Chapter 1

Historical Background

If the automobile had followed the same development cycle as the computer, a Rolls-Royce would today cost $100, get a million miles per gallon, and explode once a year, killing everyone inside.
-- Robert X. Cringely
1.1 Functions and Coarse Structure

Operating system (Definition according DIN 44300)

“The programs of a digital computing system which lay - together with the basic properties of the computing system - the foundation for the possible modes of operation and especially control and monitor the execution of programs.”

Main Tasks

- Provision of virtual machine
 - as an abstraction of the computer system
- Resource Management
Tasks

• Adaption of machine structure to user requirements
• Laying the foundation for a controlled concurrency of activities
• Management of data and programs
• Efficient usage of resources
• Support in case of faults and failures
Operating system architecture

- Quotation:

 “The job of a system architect is similar to the one of a witty octopus juggling daily new balls of different size on the back of a jumping dolphin at the shore of Waikiki.”

New applications

Operating system

New Hardware

Market
Quality features:
- Security
- Real-time
- Mobility
- Energy consumption
- Dependability
-
Operating systems for general purpose computers

Operating system: Control

Application

Application

Application

Operating system: Management and operation

Hardware

Barry Linnert, linnert@inf.fu-berlin.de, Betriebssysteme WS 2015/16
System architecture

- Complex systems (in all areas) are composed of single components of different types.
- Successful design of a complex system requires the knowledge of different variants of the components and their interplay.

- Example: Buildings (20 000 years of experience)
 - Walls
 - Columns
 - Ceilings
 - Roofs
 - Stairs
 - Doors
 - Windows
 - Material
 - Form
 - Strength
System architecture

- **Example Electrical Engineering (ca. 100 years of experience)**
 - Resistor
 - Coil
 - Capacitor
 - Diode
 - Tube
 - Transistor

- **Example Operating systems (ca. 50 years of experience)**
 - Process
 - Signal
 - Address space
 - Channel
 - Interrupt
 - Driver
 - File

- **Capacity**
- **Synchronization**
- **Type of message transfer**
1.2 Historical Sketch

The Fifties (Early stages)

- *One* program is being executed by *one* processor.
 - Batch operation
- The Operating system functionality is limited to
 - support of input/output,
 - transformation of number and character representation.
The Sixties (Virtualization)

- The ratio between CPU- and I/O-speed becomes large.
- OS support the interleaving execution of several independent programs (Multiprogramming).
- Real parallelism due to the advent of I/O-processors.
- The notion of a process as a virtual processor is born.
- Also the memory is „virtualized“ (virtual memory).
- The process also becomes an internal mean of structurization for OS.
- Interactive operation by more than one user (Timesharing).
- Prototypes or predecessors of today’s mainframe OS are developed (OS/360, CTSS/Multics, CP67, VMOS/BS2000).
The Seventies (Software Engineering)

- The beginning of the software crisis: OS become large, complex and error prone.
- Unix is built according to the principle „simple is beautiful“ based on simple hardware (PDP-11).
- The quest for structured system design, maintainability, reliability, protection and security comes up.
- Employment of high level programming languages to implement OS.
- Process becomes a protection domain (context) with a private protected address space and access control (rights, capabilities).
- Quest for support of modular programming abstract data types and object orientation.
- Application of these principles to the operating system itself.
The Eighties (Distributed Systems)

- Workstation computers and personal computers come up.
- Increased communication bandwidth: Ethernet, connected systems.
- For efficient implementation of communication software processes are needed.
- Processes are meanwhile complex entities: A process switch costs several thousand machine instructions. Therefore, address space and process are separated allowing for several processes sharing an address space (lightweight process, thread).
- Concepts for parallelism are integrated into program languages.
- Distributed (parallel) computing on networks of workstation computers.
- Workstations provide an ideal means for dissemination of UNIX and UNIX becomes sort of a “standard”.
- Necessity for integration generates pressure for standardization (OSI, TCP/IP, NFS, POSIX, OSF, X/OPEN, OMG, ODP).
- OS overcome node boundaries: From communicating computers to distributed systems.
The Nineties

• Due to high production numbers, microprocessors become cheap.
• Connecting thousands of microprocessors achieves (theoretically) higher performance at a lower price compared to supercomputer (e.g. Cray).
• New OS-Functionality needed to support parallel processing.
• PCs and GUIs for OSs become mainstream (Windows 3, Linux).
• Multimedia-applications require support for audio- and video data (real-time capabilities).
• Software in embedded systems needs OS-support (e.g. Consumer Electronics).
• Birth and rise of the Web leading to distributed systems in heterogeneous environments (e.g. Corba, Web services).
The 2000s and Today

- Computing technology moves into the everyday while becoming increasingly small and invisible.
- OS support for ubiquitous and pervasive computing and intelligent devices (cf. Internet of things)
- OS platforms for mobile phones with multi-touch user interfaces (e.g. iOS and Android OS)
- Thin clients running web-applications within a browser (e.g. Chrome OS)
- Emulation of other OS-interfaces (i.e. several “OS worlds” on the same computer).
- Converged infrastructures, shared services and the renaissance of virtualization are enabling factors for Cloud computing.
Current topics

• Safety and security
• Robustness and dependability
• Virtualization
• Optimization for multi- and many-core processors (scheduling, locking)
• Energy consumption (mobile devices, data centers)
• User interface
• Database support for file systems
• Cluster-, Grid-, and Cloud-Computing
• Small OS (e.g. for sensor networks)
Further Reading

- Hansen, P.B.: Classic Operating Systems
 Springer, New York, 2001

- The Virtual Museum of Computing
 http://vlmp.museophile.com/computing.html

- ACM Special Interest Group on Operating systems:
 http://www.sigops.org
Example: UNIX

- **USG/USDL/ATTIS/DSG/USO/USL**
 - Bell Laboratories Research (AT&T)
 - Berkeley Software Distribution

- **Multics**
 - (Ken Thompson, Dennis Ritchie, Brian Kernighan)
 - **1965**

- **UNIX First Edition**
 - **1969**

- **Fifth Edition**
 - **1973**

- **Sixth Edition**
 - **1976**

- **CB UNIX**
 - **1977**

- **1BSD**
 - **1977**

- **PWB MERT**
 - **1978**

- **CB UNIX**
 - **1978**

- **UNIX RT**
 - **1978**

- **Seventh Edition**
 - **1979**

- **3BSD**
 - **1980**

- **XENIX**
 - (Microsoft, SCO)
 - **1980**

- **32V**
 - **1980**

- **4.0BSD**
 - **1980**
More information ;-)

- **Halt and Catch Fire**