
Chapter 3

Threads

[...] the purpose of abstraction is not to be vague, but to create a new semantic
level in which one can be absolutely precise.
-- Edsger W. Dijkstra, “The Humble Programmer” (1972)

3.1 Thread description

• A process or thread (more about the distinction later) is
represented by a special data structure, the thread
control block (TCB), that contains all relevant
information about the thread, e.g.:

• Thread characteristics:
• Thread ID, name of program

• State information:
• Instruction counter, stack pointer, register contents

• Management data:
• Priority, rights, statistics

• In larger systems thousands of threads are possible.
That requires efficient management (i.e. suitable data
structures).

• Depending on type and usage of OS different solutions
are available.

3-2 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Management of thread control blocks

3-3

a) Single scalars

b) static long array

c) Variably long linked list

1 2 3 4 5 6 7 8 9
TCBs

TCB1

TCB2

TCB3

TCBs

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Management of thread control blocks

3-4

d) tree

e) inverted table

 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

Attribute i

Attribute j

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Management of thread control blocks

3-5

To increase efficiency:

Forming subsets with regard to important attribute values (e.g. thread
state, priority)

threads with identical
attribute value

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Static and dynamic systems

• Static Operating Systems
 All threads are known in advance and statically defined.

• Threads are defined "at the desk". The TCBs are declared as
program variables.

• Threads are used for a specific application.
• The TCBs are generated by a configuration program once.

• Dynamic Operating Systems
 The threads are created and deleted by kernel operations.

 create_thread (id, initial values)
 // create thread control block
 // initialization of thread
 delete_thread (id, final values)
 // return of final values
 // deletion of control block

3-6 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Threads and Address Spaces

• A (logical) address space of a thread is the universe of its valid
addresses, which it can access.

• Modern processors enable not only relative addressing (basis
register), but also provide a memory management unit (MMU)
for address translation.

• That allows to have an arbitrary number of logical address
spaces that automatically can be mapped to the physical
address space.

• That also leads to mutual protection of address spaces.
• Address spaces are independent (orthogonal) to threads.
• Each thread needs an address space at any time but several

relations are possible:
• A thread owns exactly one private address space (Unix process).
• Several threads share an address space (Threads).
• A thread switches from one address space to another.

3-7 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Terminology

Concerning the terminology care must be taken in the relevant
literature:

• A process (task) is mostly considered as a Unix-type process
with a private address space.

• Most operating systems (including current UNIX variants)
offer the possibility to run several processes in a shared
address space.

• They are called lightweight processes or threads.
• Today's Unix variants (e.g. Linux, Solaris, …) offer the original

Unix processes (tasks), that may consist of many threads.
• A Unix process is therefore an address space, that contains at

least one thread.
• For Windows the same holds.
• A group of threads in a shared address space is sometimes

also called team (System V) or actor (Chorus).
• In this lecture course we use the term "thread".

3-8 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Overview of terms used

3-9

Operating system

Unit of execution

Superior unit
 Mach

thread

task
 Chorus

thread

actor
 Mayflower

lightweight process

domain
 V

thread

team
 Amoeba

thread

cluster
 Cosy

process

address space
 Solaris

thread

process
 NT

thread

process

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

3.2 Thread switch

Thread switching
• Thread switch means that the processor stops the execution of the

current thread and continues with the execution of another thread.
• Thread switch is the transition from one instruction sequence to

another one.

3-10

Processor

Device 2

Device 1

time

Device 3

?

idle switch select

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Switching by jumping

• In the most simple case the switch can be programmed statically
and directly in the threads.

• It means the we insert a jump instruction that jumps into another
thread.

• To continue the work at the very point where the thread was left, we
have to memorize the position where we have to return.

• A switching point therefore consists of at least
• continuation address (where did we interrupt the work)
• jump instruction (where do we want to continue)

3-11

Running thread (t_run)

To next thread
(t_next) continuation address

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Switching by jumping

3-12

jmp L21

jmp L11

P1 P2
: L11:

L21:

jmp L12
L22:

L12:

:

jmp L22 :

L11

L12

L22

L21

P2 P1

time

In program: in execution:

• For certain application areas (real-time systems) the time needed to
switch from one thread to another is an important quality measure.

• The thread switch should be realized efficiently.
• The jump is the "minimal solution".

 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Switching more general

• Switching by direct jump is very inflexible and applicable
only in very special cases.

• In general the thread switch will be more costly since
• we do not know, from where we return to the interrupted

thread (memorizing the continuation address),
• the next thread, to which we switch, is not always the

same (selection of next thread),
• the processor contains essential parts of the thread

description that must not get lost (register reload).

3-13 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Memorizing continuation address

3-14

Before switching to the new thread, we store the address of the next
instruction to be executed in a dedicated variable ni (next instruction) of
thread control block.

SWITCH

// store address L in variable ni (next instruction)
// in TCB of running thread t_run

jmp (t_next.ni)
L:

t_run.ni := L

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

3-15

thread T thread T

2 := L22

ni := L21

L21:

L22:

2

2

2 thread T

3

3

1 ni
ni

ni ni

1

Switching with variable continuation
addresses

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Selection of next thread

• Up to now we assumed that we know the next thread to
which we want to switch.

• However, in most cases this target thread is not
constant but will be determined at the very time of
switching:

• Criteria for selection:
• number of thread (cyclic switching)
• order of arrival
• priority (urgency)

• constant
• dynamic

• The selection of next thread influences the distribution
of the processor's computing capacity to the threads.

3-16 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Selection of next thread

• Let TSelect() be a function that selects the next thread
according to some criteria.

3-17

SWITCH

// store address L in variable ni (next instruction)
// in TCB of running thread t_run

jmp (t_next.ni)
L:

t_next := TSelect()
t_run.ni := L

// select next thread to run

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Selection of next threads

• The selection problem can be solved such that the
threads are already totally ordered with regard to the
execution order.

• The first thread (t_next) in this sequence is selected.
• New arriving threads will be inserted into that sequence

according to the chosen order.

3-18

Next thread

Sequence of threads

Newly arriving thread

insert append

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Selection of next threads

• When using priorities, the order can be organized in

two dimensions

3-19

Groups of equal priority

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Processor registers

• Threads use arithmetic registers of the processor to
store intermediate results.

• If we simply jump to a next thread, their content will
be lost (overwritten).

• The "switch by jump" solution can only be used when
• the contents of the registers will no longer be needed and
• the new thread does not expect valid register contents

3-20 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Thread context

• Besides the instruction pointer the processor keeps
much more thread specific information in its registers:

• Contents of arithmetic registers, index registers,
processor state etc., that represent the state of the
execution of the program, i.e. of the thread.

• Contents of address registers, segment tables, interrupt
masks, access control information etc. that make up the
thread‘s execution environment.

• Altogether, i.e. the complete thread specific information
stored in the processor is called thread context.

• This thread context has to be saved as part of switching
and restored when the thread is resumed.

• Data that is constant and available in the TCB, does not
need to be saved.

 3-21 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Context switch

• Context switch is the most time consuming part of thread
switch.

• To speed it up, the processor hardware can give some
support:
• by special instructions that allow storing the complete set of

registers to the memory in one instruction (and also
restoring).

• by providing several sets of registers (e.g. 8) on the
processor, such that at thread switch only the register
needs to be saved that indicates the number of the
currently valid register set.

• Thread switch can be comparably fast, if only the
arithmetic registers need to saved and reloaded while the
addressing environment remains constant (thread switch
within an address space, lightweight threads, threads).

3-22 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Switch
(as open instruction sequence)

Switching now has the following form:

3-23

This sequence can be inserted in the thread‘s program at all
places where a thread switch should to take place.

SWITCH

save context of t_run

select t_next

save next instruction of t_run

jump to t_next.ni

t_run := t_next

load context of t_run

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Switching as a subroutine

• If there are many places where
switching takes place, it is
worthwhile to organize switching as a
subroutine.

• If all thread switches are carried out
using the same switching subroutine,
the saving of the continuation
address (ni) and the jump to the
next thread can be omitted.

• This is already done as part of the
subroutine call and the return
operation, respectively.

• This subroutine call is unusual
insofar as one thread makes the call
but another thread will return from
that call.

3-24

SWITCH()

save context of t_run

select t_next

t_run := t_next

load context of t_run

return

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

T1 T2

Assumption: Given 2 CPU- bound threads T1 and T2,
 1 CPU and no interference with peripherals.
 Any dispatching is done cooperatively via switch()

switch(T2)

switch(T1)

switch(T2)

running

running

running

running

Thread Control:
Cooperative Scheduling

3-25 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23 3-25

Simplified Calling of “Procedure” switch()

T1 T2

switch(T2)

switch(T1)

switch(T2)

switch

call switch save context of T1

reload context of T2
? return from

switch
!!! A bit tricky !!!
Return to another caller

Thread Control

3-26 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23 3-26

T1 T2

switch(T2)

switch(T1)

switch(T2)

call switch
save context of T1

reload context of T2
? return from

switch

save context of T2

reload context of T1
? call switch return from

switch

switch

Simplified Calling of “Procedure” switch()

Thread Control

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23 3-27 3-27

T1 T2

switch(T2)

switch(T1)

switch(T2)

call switch save context of T1

reload context of T2
? return from

switch

save context of T2

reload context of T1
? call switch return from

switch

call switch
save context of T1

reload context of T2
?

return from
switch

switch

Thread Control

Simplified Calling of “Procedure” switch()

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23 3-28 3-28

procedure switch(NT:thread)
begin
…
save context of CT
… ? …
load context of NT
…
return to NT
end

This Part of switch still
runs under control of CT

This Part of switch already
runs under control of NT

Assumption: Both threads T1 and T2 already have
 called switch() many times before.

Simplified Implementation of “Procedure” switch

Thread Control

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23 3-29 3-29

procedure switch(NT:thread)
begin
…
save context of CT
… ? …
load context of NT
…
return to NT
end

This Part of switch still
runs under control of CT

This Part of switch already
runs under control of NT

Assumption: Both threads T1 and T2 already have
 called switch() many times before.
Corollary: Each thread gets and gives up control within
 switch code at exactly the same point.

Thread Control

Simplified Implementation of “Procedure” switch

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23 3-30 3-30

procedure switch(NT:thread)
begin
…
save context of CT
… ? …
load context of NT
…
return to NT
end

This Part of switch still
runs under control of CT

This Part of switch already
runs under control of NT

Assumption: Both threads T1 and T2 already have
 called switch() many times before.
Corollary: Each thread gives up and gets control within
 switch code at exactly the same point.

How to solve this problem?

3-31

Thread Control

Simplified Implementation of “Procedure” switch

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23 3-31

procedure switch(NT:thread)
begin
…
save context of CT
CT.sp := SP, SP := NT.sp
load context of NT
…
return to NT
end

This Part of switch still
runs under control of CT

This Part of switch already
runs under control of NT

Assumption: Both threads T1 and T2 already have
 called switch() many times.
Corollary: Each thread gets and gives up control within
 switch code at exactly the same point.

Change stack pointer

Thread Control

Simplified Implementation of “Procedure” switch

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23 3-32 3-32

Stack Contents during simplified switch

Local Variables of T1

Local Variables of T1
SP

Local Variables of T2

Local Variables of T2

Parameter T1

Return address to T2

Local Variables of switch

Local Variables of switch
SP

SP

SP
T1
runs

3-33

Thread Control

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23 3-33

Local Variables of T1

Local Variables of T1

Parameter T2

Return address to T1 Call
switch

SP

SP

Local Variables of T2

Local Variables of T2

Parameter T1

Return address to T2

Local Variables of switch

Local Variables of switch
SP

SP

SP

Thread Control

3-34

Stack Contents during simplified switch

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23 3-34

Local Variables of T1

Local Variables of T1

Parameter T2

Return address to T1

Local Variables of switch

Local Variables of switch Save
Context
of T1

SP

SP

SP

Local Variables of T2

Local Variables of T2

Parameter T1

Return address to T2

Local Variables of switch

Local Variables of switch
SP

SP

SP

Thread Control

3-35

Stack Contents during simplified switch

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23 3-35

Local Variables of T1

Local Variables of T1

Parameter T2

Return address to T1

Local Variables of switch

Local Variables of switch Save
Context
of T1

SP

SP

SP

Local Variables of T2

Local Variables of T2

Parameter T1

Return address to T2

Local Variables of switch

Local Variables of switch
SP

SP

SP

Save to CT tcb

Switch Stack Pointer

Thread Control

3-36

Stack Contents during simplified switch

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23 3-36

Local Variables of T1

Local Variables of T1

Parameter T2

Return address to T1

Local Variables of switch

Local Variables of switch

SP

SP

SP

Local Variables of T2

Local Variables of T2

Parameter T1

Return address to T2

Local Variables of switch

Local Variables of switch
SP

SP

SP

Load from NT tcb

Thread Control

3-37

Stack Contents during simplified switch

Switch Stack Pointer

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23 3-37

Local Variables of T1

Local Variables of T1

Parameter T2

Return address to T1

Local Variables of switch

Local Variables of switch Restore
Context
of T2

SP

SP

SP

Local Variables of T2

Local Variables of T2

Parameter T1

Return address to T2

Local Variables of switch

Local Variables of switch
SP

SP

SP

Thread Control

3-38

Stack Contents during simplified switch

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23 3-38

Local Variables of T1

Local Variables of T1

Parameter T2

Return address to T1

Local Variables of switch

Local Variables of switch

SP

SP

SP

Local Variables of T2

Local Variables of T2

Parameter T1

Return address to T2
SP

SP

Return
from
switch

Thread Control

3-39

Stack Contents during simplified switch

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23 3-39

Local Variables of T1

Local Variables of T1

Parameter T2

Return address to T1

Local Variables of switch

Local Variables of switch
SP

Local Variables of T2

Local Variables of T2
SP

T2
runs

Thread Control

3-40

Stack Contents during simplified switch

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23 3-40

Automatic switching

• In many cases it is not possible or not
reasonable to explicitly insert
switching points into the threads.

• More desirable is automatic
switching.

• To that end we need a clock (timer),
i.e. a hardware device offering the
following functions:
• specifying a deadline (timer set)
• interrupt on timeout

3-41

Set

interrupt

timer

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Automatic switching

• With automatic switching programs can remain
unchanged.

• The thread switch is triggered "from outside" and can
happen at any arbitrary point in time. (Interrupts may
not be switched off.)

3-42

SWITCH

Automatic switching

SWITCH

Voluntary switching

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Conditioned switching

• In the course of a thread situations can arise where a
continuation of the processing is temporarily not
possible, e.g. if the thread has to wait for input data.

• Instead of wasting time, the processor can do some
other work.

• This is called conditioned switching, since the fact that
switching takes place or not depends on some condition.

• Such a condition can be represented by a simple binary
variable.

3-43

satisfy condition

set condition

test condition

condition

switch

yes

no

reset condition

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Objective: Establishing Fair Scheduling

Assumption: No other thread switching events

Simplification: No detailed clock interrupt handling

time

Start of Time Slice of CT End of Time Slice of CT

CPU Time Slice of Current Thread

Thread Switching
due to End of Time Slice

3-44 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

time

Current
thread

Clock
Interrupt

?

Running in
User Mode

green blue

Simplified Thread Switch

3-45 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

time

Current
thread

Clock
Interrupt

?

Hardware accepts Interrupt
switching to Kernel Mode

User Level

Kernel Level

green blue

3-46

Simplified Thread Switch

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

time

Current
thread

Clock
Interrupt

Clock
Interrupt Handling

User Level

Kernel Level

green blue

3-47

Simplified Thread Switch

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

time

Current
thread

Clock
Interrupt

Clock
Interrupt Handling

Thread
Switch

Internal
Call

User Level

Kernel Level

green blue

3-48

Simplified Thread Switch

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

time

Current
thread

Clock
Interrupt

Clock
Interrupt Handling

Thread
Switch

Internal
Call

User Level

Kernel Level

green blue

3-49

Simplified Thread Switch

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

time

Current
thread

Clock
Interrupt

Clock
Interrupt Handling

Thread
Switch

Internal
call

Return from
Internal call

? ? ?

User Level

Kernel Level

green blue

3-50

Simplified Thread Switch

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

time

Old Current
Thread

Clock
Interrupt

Clock
Interrupt Handling

Thread
Switch

Internal
call

Return from
? ? ?
to

User Mode

New Current
Thread

Return from
Internal call

? ? ?

User Level

Kernel Level

green blue

3-51

Simplified Thread Switch

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

time

Old Current
Thread

Clock
Interrupt

Clock
Interrupt Handling

Thread
Switch

Internal
call

Return from
? ? ?
to

User Mode

New Current
Thread

Return from
Internal call

? ? ?

User Level

Kernel Level

green blue

3-52

Simplified Thread Switch

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23 3-53

time

Old Current
Thread

Clock
Interrupt

Clock
Interrupt Handling

Thread
Switch

Internal
call

Return from
? ? ?
to

User Mode

New Current
Thread

Return from
Internal call

? ? ?

User Level

Kernel Level

green blue

Simplified Thread Switch

Old Current
Thread

Clock
Intr Handling

Thread
Switch

Current
Thread

? ? ?

time time

green blue

3-54

Simplified Thread Switch

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Old Current
Thread

Clock
Intr Handling

Thread
Switch

Current
Thread

? ? ?

time

Clock
Interrupt

time

blue green

3-55

Simplified Thread Switch

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Old Current
Thread

Clock
Intr Handling

Thread
Switch

Current
Thread

? ? ?

time

Clock
Interrupt

Clock
Intr Handling

time

blue green

3-56

Simplified Thread Switch

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Old Current
Thread

Clock
Intr Handling

Thread
Switch

Current
Thread

? ? ?

time

Clock
Interrupt

Clock
Intr Handling

Internal
call

Thread
Switch

time

blue green

3-57

Simplified Thread Switch

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Old Current
Thread

Clock
Intr Handling

Thread
Switch

Current
Thread

? ? ?

time

Clock
Interrupt

Clock
Intr Handling

Internal
call

? ? ?

Thread
Switch

time

blue green

3-58

Simplified Thread Switch

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Old Current
Thread

Clock
Intr Handling

Thread
Switch

Current
Thread

? ? ?

time

Clock
Interrupt

Clock
Intr Handling

Internal
call

Thread
Switch

time

clck Intr
post

blue green

3-59

Simplified Thread Switch

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Old Current
Thread

Clock
Intr Handling

Thread
Switch

Current
Thread

? ? ?

time

Clock
Interrupt

Clock
Intr Handling

Internal
call

clck Intr
post

Thread
Switch

time

Return
to

User Mode

New Current
Thread

blue green

3-60

Simplified Thread Switch

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23 3-61

Old Current
Thread

Clock
Intr Handling

Thread
Switch

Current
Thread

? ? ?

time

Clock
Interrupt

Clock
Intr Handling

Internal
call

clck Intr
post

Thread
Switch

time

Return
to

User Mode

New Current
Thread

blue green

Simplified Thread Switch

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23 3-62

Old Current
Thread

Clock
Intr Handling

Thread
Switch

Current
Thread

? ? ?

time

Clock
Interrupt

Clock
Intr Handling

Internal
call

clck Intr
post

Thread
Switch

time

Return
to

User Mode

New Current
Thread

Simplified Thread Switch

Old Current
Thread

Clock
Intr Handling

Thread
Switch

clck Intr
post

Thread
Switch

Return
to

User Mode

New Current
Thread

time

3-63

Simplified Thread Switch

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Old Current
Thread

Clock
Intr Handling

Thread
Switch

clck Intr
post

Thread
Switch

Return
to

User Mode

New Current
Thread

time

3-64

Simplified Thread Switch

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Old Current
Thread

Clock
Intr Handling

clck Intr
post

Thread
Switch

Return
to

User Mode

New Current
Thread

time

3-65

Simplified Thread Switch

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Old Current
Thread

Clock
Intr Handling

clck Intr
post Return

to
User Mode

New Current
Thread

3-66

Simplified Thread Switch

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Assumption:

Hardware automatically pushes SP, IP and Flags of
Current Thread T1 onto its Kernel Stack within TCB1!

3-67

Thread Switch

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

3-68

Thread Switch

Note: Kernel Stack
of T1 (CT) is empty!

Current Thread T1 is running.

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

3-69

Thread Switch

Current Thread T1 is running.
Clock Interrupt saving context of T1
and ...

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

3-70

Thread Switch

Current Thread T1 is running.
Clock Interrupt saving context of T1
and loading context of Clock IH.

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

3-71

Thread Switch

Current Thread T1 is running.
Clock Interrupt saving context of T1
and loading Context of Clock IH.
CIH states End of Time Slice of T1
calling Thread Switch(T2).

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

3-72

Thread Switch

Current Thread T1 is running.
Clock Interrupt saving context of T1
and loading Context of Clock IH.
CIH states End of Time Slice of T1
calling Thread Switch(T2).
Save Kernel SP(TCB T1) and ...

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Current Thread T1 is running.
Clock Interrupt saving context of T1
and loading Context of Clock IH.
CIH states End of Time Slice of T1
calling Thread Switch(T2).
Save Kernel SP(TCB T1) and ...

3-73

Thread Switch

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

3-74

Thread Switch

Current Thread T1 is running.
Clock Interrupt saving context of T1
and loading Context of Clock IH.
CIH states End of Time Slice of T1
calling Thread Switch(T2).
Save Kernel SP(TCB T1) and
load Kernel SP(TCB T2).

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

3-75

Thread Switch

Current Thread T1 is running.
Clock Interrupt saving context of T1
and loading Context of Clock IH.
CIH states End of Time Slice of T1
calling Thread Switch(T2).
Save Kernel SP(TCB T1) and
load Kernel SP(TCB T2).
Next Steps? Complete it!

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Example: Simple Thread Switch on
ARM

; save process state onto stack

STMFD SP!, {r14} ; link register for interrupt

STMFD SP!, {r0-r14}^ ; user registers

MRS r2, spsr ; saved CPU state into R2

STMFD SP!, {r2} ; and then to stack

STR SP, [r0] ; pcb->cpu_state = SP

; switch to other process

LDR SP, [r1] ;SP = next_pcb->cpu_state

; restore context

LDMFD SP!, {r2} ; CPU state to R2

MSR spsr, r2 ; and then into saved state

LDMFD SP!, {r0-r14}^ ; user registers

LDMFD SP!, {pc} ; link register for return

 ; from interrupt

3-76 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

3.3 Switching Prevention

• When using automatic switching, which is triggered by
an external signal, we have no control of place and time
of switching.

• It can happen that switching is triggered at exactly the
time when a (voluntary) switching is just taking place.
This can lead to unwanted behavior and errors.

• During switching we must make sure that no additional
switching is triggered.

• Generally, it can result in errors, when a kernel
operation is interrupted by another kernel operation,
since kernel operations often work on shared data
structures.

• If switching can take place at any point of time, then an
arbitrary interleaving of threads and also kernel
operations is possible.
 3-77 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Problems due to interleaved
execution

• In kernel operations there are places, where depending
on a condition some action is performed.

• It cannot be excluded that between the evaluation of
the condition and the following action a thread switch
takes place and before returning to this thread another
threads changes the condition (Example: allocation of
resources).

3-78

The action is based on wrong assumptions can result in faulty behavior.

condition := no

condition

action

yes

no

autom.
switch

Ti Tj

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Kernel as critical section

• Critical sections are safe if such an interleaving can be
excluded.

• When a thread is within a critical section, no other thread is
allowed to enter a critical section that is in conflict.

• This is called mutual exclusion.
• In OS kernels all possible places of conflict need to be

identified and protected accordingly.
• Because in the kernel a large number of those critical sections

can be found, we can do it the simple way and regard the
entire kernel as a critical section.

• As a consequence we put the whole kernel under mutual
exclusion.

• It must be made sure that kernel operations can not be
executed in an interleaved fashion but are executed until
completion.

3-79 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Realization of kernel exclusion

• If the processor does not provide an interrupt mechanism, no
interrupt can occur.

• If the processor does provide an interrupt mechanism, we may
disable interrupts for the duration of the kernel operation.

• By doing so, we have reduced the second case to the first case.
• But this is possible only with uniprocessor machines.
 In multiprocessor systems we may - even with interrupts

disabled - experience a simultaneous execution of different
kernel operations that access memory in an interleaved fashion.

• In this case we must enforce mutual exclusion for kernel
operations explicitly by a central kernel lock.

• This is, however, no appropriate solution for many-core
systems, since it would lead to a situation where parallel
threads have to line up at the entry of the kernel.

3-80 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Kernel exclusion

• The realization of kernel exclusion obviously depends on
• interrupts being possible or not
• multiple processors or not

• Therefore we distinguish four cases :
• Case 1: single processor system without interrupts
• Case 2: single processor system with interrupts
• Case 3: multiprocessor system without interrupts
• Case 4: multiprocessor system with interrupts

• Case 1 does not need any precautionary measures since

there is no reason to leave a kernel operation before
completion.

3-81

kernel operation

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

3-82

• The kernel operation is bracketed by an disable interrupt
and an enable interrupt.

Interrupt lock

Signals
from
peripheral
devices

processor

Mask register

enable interrupt

disable interrupt
kernel operation

Case 2: single processor system with
interrupts

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

• Using an atomic test-and-set instruction, we can come up
with a simple solution:
• If the kernel lock is busy, we repeatedly check its value in a

mini loop.
• This is called busy waiting.
• Such a lock is called a spin lock.
• Busy waiting means some waste of compute capacity that

can be tolerated since kernel operation are usually short.

3-83

reset kernel_lock

kernel_lock set ?
set kernel_lock yes

atomic
machine instruction kernel operation

Case 3: Multiprocessor system
without interrupts

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

• Here both techniques kernel lock and disabling interrupts
must be employed.

• So we want to discuss the following three solutions:

3-84

 (a) (b) (c)

reset kernel_lock

kernel_lock set ?

kernel operation

set kernel_lock
yes

disable interrupt

enable interrupt

reset kernel_lock

kernel_lock set ?

kernel operation

set kernel_lock
yes

disable interrupt

enable interrupt reset kernel_lock

kernel_lock set ?
set kernel_lock

yes

disable interrupt

enable interrupt

kernel operation

Case 4: Multiprocessor system with
interrupts

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Discussion of solutions

• Solution A:
 Here we have to consider that interrupt handling is also a

kernel operation that also needs the kernel lock.
 If there is right after setting the kernel lock an interrupt, the

interrupt processing would try to acquire the kernel lock in
vain.

 The thread would be stuck at that point.

• Solution B
 An operation that acquires the kernel lock and disables the

interrupts in one atomic operation would be ideal.
 Unfortunately, this is not offered by today‘s processors.

• Solution C
 Thus, we first have to disable the interrupts and then acquire

the kernel lock. Solution C is the correct one.

3-85 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

3.4 Thread states

• We used the conditioned switch to release the processor, when the
current thread could not continue execution for some reason.

• In this case we switch to another thread. This new thread, however,
may also be blocked, e.g. because it waits for the completion of an
I/O operation. If we switch to such a thread, the processor would be
again immediately released.

• This way, we could try one thread after another until we finally may
detect a thread that is ready to resume execution.

• To speed up the search for a ready thread, we combine threads
according to their state (resumable, not resumable) to thread
subsets.

• If we also consider the currently running thread, we can distinguish
three different states:
• State running: threads that are currently executed on the processor
• State ready: threads that are ready to be executed but have to

 wait for the processor to become free.
• State waiting: threads that are blocked since they wait for some

 (external) event

3-86 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Thread states and their transitions

3-87

Ready Running

RELINQUISH

ASSIGN

Active

Waiting

(Blocked)

DEBLOCK BLOCK

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

State change operations

For all state changes, the corresponding kernel operations are available:
• Relinquish
 Voluntary switching to another thread. The currently running thread

remains executable, i.e. its state changes to "ready".
• Assign
 Taking the next thread from the ready set to resume its operation on

the processor.
• Block
 Leave the processor since some condition does not hold (conditioned

switch). Execution must not resumed until condition is met. Thread
switches to state "waiting" or "blocked".

• Deblock
 If the event happened for which the blocked thread waited it

changes its state from waiting to ready and is inserted into the set of
ready threads.

3-88 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

State change operations

• When executing the state transitions we have to distinguish:
• the state change operation themselves,
• other actions that may be necessary related to the state change.

• The pure state change operations depend on how we implement the
thread states. Example: stch_deblock ("stch" for "state change")
• Thread state as attribute in the TCB

• Thread state as membership in list

3-89

ready

TCB

TCB
stch_deblock

waiting

stch_deblock SWT= sequence of waiting threads

SRT = sequence of ready threads

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Thread switch as kernel operation

• Besides the state change as an operation at the TCB data
structure we also perform the switch operation itself.

• “Relinquish” as a kernel operation may look like this:

3-90

RELINQUISH

stch_relinquish(t_run) // state change of running thread from running to ready

switch(t_run, t_next) // switch threads, i.e. save and load thread context

stch_assign(t_run) // state change of new running thread from ready to running

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Dynamic System

• In dynamic systems the set of threads is variable.

• For dynamic systems, we need the following operations
• Activate / Deactivate

• A thread may be defined (there exists a TCB), even code and
data segment may be available, but the thread "rests" , i.e. it
is not active.

• We distinguish between active and inactive threads.
• Transition between these states are possible by means of the

operations activate and deactivate.
• Create / Delete

• In a second step we have to assume that threads are not yet
available at system start and need to be created (and deleted)
explicitly.

• For that we provide the operations create and delete.

3-91 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Complete state diagram

3-92

Ready

RELINQUISH

ASSIGN

Active

Waiting
(blocked)

Not
active

Existent

DEACTIVATE

ACTIVATE

Not
existent

CREATE

DELETE

Running

DEBLOCK BLOCK

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Thread states in Unix

3-93

return
to user

return

preempt

reschedule
thread

sleep

exit
interrupt,

interrupt return

system call,
interrupt

wakeup

swap out

wakeup

swap in

swap out

enough
memory

not enough memory
(swapping system only)

fork

Zombie

Kernel
Running

User
Running

Preempted

Asleep in
Memory

Ready to Run
in Memory

Created

Sleep,
Swapped

Ready to Run
Swapped

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

3-94

Running

Standby

Ready

Waiting

Terminated Initialized

Transition

Execution
completes

Context
switch

Preempt

Kernel stack
outswapped

Kernel stack
inswapped

Reinitialize

Wait
complete

Wait
complete

Wait on
object

Select
Preempt

Start

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Windows thread states

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Process states IBM VM/CMS

3-95

Process states Siemens BS 2000

3-96 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

• Up to now, a thread remains being executed until
• it voluntarily gives up the execution (relinquish),
• it is forced to give up execution by a clock interrupt,
• it cannot continue due to some condition it is waiting for.

• In many application areas not all activities (and the threads as
their representatives) are of equal importance or urgency which
leads to the concept of priorities.

• When using priorities, we want to make sure that at any time
the thread with the highest priority is being executed.

• The consequence is that we do not wait until one of the above
situations for thread switch occurs but immediately switch if a
thread with a higher priority shows up, i.e. enters the ready
queue.

• We say, the current thread is being preempted by the thread
with the higher priority.

3-97

3.5 Preemptions and Idling

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Check for preemption

• The priority rule requires that no ready thread may posses a higher
priority than a running one.

• If we assume that this condition currently holds and the priorities are
constant a violation of that rule can only happen when a new thread
enters the ready queue.

• According to our state diagram there are exactly three transitions into
the ready state.
• relinquish
• deblock
• activate

3-98

t_run.prio < t.prio

stch_relinquish(t_run)

switch(t_run, p)

stch_assign(t_run)

N
check_preemption(t)

Within these operations we have
to check whether the thread
performing the transition has a
higher priority than the currently
running ones.
If this is the case we switch to the
more urgent one.

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Idle problem

• In operating with waiting states it may happen that all threads
are blocked since they are waiting for something. In this case
the processor has nothing to do.

• To handle this situation in an elegant and consistent way we
simply introduce an idle thread.

• It must have the following properties:
• must not stop (cyclic thread, endless loop),
• lowest priority (to be preempted by any real thread),
• must be preemptable at any time.

• Examples
• Empty loop while true do; (usually wastes energy)
• Dynamic Stop If available: Special machine instruction that does not

 access memory but reacts to external signals (such as
 halt or entering C-states on x86, dynamically disables
 parts of processor)

• Insertion of useful housekeeping tasks:
 Checks, reorganizations (e.g. garbage collection)

 3-99 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

3.6 Initialization

• How can we switch to a thread for the first time?
• Each "entrance" to a thread takes place via the

procedure "switch".

3-100

kernel switch

T1 T2

part 1

part 2

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Initialization problem

• The thread starts and ends in the "kernel of the
kernel", in the procedure "switch".

3-101

t_run := t_next

load context of t_run

(program of t_run)

save context of t_run

select t_next

prologue: switch part 2

epilogue: switch part 1

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Initialization problem

• We have to initialize the thread (thread control block,
stack) such that it looks as if it is just “in the middle” of
the procedure switch.

• The switch, however, may be entered depending on the
structure of the kernel after some other procedure calls.

3-102

kernel operation 1 kernel operation 2 switch

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Thread initialization (Example)

3-103

5000

6000
6200 6300

Thread program Kernel op. 1 Kernel op. 2 switch

6300

1000
2000
1003

:

:

:

5000
6000
6200

Instr. counter

Stack base
Stack end
Stack pointer

1000
1001
1002
1003

Thread control block (TCB) stack

:

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

First entrance to a thread

3-104

From somewhere

Switch

Thread program

Kernel interface

Prepared during initialization

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

3.7 Kernel operation for thread
management

3-105

Kernel operations

Thread state change operations

Data structure operations

Kernel memory management

Kernel interface

threads

(for dynamic Systems)

Thread management

addressed in lecture

Thread interaction

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

 kernel module thread management;
 export <thread operations>;
 import <state change operations>;
 procedure CREATE_THREAD(P: thread);
 begin
 { create TCB for thread P;}
 STCH_CREATE(T)
 end;
 procedure DELETE_THREAD(P: thread);
 begin
 STCH_DELETE(T);
 { delete TCB of thread P;}
 end;
 procedure SET_ATTRIBUTE(P: thread; A: attribute; V: value);
 begin
 P.A := V
 end;
 procedure READ_ATTRIBUTE(P: thread; A: attribute; V: value);
 begin
 V := P.A
 end;

3-106

Example: Kernel operations for
thread management I

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

 procedure RELINQUISH_THREAD(T: thread);
 begin
 STCH_RELINQUISH(T);
 SWITCH(P,T_NEXT);
 STCH_ASSIGN(T_RUN)
 end;
 procedure BLOCK_THREAD(WT: sequence of thread; T: thread);
 begin
 if T = T_RUN then
 begin
 STCH_BLOCK(WT,T);
 SWITCH(T,T_NEXT);
 STCH_ASSIGN(T_RUN)
 end
 end;
 procedure DEBLOCK_THREAD(WT: sequence of thread; T: thread);
 begin
 STCH_DEBLOCK(WT,T);
 { check for preemption}
 end;

3-107

Example: Kernel operations for
thread management II

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

 procedure ACTIVATE_THREAD(T: thread);
 begin
 { initialize TCB and stack;}
 STCH_ACTIVATE(T);
 { check for preemption}
 end;
 procedure DEACTIVATE_THREAD(T: thread);
 begin
 if T /= T_RUN
 then begin
 case T.STATE
 waiting: STCH_DEBLOCK(waiting queue of T,T);
 ready:
 end;
 { delete objects created by thread T}
 { finish all activities of T}
 STCH_DEACTIVATE(T);
 end
 else begin
 STCH_RELINQUISH(T);
 { delete objects created by thread T}
 { finish all activities of T}
 STCH_DEACTIVATE(T);
 SWITCH(T,T_NEXT);
 STCH_ASSIGN(T_RUN) // !!!
 end
 end;
 end thread management.

3-108

Example: Kernel operations for
thread management III

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

• Many modern programming languages contain a thread
concept to formulate concurrent activities within
programs (e.g. Java Threads).

• Or there are programming libraries, that extend a
programming language by a thread concept.

• What is the relation of these threads to OS threads?
• How does the OS support those threads?

3-109

3.8 Threads in Programming
Languages

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

3-110

OS kernel

one program
one thread

 runtime

system

one program
one thread

 runtime

system

OS kernel

one program
many threads

 runtime

system

one program
many threads

 runtime

system

Classic multiprogramming:

Independent threads in private
address spaces.

Threads in a programming
language without OS support:

For the OS these threads are
not visible.

The whole program is one
thread to the OS.

Threads in OS and Programming
Languages

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

3-111

OS kernel

one program
many threads

 runtime

system

one program
many threads

 runtime

system

OS kernel

one program
many threads

one program
many threads

Programming language
threads are mapped 1:1 to
OS-threads.

The programming language
does not support threads.

The parallel program consists
of OS-threads, that share an
address space (e.g. Pthreads)

Threads in OS and Programming
Languages

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Threads in OS and Programming
Languages

3-112 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

User-level threads are
mapped m:n to OS-threads.

 OS kernel

one program
many threads

one program
many threads

Further References

• Stallings,W.: Operating Systems 6th ed., Prentice
 Hall, Chapter 3

3-113 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

	Chapter 3
	3.1 Thread description
	Management of thread control blocks
	Management of thread control blocks
	Management of thread control blocks
	Static and dynamic systems
	Threads and Address Spaces
	Terminology
	Overview of terms used
	3.2 Thread switch
	Switching by jumping
	Switching by jumping
	Switching more general
	Memorizing continuation address
	Switching with variable continuation addresses
	Selection of next thread
	Selection of next thread
	Selection of next threads
	Selection of next threads
	Processor registers
	Thread context
	Context switch
	Switch �(as open instruction sequence)
	Switching as a subroutine
	Foliennummer 25
	Foliennummer 26
	Foliennummer 27
	Foliennummer 28
	Foliennummer 29
	Foliennummer 30
	Foliennummer 31
	Foliennummer 32
	Foliennummer 33
	Foliennummer 34
	Foliennummer 35
	Foliennummer 36
	Foliennummer 37
	Foliennummer 38
	Foliennummer 39
	Foliennummer 40
	Automatic switching
	Automatic switching
	Conditioned switching
	Foliennummer 44
	Foliennummer 45
	Foliennummer 46
	Foliennummer 47
	Foliennummer 48
	Foliennummer 49
	Foliennummer 50
	Foliennummer 51
	Foliennummer 52
	Foliennummer 53
	Foliennummer 54
	Foliennummer 55
	Foliennummer 56
	Foliennummer 57
	Foliennummer 58
	Foliennummer 59
	Foliennummer 60
	Foliennummer 61
	Foliennummer 62
	Foliennummer 63
	Foliennummer 64
	Foliennummer 65
	Foliennummer 66
	Foliennummer 67
	Foliennummer 68
	Foliennummer 69
	Foliennummer 70
	Foliennummer 71
	Foliennummer 72
	Foliennummer 73
	Foliennummer 74
	Foliennummer 75
	Example: Simple Thread Switch on ARM
	3.3 Switching Prevention
	Problems due to interleaved execution
	Kernel as critical section
	Realization of kernel exclusion
	Kernel exclusion
	Case 2: single processor system with interrupts
	Case 3: Multiprocessor system without interrupts
	Case 4: Multiprocessor system with interrupts
	Discussion of solutions
	3.4 Thread states
	Thread states and their transitions
	State change operations
	State change operations
	Thread switch as kernel operation
	Dynamic System
	Complete state diagram
	Thread states in Unix
	Windows thread states
	Process states IBM VM/CMS
	Process states Siemens BS 2000
	3.5 Preemptions and Idling
	Check for preemption
	Idle problem
	3.6 Initialization
	Initialization problem
	Initialization problem
	Thread initialization (Example)
	First entrance to a thread
	3.7 Kernel operation for thread management
	Example: Kernel operations for thread management I
	Example: Kernel operations for thread management II
	Example: Kernel operations for thread management III
	3.8 Threads in Programming Languages
	Threads in OS and Programming Languages
	Threads in OS and Programming Languages
	Threads in OS and Programming Languages
	Further References

