
Chapter 6

Client-Server Structures

• The fundamental structural element in software systems
(centralized and decentralized) is the client-server relation.

• The whole system is decomposed into functional units (servers)
that deliver some service.

• A service consists of one ore more functions (operations,
methods etc.) that can be called or requested.

• A server is usually implemented as a process (or thread or
group of threads).

• The services of a server can be used by other processes (or
threads). They are called clients.

• A process is usually server (i.e. offering a service) as well as
client (i.e. using other services).

• A complex software system is therefore represented as a
network of service relations.

6-2

6.1 Client-Server Paradigm

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2019/20

How it works

• Looking at a individual service relation two threads are
involved.

• The client sends a request to a server.

• The server accepts the requests, processes it and sends
a result back to the client. Then it waits for the next
request.

• Thus, the server is a cyclic thread.

• The communication between client and server takes
place by using dedicated communication objects
(channels or ports).

• Usually, we have two channels:
• An input channel at which the server takes the requests
• A response channel at which the client receives the result.

6-3 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2019/20

The Service relation

6-4

RECEIVE_S(CO,...)
SEND_A(CI,..)

Initialization

RECEIVE_S(CI,...)

SEND_A(CO,..)

CI

CO

Client Server Communication objects

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2019/20

Parameters

6-5

The parameters for the request are packed into a message that
has to interpreted accordingly (protocol).

SEND_A(CI,Ds)

Initialization

RECEIVE_S(,Dr)
CI

< A,B,C >

< X,Y,Z >
Values or references

Inter-
prets

 Client Server

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2019/20

Comparison

6-6

The client server relation strongly resembles the conventional
procedure call with formal and actual input and output
parameters.

Call(A,B)

(U,V)

.... := U

V := ... Call(X,Y)

Send(..,A)
Receive(..,B)

Receive(U)

.... := U

V := ... Send(..,X)
Receive(..,Y)

Send(V)

 Procedure call Service request

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2019/20

Return channel

6-7

A service is usually used by many clients.

All clients can use the same input channel to submit their requests.

However, if there is only one output or return channel, the result
messages cannot be assigned to the clients in a unique way.

R

S
?

Clients Server

S
R

S
R

S
R

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2019/20

Return channel

6-8

Solution:

The client tells the server as part of the request message, at which
channel it is expecting the result message ("delivery address")

By that, results are delivered correctly.

R(CO,...)
S(CI, <„CO“, ... >)

R(CI, < C-Name, ... >)

S(CB,..)

CI

CO

CB := C-Name

 Client Server

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2019/20

Service hierarchy

6-9

Since server use services of other servers, in many cases we
have a dynamic multistage service hierarchy.

R

S

R

S

R

S

S
R

S
R

S
R

S
R

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2019/20

Supporting several operations

• In many cases a server offers several operations that
can be called by the client.

• A request corresponds to the execution of one of these
operations.

• Example:
• Memory management: allocate, release
• File system: open, close, read, write
• Name service: resolve, insert, delete

• We can realize these operations within a thread

(Secretary) or provide for each operation an individual
thread (Team).

6-10 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2019/20

6-11

R(CI, < ..., Op-ID, ... >)

Operation 1 Operation n Operation 2

S(CO, ...)

Depending on Op-ID we branch into one of these operations.

Op-ID ?

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2019/20

Multioperation server ("secretary“)

Server as team of threads

6-12

CI1 R(CI1, ...)

S(CO, ...)

 lock

 unlock

CIn R(CI1, ...)

S(CO, ...)

shared
data

Thread for
Operation 1

Thread for
Operation n

Each thread is responsible for a specific operation and owns an
individual entry channel (port).

The selection of the operations is done by selecting the channel (port).

 lock

 unlock

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2019/20

6-13

The service relation as discussed corresponds to the following time
diagram:

Client

Server

S

R S

R

time

A section in the client program
with server call

submit
request

receive
result

If we submit the request at the earliest point of time and take the result
at the latest point of time, we achieve an overlap between client and
server activity:

6.2 Parallelism in the service relation

6.2.1 Parallelism between client and server

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2019/20

6-14

SEND_A(CO,..)

CI

CO RECEIVE_S(CO,...)

A

Initialization

RECEIVE_S(CO,...)

SEND_A(CI,..)

SEND_A(CI,..)

B

Client

Server

S

R S

R

time

Total execution time of a request

submit
request

receive
result

A B

The send operation in the client program has to drift backward, the
receive operation forward in the program code.

RECEIVE_S(CI,...)

Drift of communication operations

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2019/20

Conditions for Drifting

6-15

Drift of the communication operation can only be done if no data
dependencies are violated. Let be

 A the program section across which the send operation
 drifts backward

 B the program section across which the receive
 operation drifts forward

 RS the set input parameters of the send operation

 WR the set output parameters of the receive operation

 WA the set of variables written in section A

 RB the set of variables read in section B

Then the following must hold:

 WA ∩ RS = ∅: No variable written in A must be sent.

 (RB ∪ WB) ∩ WR = ∅ : No variable read or written in B must
 be received.

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2019/20

Parallelism with multiple requests

6-16

Client

SEND_A(CI1,<...>)1

RECEIVE_S (CO1 ,<...>)1

n Server

. . .

A client sends requests to different servers one after another.

RECEIVE_S (CI1 ,<...>)1

SEND_A(CO1,<...>)1

SEND_A(CI2,<...>)2

RECEIVE_S (CO2 ,<...>)2 SEND_A(CO2,<...>)2

RECEIVE_S (CI2 ,<...>)2

SEND_A(CIn,<...>)n

RECEIVE_S (COn ,<...>)n

RECEIVE_S (CIn ,<...>)n

SEND_A(COn,<...>)n

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2019/20

Parallelization: Fork/Join-Principle

6-17

C lient

S_A (CI1 ,<...>)1

n Server

...

...

...

Fork

Join

S_A (CI2 ,<...>)2

S_A (CIn ,<...>)n

R_S (COn ,<...>)n

R_S (CO2 ,<...>)2

R_S (CO1 ,<...>)1

R_S (CI1 ,<...>)1

R_S (CI2 ,<...>)2

R_S (CIn ,<...>)n

S_A (COn ,<...>)n

S_A (CO2 ,<...>)2

S_A (CO1 ,<...>)1

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2019/20

Buffering between client and server

6-18

In many cases the service is used not only once or occasionally, but
periodically, i.e. in a loop.

Example: Output of a large amount of data in many small packets:

Server (e.g. disk driver) can process only blocks of a specific
size.

Client (e.g. file server) must break down the data into small
packets and send a request for each packet.

Client Server

S_A(KE,<...>)
R_S(KA,<...>)

n times
R_S(KE,<...>)

S_A(KA,<...>)

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2019/20

Buffering between Client and Server

6-19

Unrolling loop yields:

S1
R1

R

S

Client Server

S2
R2

Sn
R
n

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2019/20

Drift of communication operations

6-20

Send operations are pushed forward by p -1 positions,
(receive operations backwards by p -1 positions)

R

S

Client Server

S1
S2

Sp-1

Sp

R1

Sp+1

R2

Sn

Rn-p+1

Rn

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2019/20

As loop again (buffering)

6-21

R

S

Client Server

finish

Start-up

i = p,..,n p:1- channel

requests buffered

Rn-(p-2)

Si

Ri-(p-1)

Sp-1

S2

S1

Rn

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2019/20

Buffering principle

• Overlapping of client and server activities
• Buffering of requests
• Smoothing differences in service times of requests
• p determines the amount of buffering capability:
 Depending on continuity of request arrivals or service

times a suitable p can be chosen.
• Widespread usage in software system (OS:

input/output, networks: sliding-window protocol)

6-22 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2019/20

2-fold buffering

6-23

Client Server

R_S

R_A

S_A 1

R_S i-1

S_A i

R_S n

i = 2,4,..

Phase A

1 2 buffer

R_S

S_A

S_A 1

R_S i-1

S_A i

R_S n

i = 3,5,..

Phase B

1 2 buffer

Client Server

Buffer swapping

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2019/20

6.2.2 Parallelism within a server

• By overlapping client- and server-activity the processing
time of a request (response time) can be reduced.

• In addition, we may increase the throughput (requests
per time unit).

• This is done by parallelism within the server.
• The server processes many requests simultaneously.

• Mechanisms:

• Reproduction (Cloning)
• Pipelining
• Multiplexing

6-24 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2019/20

Reproduction

• The server thread is available as identical copies.
• All these identical threads take requests from a shared

input port.
• The client does not see the reproduction.

6-25

Client p-fold reproduced server

S_A(CI,...) R_S(CI,...)

S_A(CB,...)

R_S(CI,...)

S_A(CB,...)

. . . CI

R_S(COi ,...)
n:p- Channel

Properties:
• overtaking possible
• up to p requests being processed simultaneously
• easy realization

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2019/20

Realization of Reproduction

• Instead of keeping several copies of the program in the
memory, it is more economic to make it possible that all
identical threads execute the same copy of the
program. The program code must be status-free or
invariant or reentrant.

6-26

Base register

Thread 1

Thread 2

In memory

Program

Data 1

Data 2

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2019/20

Pipeline (staged server)

6-27

R

S





R

S

R

S

R

S

forwarding

forwarding
Cut in pieces,
make pieces to
threads

A

B

C

A

B

C

Original Server Pipeline server

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2019/20

Request processing in the pipeline

6-28

R

S

R

S

Intermediate buffer

requests

processing

processing

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2019/20

Pipeline

Properties
• Arbitrary number of requests in pipeline
• No overtaking (if internal channels are FIFO, i.e. order

preserving)
• Higher transportation overhead (internal channels)
• More difficult to realize

6-29

Working principle (with varying service times)

Phase 1

Phase 2

Phase 3

1 2 3 4

1

1

2 3

3 2

4

4

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2019/20

• With complex servers that submit subrequests we may
have several waiting positions.

• The thread is stuck at a receive operation waiting for
response, although it could continue at another place.

• Example for a structure of a complex service:

6-30

R

S
R

R

R

S

S

S

wait

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2019/20

Multiplexing
(interleaving, event-programming)

Multiplexing

• The thread should continue at that place where work is to be
done.

• To wait at a place while at another place work is piling up, is
uneconomic.

• To that end it should wait at all receive channels at the same
time, to be able to react to all incoming events.

• We therefore combine all channels to one single (super)channel:

6-31

R_S

S_A S_A S_A

S_A result

request

subrequest

Result from
subrequest

type ?

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2019/20

Multiplexing

Properties
• Only one thread
• Arbitrary number of requests processed simultaneously
• Difficult to realize

Remark
• A server built according to this multiplexing principle

operates (on the software level) in the same way as a
processor at the hardware level.

• If a request (thread) cannot be further processed, since
it has to wait for something, we simply switch to another
request (thread).

6-32 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2019/20

Mix of Parallelism forms

All presented forms of parallelism between client and
server or within a server are independent and can be
combined.

 Example:

6-33

R_S

S_A
. . .

R_S

S_A

R_S

S_A

R_S

S_A

R_S

S_A

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2019/20

Hair dresser's: Cloning

6-34 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2019/20

Hair dresser's: Pipelining

6-35 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2019/20

Hair dresser's: Multiplexing

6-36 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2019/20

6-37

Web Server
(thread based concurrency=cloning)

Matt Welsh, UC Berkeley

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2019/20

Event Driven Concurrency
(=multiplexing)

6-38 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2019/20

Matt Welsh, UC Berkeley

6-39

Matt Welsh, UC Berkeley

Solution: Staged Server Architecture
(=pipelining)

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2019/20

Components

 Control no. of
threads

6-40

 Control no. of requests
per thread

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2019/20

Matt Welsh, UC Berkeley

Further Reading

• Wettstein,H.: Systemarchitektur, Hanser, 1993
 Kapitel 10 (in German)
• Welsh,M. et al.: SEDA: An Architecture for
 Well-Conditioned, Scalable Internet
 Services,
 In Proc. 18th Symposium on Operating
 Systems Principles (SOSP-18), Banff,
 Canada, October 2001.

6-41 Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2019/20

	Chapter 6
	6.1 Client-Server Paradigm
	How it works
	The Service relation
	Parameters
	Comparison
	Return channel
	Return channel
	Service hierarchy
	Supporting several operations
	Multioperation server ("secretary“)
	Server as team of threads
	6.2 Parallelism in the service relation
	Drift of communication operations
	Conditions for Drifting
	Parallelism with multiple requests
	Parallelization: Fork/Join-Principle
	Buffering between client and server
	Buffering between Client and Server
	Drift of communication operations
	As loop again (buffering)
	Buffering principle
	2-fold buffering
	6.2.2 Parallelism within a server
	Reproduction
	Realization of Reproduction
	Pipeline (staged server)
	Request processing in the pipeline	
	Pipeline
	Multiplexing �(interleaving, event-programming)
	Multiplexing
	Multiplexing
	Mix of Parallelism forms
	Hair dresser's: Cloning
	Hair dresser's: Pipelining
	Hair dresser's: Multiplexing
	Web Server �(thread based concurrency=cloning)
	Event Driven Concurrency (=multiplexing)
	Solution: Staged Server Architecture (=pipelining)
	Components
	Further Reading

