
Chapter 4 

Scheduling 
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Furious activity is no substitute for understanding. 
-- H. H. Williams 



4.1  Overview 

• Scheduling means the allocation of activities to 
functional units that can execute these activities in time 
and space. 

• In operating systems scheduling usually means the 
assignment of threads to processors.  

• The scheduling problem can be found at different 
granularity levels:  
• Processes as complete user programs have to be executed 

on a mono- or multiprocessor system. 
• Threads as pieces of a parallel program have to be 

executed on a parallel computer. 
• Mini-threads as single operations or short operation 

sequences  have to executed on the parallel units of a 
processor (pipelining, superscalar architectures). 
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Examples 

• Multi-user OS: Several threads are ready to run (ready list): Which 
one should be executed next?  

• The compiler generates code for a superscalar processor with 
pipelining. It knows the instructions to be executed and the data 
dependencies between the instructions and has to find an allocation of 
the instructions to the pipelines such that the code is executed in 
minimal time. 

• In a single user system an MPEG-video is played live from the 
Internet. The interplay of networking software, decoding, presentation 
at the display and output to the speaker has to lead to continuous 
synchronized play even if in the background a compiler is running. 

• A production robot has to sample sensor data from different sensors 
at different rates and to react to them. E.g. to recognize a part on the 
conveyor belt it must perform time consuming calculations. 

• In a multiprocessor system several parallel synchronous programs are 
running in a way that their threads must synchronize with each other 
using a barrier. Threads belonging to same program should be 
assigned to the processors at the same time (Gang Scheduling/co-
scheduling). 
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Classic Scheduling Problem 
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Problem variants 

• Monoprocessor / Multiprocessor 
 When using multiprocessor machines: Processors homogeneous, i.e. 

all the same speed? 
• Thread set static or dynamic? 
 In the static case all threads are given and ready to run – no new 

arrivals.  
 In the dynamic case new threads may arrive at any time during the 

execution. 
• Scheduling on-line (at runtime) or off-line (prior to runtime)? 
 In the Off-line-case all threads are known in advance (including 

future arrivals), i.e. we have complete information. 
 On-line-algorithms only know the current threads and make their 

decisions based on incomplete information. 
• Execution times known in advance?  
 Known execution times of threads (or worst-case-estimates) are a 

prerequisite for real-time scheduling and helpful for algorithms. 
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Problem variants 

• Preemption possible?  
 Using preemption scheduling goals can be reached more easily. 
• Dependencies between the threads 
 Dependency relation (partial order) 
 Synchronized allocation of parallel threads of a parallel program.  
• Communication times to be considered? 
• Set-up times (e.g. switching) to be considered? 
• Priorities to be considered?  
 Priorities are either given from outside (static) or defined during 

execution (dynamic).  
• Deadline to be considered?  
 In real-time systems some results (threads) must be available at 

specified times. Often those conditions have to be met periodically. 
• Which goal should be achieved?  

Objective function to be maximized 

4-6 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23 



Examples for Goals 

User-oriented goals  
• Makespan (length of schedule)  (min) 
• Maximum response time   (min) 
• Mean (weighted) response time  (min) 
• Maximum lateness    (min) 
• ... 
 
System-oriented goals 
• Number of processors    (min) 
• Throughput     (max) 
• Processor utilization    (max) 
• ... 
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Operation goals   
• high efficiency  processor highly utilized  
• low response time with interactive programs  
• high throughput  batch-processing 
• fairness and   fair distribution of processor 

capacity    and waiting times to the threads 
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4.2  Scheduling for Multiprogramming 
4.2.1  General aspects  
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Scheduling Levels 
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In the following, we focus on short-term scheduling. 
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Scheduling for Multiprogramming 

Assumptions 
• Homogeneous (symmetric) multiprocessor system 
• Dynamic set of threads 
• No dependencies between threads 
• Dynamic on-line scheduling 
• No deadlines 
 
Strategic alternatives 
• with / without preemption 
 thread stays on processor until it is finished (or gives it up 

voluntarily) or can be preempted before. 
• with / without priorities 
 threads are organized according to urgency. 
• dependent / independent of service time 
 The actual or estimated  service time will be taken into 

account for assignment decisions. 
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Scenario for dispatching strategies 
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• FCFS First Come First Served 
• LCFS Last Come First Served 
• LCFS-PR Last Come First Served-Preemptive Resume 
• RR Round Robin 
• PRIO-NP Priorities (non-preemptive) 
• PRIO-P Priorities (preemptive) 
• SPN Shortest Process Next 
• SRTN Shortest Remaining Time Next 
• HRRN Highest Response Ratio Next 
• FB Multilevel Feedback 

 
 

4-12 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23 

4.2.2 Standard strategies 



Given the following five threads: 
 
 

No. Arrival Service time  Priority 
1  0  3   2 
2  2  6   4 
3  4  4   1  
4  6  5   5  
5  8  2   3 
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FCFS - First Come First Served 

(aka FIFO (First In First Out)) 
• How it works: 

• Execution of threads in the order of arrival at the ready list 
• Occupation of processor until end of voluntary yield 
Remark:  as in daily life (checkout counter at super market). 
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LCFS - Last Come First Served 

 
• How it works: 

• Execution of threads in reversed order of arrival at the 
ready list. 

• Occupation of processor until end or voluntary yield. 
• Remark: Rarely used in the pure form 
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• How it works: 
• Newly arriving thread at ready list preempts the currently running thread. 
• Preempted thread is appended to ready list.  
• In case of no further arrivals, the ready list is processed without 

preemption. 
• Remark:   

• Goal: Preference to short threads.  
• A short thread has a good chance to finish before another thread arrives.  
• A long thread is likely to be prempted several times. 
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• How it works: 

• Processing of threads in order of arrival 
• After some prespecified time (time slice, CPU-quantum) 

preemption takes place and we switch to the next thread.   
• Remark: 

• Goal is the even distribution of processor capacity and 
waiting time to the competing threads.  

• Selection of time slice length τ is optimization problem: 
• For large τ RR approaches FCFS. 
• For small τ  the overhead for frequent switching is a 

performance penalty. 
• Usual are time slices in the order of some tens of 

milliseconds 
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RR - Round Robin 
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• How it works: 

• Newly arriving threads are inserted in the ready list 
according their priority 

• Once assigned  they stay running on the processor until 
they finish or voluntarily relinquish the processor. 
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• How it works: 

• Like PRIO-NP except that we check for preemption, i.e. the 
running thread is being preempted if it has a lower priority 
than the new thread.  
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SPN - Shortest Process Next 

• How it works: 
• Thread with shortest service time is executed next until it 

finishes.  
• Like PRIO-NP, if we consider service time as priority criterion.  

• Remark:  
• Favors short threads and thus leads to shorter mean response 

times than FCFS.  
• Also knows as Shortest Job Next (SJN) 

 
 

4-21 

1 

2 
3 
4 
5 

0 5 10 15 20 
1 2 3 4 5 

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23 



• How it works: 
• Thread with shortest remaining service time is executed next.  
• Currently running thread may be preempted.  

• Remark:    
• Both strategies have the disadvantage that they need a-priori 

knowledge of service times that may be available only as user's 
estimates. 

• Long threads may starve when always shorter threads are 
available.  
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• How it works 

• The response ratio rr is defined as 
    
    
 
• rr is calculated dynamically and used as priority:  
 The thread with the highest rr –value is selected.  
• The strategy is non-preemptive. 

 
• Remark:  

• As with SPN short threads are favored. However, long 
threads do not need to wait forever but score some points 
by waiting.  
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• If we do not know the service time a priori, but want to favor short 
threads we can reduce its "priority" stepwise at each CPU-usage. 

• The individual waiting queues can be managed according to "round 
robin". 

• Different values of time slices  τ for the individual queues are 
possible. 
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FB - (Multilevel) Feedback 

τ =1 
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Scheduling with priorities 

• Static priorities express the absolute importance of tasks. 
• A task is never executed as long as there is a task with a higher 

priority. 
• Subject to priority inversion.  
• Easy to implement, low overhead, usually O(1) complexity. 

 
• Dynamic priorities are a bit less strict. 

• While the scheduler also always selects one of the tasks with the 
highest priority, it also adapts this priority over time. 

• Depending on how priorities are adjusted, certain effects can be 
achieved. 

• Priority inversion (see slide 4-32) can be avoided, if it is guaranteed 
that every task will execute eventually. 

• Short running tasks can get preference over long running tasks. 
• Can be realized on top of an implementation of static priorities.  
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Modelling 

•  arrival rate (# arrivals per time) 
• t mean service time (pure execution time) 
• w mean waiting time 
• r mean response time 
  (including waiting times): r = w+t 
• rn normalized response time: rn = r/t 
• ρ utilization (0 ≤ ρ < 1) 
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Priorities 
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Priorities 
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Priority inversion 
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Thread C will "starve", although it has highest priority: 
Thread B dominates the  CPU, thread A cannot continue and therefore 
cannot release the resource, with the effect that thread C stays blocked 
for an unspecified time. 

Solution? 
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Priority inversion 
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Priority inheritance 
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Proportional Share Scheduling 

• Each task is assigned a weight (or share) wi. 
 

• The allocated CPU time of a task is proportional to its share. 
• ti / ∑tj = wi / ∑wj 

 
• That is, within a time frame T a task gets (with runqueue 

weight W = ∑wj): 
• ti = T * wi/W 

 
• This concept can also be applied to groups of tasks. 
• Proportional share scheduling expresses the relative 

importance of tasks. 
• Tasks with a small share get CPU time, but not as much as 

tasks with larger shares. 
• Avoids priority inversion. 
• More complex than a strategy based on priorities. 
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4.2.3  Comparative evaluation 
Behavior of scheduling strategies (Simulation of 50,000 threads) 
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Waiting time  
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• For the scheduling strategies service time not 
necessarily means total service time, it can also relate to 
the compute time between two I/O-activities.  

• This is sometimes called "CPU burst". 

• The compute phases often follow other statistical 
distributions than the total service times. 

• Threads often show some "stationary" behavior, i.e. the 
behavior of the most recent past is a good predictor for 
the short-term future.  
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Estimation of CPU Burst 

• Let be T[i] the execution time of the ith compute phase 
of a thread.  

• Let S[i] be the estimate for the ith compute phase of that 
thread i.e. for T[i] .  

• In the most simple case we use: 

S[n+1] = (1/n) Σ{i=1 to n} T[i] 
 

• To avoid recalculation of the whole sum, we rewrite the 
formula as: 
S[n+1] = (1/n) T[n] + ((n-1)/n) S[n] 

 
• This convex combination gives equal weight to all 

summands.  
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Estimation of CPU Burst 

• Younger (=more recent) values usually characterize the future 
behavior better than older ones and should obtain higher 
weight.  

• The usual technique is the exponential averaging 
(exponential smoothing).  
• S[n+1] = α T[n] + (1-α) S[n]; 0 < α < 1 

• If α > 1/n, younger values get higher weights.  
• Enrolling the recursion shows that the weights of past 

measurements fade out exponentially.  
• S[n+1] = αT[n] + (1-α)αT[n-1] + ... (1-α)iαT[n-i] +  

                ... + (1-α)nS[1] 

• High α leads to better responsiveness (response to change 
in behavior), small α to better stability (filtering of outliers). 

• The first estimate S[1] can be initialized with 0 to give new 
threads high priority. 
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Applying exponential smoothing 
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4.2.5  Case studies 
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Scheduling in Unix (System V) 

• Time slice length in the order of 100 msec. 

• User threads have a static base priority of 0 that can be 
increased (i. e. worsened) by "nice" (Unix command). 

• Dynamic priority for thread j is adapted every second i 
according to the formula 

  dyn_prioj[i] := base_prioj + cpuj[i]/2 

• The processor usage cpuj [i] is measured in clock ticks. 

• Before calculating the priority we apply  
  cpuj[i] := cpuj[i-1]/2 

 which means we incrementally "forget" the processor 
usage of the past (fading memory). 
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Example Unix 
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Scheduling in Unix (System V) 

• Compute intensive threads are put at disadvantage. 
• I/O intensive threads are favored! 
• They occupy the CPU only for a short time to submit the 

next I/O-request.  
• By giving them high priority we keep the peripheral 

devices busy and achieve a high degree of parallelism 
between the CPU and I/O-devices. 
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  Heavy CPU-usage leads to low priority! 
 

  Why ? 
 

 



Fair-Share-Scheduling 

• In some Unix-systems the Fair-Share-Scheduling is used. 
• It aims at guaranteeing a group of threads a fixed fraction of the 

processor capacity. 
• Let k be the number of groups, Wk the capacity fraction that group k 

should obtain: 
 
 

• Let  cpuj[i] be the CPU usage of thread j  in group k and gcpuk[i] 
the CPU usage of all threads of the group k in interval i. 

• Then we calculate the priorities as follows : 
 cpuj[i] := cpuj[i-1]/2 

 gcpuj[i] := gcpuj[i-1]/2 

 dyn_prioj[i] := base_prioj + cpuj[i]/2 + gcpuj[i]/(4 Wk) 

• The  priority of thread j deteriorates not only due to heavy CPU 
usage of the thread itself but also when other threads of the same 
group are compute intensive. 
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Scheduling in Windows NT/2000/… 

• Windows NT/2000/… also uses a preemptive strategy 
based on priorities and time slices. 

• 32 priority classes are distinguished: 
• 16-31 for real time threads 
• 1-15 for normal threads  
• 0  for the idle thread 

• The standard time quantum is 6 units for workstations 
and 36 for servers. 

• At each interrupt by the timer (clock tick) the current 
time quantum is decremented by 3 units. 

• The clock resolution is 10-15 msec (for Intel processors)  
 i. e. a time quantum is 20-30 msec for a Workstation 

and 150-180 msec for a server.  
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Scheduling in Windows NT/2000/… 

• Windows NT/2000/… also dynamically adapts priorities: 
• When an I/O-request is finished the issuing thread increases 

its priority by 1-8 priority levels (depending on the type of 
I/O) (priority boost). 

• After expiration of a time slice the priority of a thread is 
decremented by 1 until the original value is reached again.  

• Priority increase also takes place when a thread has spent a 
long time (3-4 seconds) in ready queue.  (CPU starvation) 

• By that also the problem of priority inversion is alleviated.  

• In addition, workstations provide the possibility of 
increasing the size of the time slice (quantum 
stretching): 
• A foreground thread (active window) can get a time slice 

twice or three times as large.   
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Scheduling in Linux 

• Linux allows to stack scheduling policies in separated 
(sub-)modules. 

• All policies have their own runqueue (or similar data 
structure). 

• Processes are assigned to one scheduling policy only. 
• Policies (sub-modules) are organized by a linked list. 

Position with in the list represents priority of the policy. 
• Scheduler calls the entries of the policy list for a 

runnable process. 
• Executing all runnable processes (tasks) of one 

scheduling policy before switching to the next policy. 
• Policy may return request of restart the search for runnable 

process at the begin of the list. 
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Scheduling in Linux 

• Introduction of stacked policies with kernel version 
2.6.23 with three classes: 

• rt_sched_class 
• For “real-time” tasks. 
• Executed before anything else. 
• Fifo and Round Robin strategy. 
• Based on static priorities. 

• fair_sched_class 
• For normal processes. 
• Completely Fair Scheduler (CFS), a proportional share 

scheduler. 

• idle_sched_class 
• Just the idle thread. 
• Executed if there is nothing else. 

4-52 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23 



Scheduling in Linux 

• Additional policy introduced with kernel version 3.14: 

• sched_dl_class 
• For “real” real-time tasks. 
• Executed before anything else. 
• Executed Earliest Deadline First (EDF) strategy. 
• Uses three parameters, named "runtime", "period", and 

"deadline" for scheduling. 
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Completely Fair Scheduler 

• Each task has a weight wi and virtual runtime 
vruntime. 
• Virtual runtime is increased by the weighted actual 

runtime: 
• vruntimei += ∆ti * W/wi 

• A red-black tree with vruntime as key is used as 
runqueue. 
• Complexity of O(log n) for (re-)inserting a task. 
• Newly created tasks are inserted to the right, woken 

tasks are inserted to the left. 
• Scheduler selects the task with the lowest vruntime. 

• Allowing not only tasks within a runqueue but other 
runqueues as well allows to achieve (weighted) 
fairness between groups of tasks by recursively 
applying the scheduling logic. 
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4.2.6  Multiprocessor aspects 

• On a multiprocessor and/or multicore system, the scheduler 
must not only decide when to execute a task, but also 
where. 

• Even if all processors or processors cores are identical, it is 
not irrelevant on which core a task is running or which other 
tasks are executing on other cores simultaneously due to 
shared and limited resources within the processors 
themselves. 
• Some caches are per core, some caches are shared by multiple 

cores. 
• Memory bandwidth is limited and shared by some cores. 
• Memory access can be non-uniform. 
• Logical cores share the execution units within a physical core. 
• … 

• Different schedules vary greatly in their performance and their 
energy consumption. 
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Processor affinity 
• If a thread was running on a processor, the corresponding 

caches were filled with data belonging to that thread. If this 
thread is scheduled again, there is a chance that significant 
parts of the cache still belong to that thread. (The cache is still 
warm/hot.)  

• Therefore, we have the concept of processor affinity. 
• The scheduler memorizes the "favored" or recently used processor. 
• However, by using this, the priority principle is "watered down": It 

may happen that a thread of higher priority waits (for its favored 
processor) although another thread with lower priority is running.  
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Coscheduling/Gang scheduling 

• Threads (processes or tasks) of a parallel application 
work together to reach one goal. 

• Processes should run in a coordinated manner: 
• Heavily communicating tasks:  

• Tasks do not need to block as they know that their 
communication partner is running and that they will receive 
an answer soon. 

• Tasks sharing data. 
• Shared caches are exclusively used by tasks of the 

coscheduled group. Thus, they must not compete with other 
tasks for capacity. 

• Tasks with contrary resource demands. 
• Coscheduling them causes less resource contention (e. g. 

execution units, memory bandwidth). 
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Coscheduling/Gang scheduling 

• Gang scheduling is the scheduling of a group of 
threads to run on a set of processors at the same time, 
on a one-to-one basis. 
• Providing time-slices and synchronized or collective 

preemption. 
• Forbids idle processors in the set to execute tasks not 

belonging to the group. 
• Threads of the scheduling group must not relinquish the CPU 

or will not be blocked. 
 

• Create the illusion that the tasks of the gang 
scheduled/coscheduled group are running exclusively in 
the system. 
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Coscheduling/Gang scheduling 

• A group of tasks is coscheduled on a set of processors, 
if as many of the group’s tasks as possible are executed 
on the set of processors simultaneously.  
• I. e., no processor in the set does something else while 

there are runnable but currently not executed tasks in the 
group. 
 

• Synchronization by central clock signal is needed. 
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Example of a Coscheduler – TACO 

• Jan Schönherr (KBS, TUB): 
 Topology-aware Coscheduling – TACO 
• Building synchronization domains as set of processors 

with own runqueue. 
• Master CPU is responsible to enforce thread switch at all 

CPUs of the synchronization domain. 
• CPU picks thread out of the runqueue and notifies master. 
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• Maps sets of coschedules 
threads to synchronization 
domains. 

• Prototyp for Linux CFS 
and FreeBSD. 
 



Centralized scheduler design 

• One runqueue for all processors: 
 
 
 
 
 

• Scales only up to 4 to 16 processors/processor cores. 

• Global knowledge makes some types of scheduling 
easier (e. g. coscheduling, absolute priorities) and some 
harder (e. g. realizing processor affinity). 

• Examples:  
• Linux BFS 
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(Fully) Decentralized scheduler design 

• One runqueue per processor core: 
 
 
 
 
 
 

• Scales to very large systems. 
• Needs some kind of load balancing to be versatile. 
• Distributed knowledge makes global decisions (nearly) 

impossible. But processor affinity is very cheap. 
• Examples: 

• Most current operating systems. 
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Semi-decentralized scheduler design 

• Multiple cores share a runqueue: 
 
 
 
 
 
 
 

• Tradeoff between both extremes. 
 

• Examples: 
• VMWare ESX 3.x 
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Hierarchical scheduler design 

• A hierarchy of runqueues, where runqueues further up in the 
hierarchy represent larger fractions of the system: 
 
 
 
 
 
 
 
 
 

• For a more scalable coscheduling:  
• Multiple small coscheduled sets can be processed independently. 
• In the absence of coscheduled sets, this is similar to a 

decentralized scheduler. 
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Case study: Linux CFS 

• One runqueue per core. 
• Load balancing is done periodically and on demand. 

• Honors system topology, tries to avoid costly migrations. 
• Two runqueues are balanced, if they have the same weight.  

• Proportional share scheduling 
• Relies on a balanced system, i. e. proportional share 

scheduling is achieved only locally. 
• No processor is forced idle if a task gets more than its 

proportional share of CPU time. 
• Tasks of a task group might be scheduled on multiple 

processors. 
• Hence, a task group is also represented by multiple runqueues. 
• The share of a task group is split: each representative gets a 

fraction of the share proportional to the weight of the tasks 
within. 
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4.3 Real-time scheduling 

• In real-time systems (e.g. controller for production lines, nuclear 
power plants, engine control,…) the goal of scheduling is different: 

• Within short time constraints, measurements need to be evaluated  
and based on that, action must be taken. 

• Threads are therefore associated with deadlines, at which they must be 
finished. 

• Since meeting the deadlines sometimes is critical for the function of 
the complete system, they need to be considered in scheduling 
decisions. 

• Concerning the implications violating deadlines we make the following 
distinction: 
• hard real-time systems: Violation means failure of the system and cannot 

 be tolerated (Example: Airbag, antiblocking brake). 
• soft real-time systems: Violation means quality reduction but can be

 tolerated (Example: voice over IP, transmission 
 and processing of video streams, synchronization 
 of video and audio). 

• In hard real-time systems often off-line-algorithms are employed to 
guarantee that deadlines can be met. 
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Hard Real-time vs. Soft Real-time 

4-67 
“Value” means value for the user or intended application 
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Basic Concepts 

For real-time threads, it is given by the specification when they can 
start at the earliest and when they must be finished at the latest. 
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Exceeding the deadline (fi > di) is called lateness             L := fi -di   
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Goals 
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The objective functions often depend on whether the lateness can be 
tolerated or not.  

In soft-RT-systems the maximum lateness Lmax can be minimized.  

 T1 T2 T4 T5 T3 

d1 d2 d3 d4 d5 

Maximum lateness Lmax 

T1 T2 T4 T5 T3 

d1 d2 d3 d4 d5 

Maximum lateness Lmax 

Minimizing the maximum lateness in this case means that all other 
deadlines are violated. 

In the following schedule we obtain a much larger lateness, but can 
meet all but one deadlines. 
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On single processor systems without preemption and without 
dependencies the scheduling problems boils down to finding an 
appropriate permutation of the threads.  

In this case the following theorem (EDD = Earliest Due Date) holds: 

Theorem (Jackson's Rule): 

Each schedule, in which the threads are processed in the order of 
non-decreasing deadlines is optimal with regard to Lmax 

The threads need to be sorted according to their deadlines which can be 
done in O(n log n). 

EDD assumes that all threads can start at any time. 

However, in many applications we do have earliest start times ai 
(availability of measurement data). 

By introducing individual start times (∃ i,j: ai ≠ aj) the problem becomes 
NP-hard, i.e. there is no optimal solution in polynomial time.  

Minimization of maximum lateness 
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Minimizing maximum lateness 
(with start times  and preemption) 
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If, however, preemption is possible the following theorem holds which 
again is based on Jackson's rule: 

Theorem (EDF: Earliest Deadline First) 

Each schedule in which at any time the thread with the earliest 
deadline is assigned is optimal with regard to the maximum 
lateness. 
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Periodical threads 
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In many real-time applications we have to deal with periodical tasks that 
have to be finished in due time. Each thread is characterized by its 
period or the rate (which is reciprocal to the period). 
First we have to check whether the sequence of tasks can be executed 
anyway (schedulability test, feasibility test). 
  
 
  
 
 
 
 
For each individual periodical thread the following must hold: 0 < bi ≤ di  
For the set of all periodical threads the following is a necessary condition 
for the existence of a feasible schedule: 
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Periodical threads 
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As scheduling strategy for  periodic threads the so-called rate 
monotonic scheduling (RMS) is used in many cases: 
Threads are assigned a static priority which is inversely proportional to 
their period, i.e. the thread with the smallest period gets the highest 
priority (the priority is according to the rates).  
For independent threads and if the deadlines coincide with the periods 
the following theorem can be proved:  
A set of n periodical threads can be scheduled by a rate-monotonic 
strategy if the following inequality holds (sufficient condition): 
  
      
  
The left hand side of the inequality denotes the required processor 
capacity and the right hand side an upper bound that must be valid in 
order to find a feasible schedule.  
For large n the upper bound means that the processor utilization must 
not be larger than log 2 ≈ 69,3 %. 
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Assumptions: 
(1) Task Ti is periodical with period-length pi  
(2) Deadline di = pi 
(3)  Ti is ready again immediately after pi 
(4)  Ti has a constant execution time bi (<= pi) 
(5)  The smaller the period the higher the priority 

Example: T ={T1, T2, T3}, p={4, 6, 8}, b ={1, 2, 1} 

1 0 5 10 15 20 25 30 

T1 

T2 

T3 

How to schedule on 1 CPU? Just use the above priority scheme! 

 
Rate Monotonic Scheduling 
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Assumptions: 
(1) Task Ti is periodical with period-length pi  
(2) Deadline di = pi 
(3)  Ti is ready again immediately after pi 
(4)  Ti has a constant execution time bi (<= pi) 
(5)  The smaller the period the higher the priority 

Example: T ={T1, T2, T3}, p={4, 6, 8}, b ={1, 2, 1} 

1 0 5 10 15 20 25 30 

T1 

T2 

T3 

Idle 
times 

Hyperperiod 

 
Rate Monotonic Scheduling (RMS) 
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The general necessary feasibility criterion is 
met: 
 
   (1/4 + 2/6 + 1/8) = 17/24 <= 1     

Also the RMS-criterion is satisfied: 
 
 (1/4 + 2/6 + 1/8) = 17/24 = 0,7083 < 3 ( 21/3-1) ≈ 78 %.  

Result of Rate Monotonic Scheduling 
Example 
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Assumptions: 
(1) Task Ti is periodical with period-length pi  
(2) Deadline di = pi 
(3)  Ti is ready again immediately after pi 
(4)  Ti has a constant execution time bi (<= pi) 
(5)  The smaller the period the higher the priority 

Example: T ={T1, T2, T3}, p={4, 6, 8}, b ={1, 2, 2} 

1 0 5 10 15 20 25 30 

T1 

T2 

T3 

How to schedule on 1 CPU? Just use the above priority scheme! 

 
Rate Monotonic Scheduling 
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Assumptions: 
(1) Task Ti is periodical with with period-length pi  
(2) Deadline di = pi 
(3)  Ti is ready again immediately after pi 
(4)  Ti has a constant execution time bi (<= pi) 
(5)  The smaller the period the higher the priority 

Example: T ={T1, T2, T3}, p={4, 6, 8}, b ={1, 2, 2} 

1 0 5 10 15 20 25 30 

T1 

T2 

T3 

Idle times 

 
Rate Monotonic Scheduling (RMS) 
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The general necessary feasibility criterion is 
met: 
 
   (1/4 + 2/6 + 2/8) = 20/24 = 0.833 <= 1     

However, the sufficient RMS-criterion violated: 
 
 (1/4 + 2/6 + 2/8) = 20/24 = 0.8333 > 3 ( 21/3-1) ≈ 78 %.  

Solution: Time Demand Analysis (TDA) 

Result of Rate Monotonic Scheduling 
Example 
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Time Demand Analysis (TDA) 

• Introduced by Lehoczky, Sha and Ding in 1989 
• Idea: Calculate worst case time demand for all threads and 

compare to available time to deadline  
 Find point in time where enough time is available to finish 
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Another scheduling strategy for periodic real-time threads is Earliest 
Deadline First (EDF): 
Threads are assigned a dynamic priority which is inversely proportional 
to the current distance to the deadline, i.e. the thread with the next 
deadline gets the highest priority. Preemption is usually allowed. 
For independent threads and if the deadlines coincide with the periods 
the following theorem can be proved:  
A set of n periodical threads can be scheduled by an earliest deadline 
first strategy if and only if the following inequality holds: 
  
      
  
The left hand side of the inequality denotes the required processor 
capacity. 
 
This means that if a schedule exists for a taskset, EDF is also able to 
schedule that taskset (optimality). 

1
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Earliest Deadline First  
for Periodical threads 
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Multi-Processor Real-Time 
Scheduling 

• Simple approaches such as RMS or EDF do not work for 
multiple processors. 

• Example: Not executable using EDF on two processors. 
 
 
 
 

• However, there is a schedule: 
 
 
 
 
 

• Unfortunately, optimal scheduling is NP-complete in nearly all 
relevant cases. 

4-82 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23 



Earliest Deadline Zero Laxity (EDZL) 

• Idea 
• Global EDF scheduling, but 
• Tasks with zero laxitiy (i.e. that has to run now in order to 

meet the deadline) get highest priority 
 

• Properties 
• Never worse that global EDF 
• Lot of ongoing research on criterias and bounds 
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Earliest Deadline Zero Laxity (EDZL) 

• Not executable using EDF on two processors: 
 
 
 
 
 
 

• Executable using EDZL on two processors: 
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4.4 Plan-based scheduling 

• Scheduling in High Performance Computing (HPC) 
• Scheduling on different levels: 

• Parallel program  (job) – whole machine 
• Processes or threads as part of the parallel program – 

compute node as part of the HPC system 
• Mapping of the processes to compute nodes 
 (more about mapping 
  and scheduling in CC) 
 

• Research is part of a  
    project to build a OS for  
    Grid computing – VRM 

• Jörg Schneider,  
• Lars-Olof Burchard,  
• Barry Linnert 
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HPC applications 

• Parallel programs with different runtime behavior 
• Computational load  
• Communication 
• Dynamic creation and finishing of processes 
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Conditions for running HPC jobs 

• The result of the execution of the parallel program 
should be available at a specific time – deadline 
 
 
 
 
 
 
 
 

• Waste of compute resources should be reduced by using 
time sharing 
• Running various processes on the node 
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Runtime behavior models 

• Using runtime behavior models to schedule and map the 
job to the compute nodes (and network links) 
• Observing the runtime behavior and using 
 this information for future runs 

 
• The operating system running the node 

still schedules the processes of the parallel 
programs 

• Most of the HPC systems are running Linux 
• CFS is the scheduler for the processes 
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CFS-based node scheduler 

• Simulation results for various configuration 
• HPC systems, program types, estimations, communication 

patterns 
 

 
 
 
 
 
 
 
 
 

Results for 1000 jobs of different program model types on homogenous grid 
topology, 0% runtime overestimation with asynchronous communication, 
with RR and time slice of 200 ms 
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Plan-based node scheduler 

• Kelvin Glaß and Barry Linnert (FUB/KBS, TUB) 
• Additional scheduling class to the Linux scheduler 

 
 
 

• Executes processes (parts of processes – tasks) 
following given plan 

• Ensures implicit synchronization between different nodes 
of the cluster              
computer  resource 
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Plan-based node scheduler 

 
• Using the plan-based node scheduler the  

• rate of canceled jobs can be reduced to about 5%, 
• the number of successfully completed job can be 

increased up to 677 (out of 1000) jobs 
• for uniform distributed program behavior types on 

homogenous grid topology, under heavy load, 0% runtime 
overestimation with asynchronous communication. 
 
 
 
 

More results coming soon. 
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