready list): Which
one should be executed next?

• The compiler generates code for a superscalar processor with
pipelining. It knows the instructions to be executed and the data
dependencies between the instructions and has to find an allocation of
the instructions to the pipelines such that the code is executed in
minimal time.

• In a single user system an MPEG-video is played live from the
Internet. The interplay of networking software, decoding, presentation
at the display and output to the speaker has to lead to continuous
synchronized play even if in the background a compiler is running.

• A production robot has to sample sensor data from different sensors
at different rates and to react to them. E.g. to recognize a part on the
conveyor belt it must perform time consuming calculations.

• In a multiprocessor system several parallel synchronous programs are
running in a way that their threads must synchronize with each other
using a barrier. Threads belonging to same program should be
assigned to the processors at the same time (Gang Scheduling/co-
scheduling).

4-3 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Classic Scheduling Problem

4-4

P1

T1

T2

T3

T4

T5

T6

T1

T2

T3

T4 T5

T6

6 Threads 3 Processors

Allocation?

P1

P2

P3

P2

P3
Gantt-Diagram

Length of schedule (makespan)

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Problem variants

• Monoprocessor / Multiprocessor
 When using multiprocessor machines: Processors homogeneous, i.e.

all the same speed?
• Thread set static or dynamic?
 In the static case all threads are given and ready to run – no new

arrivals.
 In the dynamic case new threads may arrive at any time during the

execution.
• Scheduling on-line (at runtime) or off-line (prior to runtime)?
 In the Off-line-case all threads are known in advance (including

future arrivals), i.e. we have complete information.
 On-line-algorithms only know the current threads and make their

decisions based on incomplete information.
• Execution times known in advance?
 Known execution times of threads (or worst-case-estimates) are a

prerequisite for real-time scheduling and helpful for algorithms.

4-5 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Problem variants

• Preemption possible?
 Using preemption scheduling goals can be reached more easily.
• Dependencies between the threads
 Dependency relation (partial order)
 Synchronized allocation of parallel threads of a parallel program.
• Communication times to be considered?
• Set-up times (e.g. switching) to be considered?
• Priorities to be considered?
 Priorities are either given from outside (static) or defined during

execution (dynamic).
• Deadline to be considered?
 In real-time systems some results (threads) must be available at

specified times. Often those conditions have to be met periodically.
• Which goal should be achieved?

Objective function to be maximized

4-6 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Examples for Goals

User-oriented goals
• Makespan (length of schedule) (min)
• Maximum response time (min)
• Mean (weighted) response time (min)
• Maximum lateness (min)
• ...

System-oriented goals
• Number of processors (min)
• Throughput (max)
• Processor utilization (max)
• ...

4-7 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Operation goals
• high efficiency processor highly utilized
• low response time with interactive programs
• high throughput batch-processing
• fairness and fair distribution of processor

capacity and waiting times to the threads

4-8

program start

program end
execute wait

waiting time
response time

service time

4.2 Scheduling for Multiprogramming
4.2.1 General aspects

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Scheduling Levels

4-9

ready

RELINQUISH
PREEMPT

ASSIGN

Active

waiting,
blocked

not
active

Existent

DEACTIVATE

ACTIVATE

not
existent

CREATE

DELETE
(delete)

running

DEBLOCK BLOCK
long-term medium-term short-term

In the following, we focus on short-term scheduling.

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Scheduling for Multiprogramming

Assumptions
• Homogeneous (symmetric) multiprocessor system
• Dynamic set of threads
• No dependencies between threads
• Dynamic on-line scheduling
• No deadlines

Strategic alternatives
• with / without preemption
 thread stays on processor until it is finished (or gives it up

voluntarily) or can be preempted before.
• with / without priorities
 threads are organized according to urgency.
• dependent / independent of service time
 The actual or estimated service time will be taken into

account for assignment decisions.
 4-10 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Scenario for dispatching strategies

4-11

processors

ready list
(thread control blocks)

next

Newly arriving or preempted thread

Insert according to
strategy

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

• FCFS First Come First Served
• LCFS Last Come First Served
• LCFS-PR Last Come First Served-Preemptive Resume
• RR Round Robin
• PRIO-NP Priorities (non-preemptive)
• PRIO-P Priorities (preemptive)
• SPN Shortest Process Next
• SRTN Shortest Remaining Time Next
• HRRN Highest Response Ratio Next
• FB Multilevel Feedback

4-12 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

4.2.2 Standard strategies

Given the following five threads:

No. Arrival Service time Priority
1 0 3 2
2 2 6 4
3 4 4 1
4 6 5 5
5 8 2 3

4-13

Running Example

Standard scheduling strategies

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

FCFS - First Come First Served

(aka FIFO (First In First Out))
• How it works:

• Execution of threads in the order of arrival at the ready list
• Occupation of processor until end of voluntary yield
Remark: as in daily life (checkout counter at super market).

4-14

1

2
3
4
5

0 5 10 15 20
1 2 3 4 5 Arrivals

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

LCFS - Last Come First Served

• How it works:

• Execution of threads in reversed order of arrival at the
ready list.

• Occupation of processor until end or voluntary yield.
• Remark: Rarely used in the pure form

4-15

1

2
3
4
5

0 5 10 15 20
1 2 3 4 5

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

• How it works:
• Newly arriving thread at ready list preempts the currently running thread.
• Preempted thread is appended to ready list.
• In case of no further arrivals, the ready list is processed without

preemption.
• Remark:

• Goal: Preference to short threads.
• A short thread has a good chance to finish before another thread arrives.
• A long thread is likely to be prempted several times.

4-16

0 5 10 15 20
1 2 3 4 5

1

2
3
4
5

LCFS-PR -
Last Come First Served - Preemptive Resume

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

• How it works:

• Processing of threads in order of arrival
• After some prespecified time (time slice, CPU-quantum)

preemption takes place and we switch to the next thread.
• Remark:

• Goal is the even distribution of processor capacity and
waiting time to the competing threads.

• Selection of time slice length τ is optimization problem:
• For large τ RR approaches FCFS.
• For small τ the overhead for frequent switching is a

performance penalty.
• Usual are time slices in the order of some tens of

milliseconds

4-17

RR - Round Robin (time slicing)

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

RR - Round Robin

4-18

0 5 10 15 20
1 2 3 4 5

1

2
3
4
5

τ = 1

0 5 10 15 20
1 2 3 4 5

1

2
3
4
5

τ = 4

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

• How it works:

• Newly arriving threads are inserted in the ready list
according their priority

• Once assigned they stay running on the processor until
they finish or voluntarily relinquish the processor.

4-19

1

2
3
4
5

0 5 10 15 20
1 2 3 4 5

prio
2

4
1
5
3

PRIO-NP - Priorities - nonpreemptive

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

• How it works:

• Like PRIO-NP except that we check for preemption, i.e. the
running thread is being preempted if it has a lower priority
than the new thread.

4-20

1

2
3
4
5

0 5 10 15 20
1 2 3 4 5

prio
2

4
1
5
3

PRIO-P - Priorities - preemptive

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

SPN - Shortest Process Next

• How it works:
• Thread with shortest service time is executed next until it

finishes.
• Like PRIO-NP, if we consider service time as priority criterion.

• Remark:
• Favors short threads and thus leads to shorter mean response

times than FCFS.
• Also knows as Shortest Job Next (SJN)

4-21

1

2
3
4
5

0 5 10 15 20
1 2 3 4 5

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

• How it works:
• Thread with shortest remaining service time is executed next.
• Currently running thread may be preempted.

• Remark:
• Both strategies have the disadvantage that they need a-priori

knowledge of service times that may be available only as user's
estimates.

• Long threads may starve when always shorter threads are
available.

4-22

1

2
3
4
5

0 5 10 15 20
1 2 3 4 5

SRTN - Shortest Remaining Time Next

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

• How it works

• The response ratio rr is defined as

• rr is calculated dynamically and used as priority:
 The thread with the highest rr –value is selected.
• The strategy is non-preemptive.

• Remark:

• As with SPN short threads are favored. However, long
threads do not need to wait forever but score some points
by waiting.

4-23

waiting time + service time

service time
rr :=

HRRN - Highest Response Ratio Next

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

4-24

1

2
3
4
5

0 5 10 15 20
1 2 3 4 5

HRRN - Highest Response Ratio Next

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

• If we do not know the service time a priori, but want to favor short
threads we can reduce its "priority" stepwise at each CPU-usage.

• The individual waiting queues can be managed according to "round
robin".

• Different values of time slices τ for the individual queues are
possible.

4-25

arrival Queue 0

Queue 1

Queue n

departure

departure

departure

FB - (Multilevel) Feedback

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

FB - (Multilevel) Feedback

τ =1

4-26

0 5 10 15 20
1 2 3 4 5

1
2
3
4
5

1
1

1
2

2

4

1
2

5

2

1

3
3

3
3

4
4

5 6
2

τ = 2i-1
0 5 10 15 20

1 2 3 4 5

1

2
3
4
5

1
1

2
2

3 2
3 1

1
1 2

3

2

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

4-27

without
preemption

with
preemption

without
priorities

without
priorities

with
priorities

Service time
independent

FCFS,
LCFS

PRIO-NP LCFS-PR,
RR, FB

PRIO-P

Service time
dependent

SPN,
HRRN SRTN

with
priorities

Standard strategies (summary)

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Scheduling with priorities

• Static priorities express the absolute importance of tasks.
• A task is never executed as long as there is a task with a higher

priority.
• Subject to priority inversion.
• Easy to implement, low overhead, usually O(1) complexity.

• Dynamic priorities are a bit less strict.

• While the scheduler also always selects one of the tasks with the
highest priority, it also adapts this priority over time.

• Depending on how priorities are adjusted, certain effects can be
achieved.

• Priority inversion (see slide 4-32) can be avoided, if it is guaranteed
that every task will execute eventually.

• Short running tasks can get preference over long running tasks.
• Can be realized on top of an implementation of static priorities.

4-28 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Modelling

• arrival rate (# arrivals per time)
• t mean service time (pure execution time)
• w mean waiting time
• r mean response time
 (including waiting times): r = w+t
• rn normalized response time: rn = r/t
• ρ utilization (0 ≤ ρ < 1)

4-29

Waiting
line

CPU
arrival departure

t w

r

rate λ

λ

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Priorities

4-30

Source:
Stallings, Chap 9

 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Priorities

4-31

Source:
Stallings, Chap 9

 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Priority inversion

4-32

Thread A
Prio = 4

Thread C
prio = 12

Thread B
Prio = 8

Resource

owns

Waits
for State "blocked"

State "running" State "ready"

Thread C will "starve", although it has highest priority:
Thread B dominates the CPU, thread A cannot continue and therefore
cannot release the resource, with the effect that thread C stays blocked
for an unspecified time.

Solution?
Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Priority inversion

4-33

Solution?
Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Priority inheritance

4-34

Solution: Thread 1 “inherits” the priority of 3
Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Proportional Share Scheduling

• Each task is assigned a weight (or share) wi.

• The allocated CPU time of a task is proportional to its share.
• ti / ∑tj = wi / ∑wj

• That is, within a time frame T a task gets (with runqueue

weight W = ∑wj):
• ti = T * wi/W

• This concept can also be applied to groups of tasks.
• Proportional share scheduling expresses the relative

importance of tasks.
• Tasks with a small share get CPU time, but not as much as

tasks with larger shares.
• Avoids priority inversion.
• More complex than a strategy based on priorities.

 4-35 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

4-36

The mean
value of the
shortest 500
threads is in
the first
percentile.

(NTT =
response time /
service time)

Source:
Stallings, Chap 9

4.2.3 Comparative evaluation
Behavior of scheduling strategies (Simulation of 50,000 threads)

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Waiting time

4-37

Source:
Stallings, Chap 9

 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

• For the scheduling strategies service time not
necessarily means total service time, it can also relate to
the compute time between two I/O-activities.

• This is sometimes called "CPU burst".

• The compute phases often follow other statistical
distributions than the total service times.

• Threads often show some "stationary" behavior, i.e. the
behavior of the most recent past is a good predictor for
the short-term future.

4-38

4.2.4 Estimating the duration of
computing phases

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

4-39

frequency

Burst duration (ms)

160

140
120
100
 80
 60
 40
 20

8 16 24 32 40

Many short
CPU Bursts

Histogram of compute phases
(CPU bursts)

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Estimation of CPU Burst

• Let be T[i] the execution time of the ith compute phase
of a thread.

• Let S[i] be the estimate for the ith compute phase of that
thread i.e. for T[i] .

• In the most simple case we use:

S[n+1] = (1/n) Σ{i=1 to n} T[i]

• To avoid recalculation of the whole sum, we rewrite the
formula as:
S[n+1] = (1/n) T[n] + ((n-1)/n) S[n]

• This convex combination gives equal weight to all

summands.

4-40 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Estimation of CPU Burst

• Younger (=more recent) values usually characterize the future
behavior better than older ones and should obtain higher
weight.

• The usual technique is the exponential averaging
(exponential smoothing).
• S[n+1] = α T[n] + (1-α) S[n]; 0 < α < 1

• If α > 1/n, younger values get higher weights.
• Enrolling the recursion shows that the weights of past

measurements fade out exponentially.
• S[n+1] = αT[n] + (1-α)αT[n-1] + ... (1-α)iαT[n-i] +

 ... + (1-α)nS[1]

• High α leads to better responsiveness (response to change
in behavior), small α to better stability (filtering of outliers).

• The first estimate S[1] can be initialized with 0 to give new
threads high priority.

4-41 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

4-42

Source:
Stallings, Chap 9

Exponential decay of weights

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

4-43

Source:
Stallings, Chap 9

Applying exponential smoothing

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

4.2.5 Case studies

4-44

highest
Priority

lowest
Priority

:

n

0

- m

User threads

System threads

Round-Robin within each priority class

- 1
:

Scheduling in Unix

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Scheduling in Unix (System V)

• Time slice length in the order of 100 msec.

• User threads have a static base priority of 0 that can be
increased (i. e. worsened) by "nice" (Unix command).

• Dynamic priority for thread j is adapted every second i
according to the formula

 dyn_prioj[i] := base_prioj + cpuj[i]/2

• The processor usage cpuj [i] is measured in clock ticks.

• Before calculating the priority we apply
 cpuj[i] := cpuj[i-1]/2

 which means we incrementally "forget" the processor
usage of the past (fading memory).

 4-45 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Example Unix

4-46

Low numbers
mean high
priority!

Source:
Stallings, Chap 9

Scheduling in Unix (System V)

• Compute intensive threads are put at disadvantage.
• I/O intensive threads are favored!
• They occupy the CPU only for a short time to submit the

next I/O-request.
• By giving them high priority we keep the peripheral

devices busy and achieve a high degree of parallelism
between the CPU and I/O-devices.

4-47 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

 Heavy CPU-usage leads to low priority!

 Why ?

Fair-Share-Scheduling

• In some Unix-systems the Fair-Share-Scheduling is used.
• It aims at guaranteeing a group of threads a fixed fraction of the

processor capacity.
• Let k be the number of groups, Wk the capacity fraction that group k

should obtain:

• Let cpuj[i] be the CPU usage of thread j in group k and gcpuk[i]
the CPU usage of all threads of the group k in interval i.

• Then we calculate the priorities as follows :
 cpuj[i] := cpuj[i-1]/2

 gcpuj[i] := gcpuj[i-1]/2

 dyn_prioj[i] := base_prioj + cpuj[i]/2 + gcpuj[i]/(4 Wk)

• The priority of thread j deteriorates not only due to heavy CPU
usage of the thread itself but also when other threads of the same
group are compute intensive.

4-48

1,10 =≤< ∑
k

kk WW

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Scheduling in Windows NT/2000/…

• Windows NT/2000/… also uses a preemptive strategy
based on priorities and time slices.

• 32 priority classes are distinguished:
• 16-31 for real time threads
• 1-15 for normal threads
• 0 for the idle thread

• The standard time quantum is 6 units for workstations
and 36 for servers.

• At each interrupt by the timer (clock tick) the current
time quantum is decremented by 3 units.

• The clock resolution is 10-15 msec (for Intel processors)
 i. e. a time quantum is 20-30 msec for a Workstation

and 150-180 msec for a server.

4-49 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Scheduling in Windows NT/2000/…

• Windows NT/2000/… also dynamically adapts priorities:
• When an I/O-request is finished the issuing thread increases

its priority by 1-8 priority levels (depending on the type of
I/O) (priority boost).

• After expiration of a time slice the priority of a thread is
decremented by 1 until the original value is reached again.

• Priority increase also takes place when a thread has spent a
long time (3-4 seconds) in ready queue. (CPU starvation)

• By that also the problem of priority inversion is alleviated.

• In addition, workstations provide the possibility of
increasing the size of the time slice (quantum
stretching):
• A foreground thread (active window) can get a time slice

twice or three times as large.

4-50 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Scheduling in Linux

• Linux allows to stack scheduling policies in separated
(sub-)modules.

• All policies have their own runqueue (or similar data
structure).

• Processes are assigned to one scheduling policy only.
• Policies (sub-modules) are organized by a linked list.

Position with in the list represents priority of the policy.
• Scheduler calls the entries of the policy list for a

runnable process.
• Executing all runnable processes (tasks) of one

scheduling policy before switching to the next policy.
• Policy may return request of restart the search for runnable

process at the begin of the list.

4-51 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Scheduling in Linux

• Introduction of stacked policies with kernel version
2.6.23 with three classes:

• rt_sched_class
• For “real-time” tasks.
• Executed before anything else.
• Fifo and Round Robin strategy.
• Based on static priorities.

• fair_sched_class
• For normal processes.
• Completely Fair Scheduler (CFS), a proportional share

scheduler.

• idle_sched_class
• Just the idle thread.
• Executed if there is nothing else.

4-52 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Scheduling in Linux

• Additional policy introduced with kernel version 3.14:

• sched_dl_class
• For “real” real-time tasks.
• Executed before anything else.
• Executed Earliest Deadline First (EDF) strategy.
• Uses three parameters, named "runtime", "period", and

"deadline" for scheduling.

4-53 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Completely Fair Scheduler

• Each task has a weight wi and virtual runtime
vruntime.
• Virtual runtime is increased by the weighted actual

runtime:
• vruntimei += ∆ti * W/wi

• A red-black tree with vruntime as key is used as
runqueue.
• Complexity of O(log n) for (re-)inserting a task.
• Newly created tasks are inserted to the right, woken

tasks are inserted to the left.
• Scheduler selects the task with the lowest vruntime.

• Allowing not only tasks within a runqueue but other
runqueues as well allows to achieve (weighted)
fairness between groups of tasks by recursively
applying the scheduling logic.

4-54

task

task

system
runqueue

group
runqueue

task

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

4.2.6 Multiprocessor aspects

• On a multiprocessor and/or multicore system, the scheduler
must not only decide when to execute a task, but also
where.

• Even if all processors or processors cores are identical, it is
not irrelevant on which core a task is running or which other
tasks are executing on other cores simultaneously due to
shared and limited resources within the processors
themselves.
• Some caches are per core, some caches are shared by multiple

cores.
• Memory bandwidth is limited and shared by some cores.
• Memory access can be non-uniform.
• Logical cores share the execution units within a physical core.
• …

• Different schedules vary greatly in their performance and their
energy consumption.

4-55 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Processor affinity
• If a thread was running on a processor, the corresponding

caches were filled with data belonging to that thread. If this
thread is scheduled again, there is a chance that significant
parts of the cache still belong to that thread. (The cache is still
warm/hot.)

• Therefore, we have the concept of processor affinity.
• The scheduler memorizes the "favored" or recently used processor.
• However, by using this, the priority principle is "watered down": It

may happen that a thread of higher priority waits (for its favored
processor) although another thread with lower priority is running.

4-56

T7

T1 T4

T3

T5 T2

T6 runqueue

processor cores

caches

?

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Coscheduling/Gang scheduling

• Threads (processes or tasks) of a parallel application
work together to reach one goal.

• Processes should run in a coordinated manner:
• Heavily communicating tasks:

• Tasks do not need to block as they know that their
communication partner is running and that they will receive
an answer soon.

• Tasks sharing data.
• Shared caches are exclusively used by tasks of the

coscheduled group. Thus, they must not compete with other
tasks for capacity.

• Tasks with contrary resource demands.
• Coscheduling them causes less resource contention (e. g.

execution units, memory bandwidth).

4-57 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Coscheduling/Gang scheduling

• Gang scheduling is the scheduling of a group of
threads to run on a set of processors at the same time,
on a one-to-one basis.
• Providing time-slices and synchronized or collective

preemption.
• Forbids idle processors in the set to execute tasks not

belonging to the group.
• Threads of the scheduling group must not relinquish the CPU

or will not be blocked.

• Create the illusion that the tasks of the gang
scheduled/coscheduled group are running exclusively in
the system.

4-58 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Coscheduling/Gang scheduling

• A group of tasks is coscheduled on a set of processors,
if as many of the group’s tasks as possible are executed
on the set of processors simultaneously.
• I. e., no processor in the set does something else while

there are runnable but currently not executed tasks in the
group.

• Synchronization by central clock signal is needed.

4-59 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Example of a Coscheduler – TACO

• Jan Schönherr (KBS, TUB):
 Topology-aware Coscheduling – TACO
• Building synchronization domains as set of processors

with own runqueue.
• Master CPU is responsible to enforce thread switch at all

CPUs of the synchronization domain.
• CPU picks thread out of the runqueue and notifies master.

4-60 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

• Maps sets of coschedules
threads to synchronization
domains.

• Prototyp for Linux CFS
and FreeBSD.

Centralized scheduler design

• One runqueue for all processors:

• Scales only up to 4 to 16 processors/processor cores.

• Global knowledge makes some types of scheduling
easier (e. g. coscheduling, absolute priorities) and some
harder (e. g. realizing processor affinity).

• Examples:
• Linux BFS

4-61

P0 P1 P2 P3 P4 P5 P6 P7

runqueue

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

(Fully) Decentralized scheduler design

• One runqueue per processor core:

• Scales to very large systems.
• Needs some kind of load balancing to be versatile.
• Distributed knowledge makes global decisions (nearly)

impossible. But processor affinity is very cheap.
• Examples:

• Most current operating systems.

4-62

P0 P1 P2 P3 P4 P5 P6 P7

rq rq rq rq rq rq rq rq rq rq rq rq rq rq rq rq

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Semi-decentralized scheduler design

• Multiple cores share a runqueue:

• Tradeoff between both extremes.

• Examples:
• VMWare ESX 3.x

4-63

P0 P1 P2 P3 P4 P5 P6 P7

runqueue runqueue

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Hierarchical scheduler design

• A hierarchy of runqueues, where runqueues further up in the
hierarchy represent larger fractions of the system:

• For a more scalable coscheduling:
• Multiple small coscheduled sets can be processed independently.
• In the absence of coscheduled sets, this is similar to a

decentralized scheduler.
 4-64

P0 P1 P2 P3 P4 P5 P6 P7

rq rq rq rq rq rq rq rq

runqueue runqueue

runqueue

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Case study: Linux CFS

• One runqueue per core.
• Load balancing is done periodically and on demand.

• Honors system topology, tries to avoid costly migrations.
• Two runqueues are balanced, if they have the same weight.

• Proportional share scheduling
• Relies on a balanced system, i. e. proportional share

scheduling is achieved only locally.
• No processor is forced idle if a task gets more than its

proportional share of CPU time.
• Tasks of a task group might be scheduled on multiple

processors.
• Hence, a task group is also represented by multiple runqueues.
• The share of a task group is split: each representative gets a

fraction of the share proportional to the weight of the tasks
within.

4-65 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

4.3 Real-time scheduling

• In real-time systems (e.g. controller for production lines, nuclear
power plants, engine control,…) the goal of scheduling is different:

• Within short time constraints, measurements need to be evaluated
and based on that, action must be taken.

• Threads are therefore associated with deadlines, at which they must be
finished.

• Since meeting the deadlines sometimes is critical for the function of
the complete system, they need to be considered in scheduling
decisions.

• Concerning the implications violating deadlines we make the following
distinction:
• hard real-time systems: Violation means failure of the system and cannot

 be tolerated (Example: Airbag, antiblocking brake).
• soft real-time systems: Violation means quality reduction but can be

 tolerated (Example: voice over IP, transmission
 and processing of video streams, synchronization
 of video and audio).

• In hard real-time systems often off-line-algorithms are employed to
guarantee that deadlines can be met.

4-66 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Hard Real-time vs. Soft Real-time

4-67
“Value” means value for the user or intended application

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Basic Concepts

For real-time threads, it is given by the specification when they can
start at the earliest and when they must be finished at the latest.

4-68

Exceeding the deadline (fi > di) is called lateness L := fi -di

Ti

slack-time sli
(laxity)

a i:
earliest
Start time

s i:
Actual
Start time

f i:
Actual
Finishing time

di :
latest
Finishing time
(deadline)

service time bi

Ti

lateness

si f i di

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Goals

4-69

The objective functions often depend on whether the lateness can be
tolerated or not.

In soft-RT-systems the maximum lateness Lmax can be minimized.

 T1 T2 T4 T5 T3

d1 d2 d3 d4 d5

Maximum lateness Lmax

T1 T2 T4 T5 T3

d1 d2 d3 d4 d5

Maximum lateness Lmax

Minimizing the maximum lateness in this case means that all other
deadlines are violated.

In the following schedule we obtain a much larger lateness, but can
meet all but one deadlines.

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

4-70

On single processor systems without preemption and without
dependencies the scheduling problems boils down to finding an
appropriate permutation of the threads.

In this case the following theorem (EDD = Earliest Due Date) holds:

Theorem (Jackson's Rule):

Each schedule, in which the threads are processed in the order of
non-decreasing deadlines is optimal with regard to Lmax

The threads need to be sorted according to their deadlines which can be
done in O(n log n).

EDD assumes that all threads can start at any time.

However, in many applications we do have earliest start times ai
(availability of measurement data).

By introducing individual start times (∃ i,j: ai ≠ aj) the problem becomes
NP-hard, i.e. there is no optimal solution in polynomial time.

Minimization of maximum lateness

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Minimizing maximum lateness
(with start times and preemption)

4-71

If, however, preemption is possible the following theorem holds which
again is based on Jackson's rule:

Theorem (EDF: Earliest Deadline First)

Each schedule in which at any time the thread with the earliest
deadline is assigned is optimal with regard to the maximum
lateness.

T2 T4 T5 T3

d1 d2 d3 d4 d5

a 1

a 2
a 3

a 4

a 5

T1 T1 T3 T3

T1
T2

T3
T4

T5

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Periodical threads

4-72

In many real-time applications we have to deal with periodical tasks that
have to be finished in due time. Each thread is characterized by its
period or the rate (which is reciprocal to the period).
First we have to check whether the sequence of tasks can be executed
anyway (schedulability test, feasibility test).

For each individual periodical thread the following must hold: 0 < bi ≤ di
For the set of all periodical threads the following is a necessary condition
for the existence of a feasible schedule:

Ti(1)

slack-time

ai
Start time

di(k) :
deadline in period k

Period length pi

Ti(k) Ti(k+1)

bi

d i

1≤∑
i i

i

p
b

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Periodical threads

4-73

As scheduling strategy for periodic threads the so-called rate
monotonic scheduling (RMS) is used in many cases:
Threads are assigned a static priority which is inversely proportional to
their period, i.e. the thread with the smallest period gets the highest
priority (the priority is according to the rates).
For independent threads and if the deadlines coincide with the periods
the following theorem can be proved:
A set of n periodical threads can be scheduled by a rate-monotonic
strategy if the following inequality holds (sufficient condition):

The left hand side of the inequality denotes the required processor
capacity and the right hand side an upper bound that must be valid in
order to find a feasible schedule.
For large n the upper bound means that the processor utilization must
not be larger than log 2 ≈ 69,3 %.

()12
1

1
−≤∑

=

nn
p
bn

i i

i

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

4-74

Assumptions:
(1) Task Ti is periodical with period-length pi
(2) Deadline di = pi
(3) Ti is ready again immediately after pi
(4) Ti has a constant execution time bi (<= pi)
(5) The smaller the period the higher the priority

Example: T ={T1, T2, T3}, p={4, 6, 8}, b ={1, 2, 1}

1 0 5 10 15 20 25 30

T1

T2

T3

How to schedule on 1 CPU? Just use the above priority scheme!

Rate Monotonic Scheduling

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

4-75

Assumptions:
(1) Task Ti is periodical with period-length pi
(2) Deadline di = pi
(3) Ti is ready again immediately after pi
(4) Ti has a constant execution time bi (<= pi)
(5) The smaller the period the higher the priority

Example: T ={T1, T2, T3}, p={4, 6, 8}, b ={1, 2, 1}

1 0 5 10 15 20 25 30

T1

T2

T3

Idle
times

Hyperperiod

Rate Monotonic Scheduling (RMS)

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

4-76

The general necessary feasibility criterion is
met:

 (1/4 + 2/6 + 1/8) = 17/24 <= 1

Also the RMS-criterion is satisfied:

 (1/4 + 2/6 + 1/8) = 17/24 = 0,7083 < 3 (21/3-1) ≈ 78 %.

Result of Rate Monotonic Scheduling
Example

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

4-77

Assumptions:
(1) Task Ti is periodical with period-length pi
(2) Deadline di = pi
(3) Ti is ready again immediately after pi
(4) Ti has a constant execution time bi (<= pi)
(5) The smaller the period the higher the priority

Example: T ={T1, T2, T3}, p={4, 6, 8}, b ={1, 2, 2}

1 0 5 10 15 20 25 30

T1

T2

T3

How to schedule on 1 CPU? Just use the above priority scheme!

Rate Monotonic Scheduling

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

4-78

Assumptions:
(1) Task Ti is periodical with with period-length pi
(2) Deadline di = pi
(3) Ti is ready again immediately after pi
(4) Ti has a constant execution time bi (<= pi)
(5) The smaller the period the higher the priority

Example: T ={T1, T2, T3}, p={4, 6, 8}, b ={1, 2, 2}

1 0 5 10 15 20 25 30

T1

T2

T3

Idle times

Rate Monotonic Scheduling (RMS)

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

4-79

The general necessary feasibility criterion is
met:

 (1/4 + 2/6 + 2/8) = 20/24 = 0.833 <= 1

However, the sufficient RMS-criterion violated:

 (1/4 + 2/6 + 2/8) = 20/24 = 0.8333 > 3 (21/3-1) ≈ 78 %.

Solution: Time Demand Analysis (TDA)

Result of Rate Monotonic Scheduling
Example

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Time Demand Analysis (TDA)

• Introduced by Lehoczky, Sha and Ding in 1989
• Idea: Calculate worst case time demand for all threads and

compare to available time to deadline
 Find point in time where enough time is available to finish

4-80 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

4-81

Another scheduling strategy for periodic real-time threads is Earliest
Deadline First (EDF):
Threads are assigned a dynamic priority which is inversely proportional
to the current distance to the deadline, i.e. the thread with the next
deadline gets the highest priority. Preemption is usually allowed.
For independent threads and if the deadlines coincide with the periods
the following theorem can be proved:
A set of n periodical threads can be scheduled by an earliest deadline
first strategy if and only if the following inequality holds:

The left hand side of the inequality denotes the required processor
capacity.

This means that if a schedule exists for a taskset, EDF is also able to
schedule that taskset (optimality).

1
1

n
i

i i

b
p=

≤∑

Earliest Deadline First
for Periodical threads

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Multi-Processor Real-Time
Scheduling

• Simple approaches such as RMS or EDF do not work for
multiple processors.

• Example: Not executable using EDF on two processors.

• However, there is a schedule:

• Unfortunately, optimal scheduling is NP-complete in nearly all
relevant cases.

4-82 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Earliest Deadline Zero Laxity (EDZL)

• Idea
• Global EDF scheduling, but
• Tasks with zero laxitiy (i.e. that has to run now in order to

meet the deadline) get highest priority

• Properties
• Never worse that global EDF
• Lot of ongoing research on criterias and bounds

4-83 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Earliest Deadline Zero Laxity (EDZL)

• Not executable using EDF on two processors:

• Executable using EDZL on two processors:

4-84 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

4.4 Plan-based scheduling

• Scheduling in High Performance Computing (HPC)
• Scheduling on different levels:

• Parallel program (job) – whole machine
• Processes or threads as part of the parallel program –

compute node as part of the HPC system
• Mapping of the processes to compute nodes
 (more about mapping
 and scheduling in CC)

• Research is part of a
 project to build a OS for
 Grid computing – VRM

• Jörg Schneider,
• Lars-Olof Burchard,
• Barry Linnert

4-85 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

HLRN IV – ZIB Berlin

HPC applications

• Parallel programs with different runtime behavior
• Computational load
• Communication
• Dynamic creation and finishing of processes

4-86 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Conditions for running HPC jobs

• The result of the execution of the parallel program
should be available at a specific time – deadline

• Waste of compute resources should be reduced by using
time sharing
• Running various processes on the node

4-87 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Runtime behavior models

• Using runtime behavior models to schedule and map the
job to the compute nodes (and network links)
• Observing the runtime behavior and using
 this information for future runs

• The operating system running the node

still schedules the processes of the parallel
programs

• Most of the HPC systems are running Linux
• CFS is the scheduler for the processes

4-88 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

CFS-based node scheduler

• Simulation results for various configuration
• HPC systems, program types, estimations, communication

patterns

Results for 1000 jobs of different program model types on homogenous grid
topology, 0% runtime overestimation with asynchronous communication,
with RR and time slice of 200 ms

4-89 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

0

100

200

300

400

500

600

700

800

model #0 model #1 model #2 model #3 model
uniform

succ exec jobs

normal load (1500) heavy load (150) very heavy load (1)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

model #0 model #1 model #2 model #3 model
uniform

canceled jobs / # succ sched jobs

normal load (1500) heavy load (150) very heavy load (1)

Plan-based node scheduler

• Kelvin Glaß and Barry Linnert (FUB/KBS, TUB)
• Additional scheduling class to the Linux scheduler

• Executes processes (parts of processes – tasks)
following given plan

• Ensures implicit synchronization between different nodes
of the cluster
computer resource

4-90 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Plan-based node scheduler

• Using the plan-based node scheduler the

• rate of canceled jobs can be reduced to about 5%,
• the number of successfully completed job can be

increased up to 677 (out of 1000) jobs
• for uniform distributed program behavior types on

homogenous grid topology, under heavy load, 0% runtime
overestimation with asynchronous communication.

More results coming soon.

4-91 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Further References
• Stallings, W.: Operating Systems 5th ed., Prentice Hall, 2005
 Chapter 9 + 10
• Solomon, D. A.; Russinovich:

 Inside Microsoft Windows 2000,
 Microsoft Press, 1998

• D. Giani, S. Vaddagiri, P. Zijlstra:
 The Linux Scheduler, today and looking forward.
 October 2008.

• C.L. Lui und J.W. Layland:
 Scheduling Algorithms for Multiprogramming in a
 Hard-Real-Time Environment. 1973.

• Linux Kernel: sched/fair.c, sched/core.c, and CFS documentation.
 http://kernel.org

• D. G. Feitelson and L. Rudolph:
 Distributed hierarchical control for parallel processing,
 Computer, vol. 23, no. 5, pp. 65–77, May 1990.
• Jan H. Schönherr:
 Coscheduling in the Multicore Era, PhD thesis, TU Berlin, 2019
• Kelvin Glaß: Plan Based Thread Scheduling on HPC Nodes

 Master thesis, Freie Universität Berlin, 2018.

4-92 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

http://kernel.org/

	Chapter 4
	4.1 Overview
	Examples
	Classic Scheduling Problem
	Problem variants
	Problem variants
	Examples for Goals
	4.2 Scheduling for Multiprogramming�4.2.1 General aspects
	Scheduling Levels
	Scheduling for Multiprogramming
	Scenario for dispatching strategies
	4.2.2 Standard strategies
	Standard scheduling strategies
	FCFS	- First Come First Served
	LCFS	- Last Come First Served
	LCFS-PR - �Last Come First Served - Preemptive Resume
	RR - Round Robin (time slicing)
	RR - Round Robin
	PRIO-NP - Priorities - nonpreemptive
	PRIO-P - Priorities - preemptive
	SPN - Shortest Process Next
	SRTN - Shortest Remaining Time Next
	HRRN - Highest Response Ratio Next
	HRRN - Highest Response Ratio Next
	FB - (Multilevel) Feedback
	FB - (Multilevel) Feedback
	Standard strategies (summary)
	Scheduling with priorities
	Modelling
	Priorities
	Priorities
	Priority inversion
	Priority inversion
	Priority inheritance
	Proportional Share Scheduling
	4.2.3 Comparative evaluation
	Waiting time
	4.2.4 Estimating the duration of computing phases
	Histogram of compute phases �(CPU bursts)
	Estimation of CPU Burst
	Estimation of CPU Burst
	Foliennummer 42
	Foliennummer 43
	4.2.5 Case studies
	Scheduling in Unix (System V)
	Example Unix
	Scheduling in Unix (System V)
	Fair-Share-Scheduling
	Scheduling in Windows NT/2000/…
	Scheduling in Windows NT/2000/…
	Scheduling in Linux
	Scheduling in Linux
	Scheduling in Linux
	Completely Fair Scheduler
	4.2.6 Multiprocessor aspects
	Processor affinity
	Coscheduling/Gang scheduling
	Coscheduling/Gang scheduling
	Coscheduling/Gang scheduling
	Example of a Coscheduler – TACO
	Centralized scheduler design
	(Fully) Decentralized scheduler design
	Semi-decentralized scheduler design
	Hierarchical scheduler design
	Case study: Linux CFS
	4.3 Real-time scheduling
	Hard Real-time vs. Soft Real-time
	Basic Concepts
	Goals
	Minimization of maximum lateness
	Minimizing maximum lateness�(with start times and preemption)
	Periodical threads
	Periodical threads
	Foliennummer 74
	Foliennummer 75
	Foliennummer 76
	Foliennummer 77
	Foliennummer 78
	Foliennummer 79
	Time Demand Analysis (TDA)
	Earliest Deadline First �for Periodical threads
	Multi-Processor Real-Time Scheduling
	Earliest Deadline Zero Laxity (EDZL)
	Earliest Deadline Zero Laxity (EDZL)
	4.4 Plan-based scheduling
	HPC applications
	Conditions for running HPC jobs
	Runtime behavior models
	CFS-based node scheduler
	Plan-based node scheduler
	Plan-based node scheduler
	Further References

