
Chapter 2

Architecture

The difference between a good and a poor architect is that the poor
architect succumbs to every temptation and the good one resists it.
-- Ludwig Wittgenstein

2.1 Coarse structure

A system (e.g. operating system, software system) consists of
• Elements
• Relations between elements

 The elements are functional units with interactions of different

kinds in between (data flow, request flow, synchronization,
call, communication, ...).

2-2 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Elements
Components

Relations
Interactions

Coarse division of an OS
• In operating systems the elements/components are the processes.
• An operating system consists of a set of interacting processes.
• Since processes are not offered by the hardware, there must be

something that provides the concept of a process and the interaction
between processes.

• This „something“ is called kernel of the operating system. It provides
the basic infrastructure for the OS.

• In a first coarse structure, we therefore distinguish two areas:
• Process area, where the essential OS functionality is located.
• Kernel area that provides the fundamental infrastructure for these

processes.

2-3

Process area

Infrastructure area (Kernel)
Kernel interface

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

2.2 The Process area

Finer resolution: Process area

2-4

In the center: the application
(as processes)

Supporting basic services

Control of operation

Infrastructure (kernel)

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Services

Finer resolution: Services

Distinction
 Logical resource: „thought up“ for organizational reasons

 realized by real resources
 Examples: file, window

 Real (physical) resource: real existence, to be touched
 Examples: disc, keyboard, …

2-5

Applications

Services:
 Dealing with resources
(Resource abstraction layer)

difficult, tedious

easy, simple

Resources, devices

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

How to deal with resources

Two aspects:

Resource management: only in case of competition for resources:

 who may accesses what and when?
Resource operation: real usage, e.g. data transport

2-6

management

operation

management

Allocate resource

Use resource

Release resource

Rent a car

Drive the car

Return the car

Example:

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Dealing with resources

The term "operation"

2-7

operation component
(driver)

write

read

write/output

read/input device

cumbersome, e.g.
repetitions in case of transmission errors comfortable

operation device

user1

user 2

management

permits prevents

The term "management"

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Operating system services

• Structure of service layer

2-8

Management of logical resources

Real resources (e.g. I/O devices)

Operation of logical resources

Management of real resources

Operation of real resources

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Control

We distinguish

• Control interface

• Interaction between human and machine

• OS-commands

• User interface (textual, graphical, touch, acoustic, …)

• Procedural interface

• Possibility to define complex requests to the OS

• Programming language notation with embedded OS commands to
define and control complex tasks

2-9 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Overview

2-10

Management of logical resources

Operation of logical resources

 Management of real resources

Operation of real resources

Procedural interface

Application

Control interface

Process area

OS Kernel Infrastructure area

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Remarks

Each layer may be partitioned.

Upward calls are allowed (as long as there are no cycles).

2-11

Operation
device A

Layer i-1

Layer i

Layer i+1

Operation
device B

Operation
device C

Operation
device D

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

2.3 The Kernel

Finer resolution: Kernel

2-12

Kernel operations

Process state change operations

Data structure operations

Kernel memory management

Processes

Dynamic systems only

Kernel interface

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Types of realization of the kernel

• Scattered across programs

• Resident, compact, sealed

2-13

Program address spaces

Kernel operations

Real
(physical)
memory

Kernel
Address space

Kernel programs
(Procedures)

Processes
(OS- processes,
User processes)

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Microkernel architecture

• The architecture just described is called microkernel
architecture in the literature.

• Historically, people simply wanted to make a distinction to
UNIX, in which the whole resource management (e.g. file
system) is part of the kernel (macrokernel).

• Therefore the sizes of kernels differ widely.
• Mach (OSF-1) uses several MByte memory footprint, while

Cosy (own development) only needs some 100KB.
• Such deviations in size sometimes lead to names like

Nanokernel or Picokernel.
• There is no general agreement what should be in the kernel.
• However, process management and process communication

are essential.

2-14 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Monolithical Systems

2-15

Application . . . Application

Scheduler

Device Driver Device Driver

Hardware

Besides microkernel OS, there are other approaches
available:
In monolithical systems there is no strict separation
between application and operating system.
Appropriate for small static OS, e.g. in embedded systems

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Monolithical OS-Kernel

2-16

Monolithical OS-kernels do have a separation
(protection) between application and OS, but no
separation among OS components.

The whole kernel needs to be trustworthy.

Application . . . Application

Scheduler

Device Driver Device Driver
Hardware

File System Protocol Code

Privileged Kernel
Kernel interface

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Microkernel OS

2-17

Application . . . Application

Device Driver
Device Driver

Hardware

File System Protocol Code

µ-kernel Processes + IPC

Basic Server

Device Driver

The kernel comprises process management (initializing,
dispatching) and interprocess communication only.

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Advantages of
a Microkernel architecture

• Clear kernel interface supports modular structure.

• Realization of services outside the kernel:

• leads to more security and stability since the kernel will
not be affected by faulty services,

• improves flexibility and extendibility since services can be
added and removed arbitrarily, even during operation.

• The safety-critical part of the system (kernel) is relatively
small and can be verified easier.

• Usually, only the kernel needs to run in privileged mode.

• Microkernel architecture allows the coexistence of several
alternative interfaces between OS and applications.

2-18 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Drawbacks of
Microkernel architecture

• Usually worse performance

 Why?

2-19

 Interplay of components outside the kernel
requires more interprocess communication and
therefore more kernel calls.

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

KISS (keep it small and simple; keep it simple, stupid)

• Occam's Razor: "Plurality should not be assumed without

necessity."
 (William of Ockham, ca. 1285-1349)

• "There are two ways of constructing a software design: One way

is to make it so simple that there are obviously no deficiencies,
and the other way is to make it so complicated that there are no
obvious deficiencies. The first method is far more difficult."

 (C.A.R. Hoare, 1934-)

• "Everything should be made as simple as possible, but not

simpler." (Albert Einstein, 1879-1955)

• "Perfection (in design) is achieved not when there is nothing

more to add, but rather when there is nothing more to take
away." (Antoine de Saint-Exupéry, 1900-1944)

2-20

2.4 General Design Principles

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Modularization

• The system is decomposed into a set of modules such that
• the interaction (information and control flows) within the

module is high,
• the interaction between modules is low,
• the interfaces between the modules are simple,
• the modules are easily understandable due to their limited

size and complexity.

• The principle can be applied hierarchically.

2-21 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Hierarchization

• Tree-like organization of homogeneous elements

• Goals:
• scalability,
• mastering complexity

2-22 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Layering

• Decomposition of a system's functionality into layers :
• Simple, more universally usable functions more at the

bottom
• More complex and specific functions higher up

• Each layer represents an abstraction of lower layers.
• Each layer provides an interface that can be used by higher

layers.

2-23

Layer 3

Layer2

Layer1

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Example for Layering:
Internet Protocol Stack

2-24

IP

802.3 802.11 UMTS

TCP UDP ICMP

Web E-mail FTP SSH

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

End-to-End Principle (E2E) (Internet)

• End-to-end-Principle:
 „A function of service should be carried out within a

general layer only if it is needed by all clients of that
layer and if it can be completely implemented in that
layer.“

2-25

App App

IP IP

NI NI

IP

NI

IP

NI

End node End node

Network node

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Hourglass-Architecture (Internet)

Various Applications
(file transfer, media
streaming, web, email, VoIP)

2-26

Internet protocol (IP)

Various networks, media,
and signal representations

Diversity

Diversity

Uniformity

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Various applications

2-27

OS programming interface

Various Hardware Diversity

Diversity

OS Interface

Hourglass-Architecture in OS

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

• A stable, universal programming interface should be

provided.

• OS for a universal computer should be application
neutral.

• Support for specific requirements should be placed in
the topmost layer possible.

2-28

E2E in the OS context:
application neutrality

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

• Application neutrality sometimes requires compromises:
 Lower layers may provide mechanisms that can be

parameterized in higher layers to suit specific application
requirements.

• Examples:

• Scheduling
• Paging
• Security

2-29

Separation of policy and mechanism

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Orthogonality

• Functions and concepts of an OS should be independent
of each other.

• Each component should exhibit orthogonal design
criteria.

• Orthogonality means freedom of combination.

2-30 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

SPOT-Rule (Single Point of Truth)

• No copies or repetitions
• For code: each functionality is implemented exactly

once.
• For data: each piece of information that is managed by

the system has exactly one representation.

• Usage of SPOT avoids inconsistencies.

2-31 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

Further reading

• Liedtke, J.: Toward Real Microkernels,
 Communications of the ACM 39,9 (Sept. 1996)

• Lampson, B.: Hints for computer system design,
 ACM Operating Systems Rev. 15, 5 (Oct. 1983),
 pp 33-48. Reprinted in IEEE Software 1, 1 (Jan. 1984),
 pp 11-28.

• Saltzer, J.; Reed, D.; Clark, D.:
 End-to-End Arguments in System Design,
 ACM Transactions on Computer Systems 2, 4
 (Nov. 1984) pp. 277-288.
 http://web.mit.edu/Saltzer/www/publications/endtoend/endtoend.pdf

2-32 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2022/23

http://web.mit.edu/Saltzer/www/publications/endtoend/endtoend.pdf

	Chapter 2
	2.1 Coarse structure
	Coarse division of an OS
	2.2 The Process area
	Services
	How to deal with resources
	Dealing with resources
	Operating system services
	Control
	Overview
	Remarks
	2.3 The Kernel
	Types of realization of the kernel
	Microkernel architecture
	Monolithical Systems
	Monolithical OS-Kernel
	Microkernel OS
	Advantages of �a Microkernel architecture
	Drawbacks of �Microkernel architecture
	2.4 General Design Principles
	Modularization
	Hierarchization
	Layering
	Example for Layering: �Internet Protocol Stack
	End-to-End Principle (E2E) (Internet)
	Hourglass-Architecture (Internet)
	Hourglass-Architecture in OS
	E2E in the OS context: �application neutrality
	Separation of policy and mechanism
	Orthogonality
	SPOT-Rule (Single Point of Truth)
	Further reading

