
Predicting Source Code Changes by Mining Revision History

Annie T.T. Ying*+, Gail C. Murphy*, Raymond Ng*
Dep. of Computer Science, U. of British Columbia*

{aying,murphy,rng}@cs.ubc.ca

Mark C. Chu-Carroll+
IBM T.J. Watson Research Center+

mcc@watson.ibm.com

1 Introduction

Many modification tasks to software systems require
software developers to change many different parts of a sys-
tem’s code base [7]. To help identify the relevant parts of the
code for a given task, a developer may use a tool that stat-
ically or dynamically analyzes dependencies between parts
of the source (e.g., [8, 1]). Such analyses can help a devel-
oper locate code of interest, but they cannot always iden-
tify all of the code relevant to the change. For example,
these analyses cannot typically identify dependencies be-
tween modules written in different programming languages.

To illustrate the difficulty developers sometimes face in
finding relevant source code during a modification task,
we outline the changes involved in a modification task1

from the Mozilla development history. Mozilla is a web
browser primarily written in C++ and is a large open source
project. Modification task #150339, entitled “huge font
crashes X Windows”, reports on a bug that caused the con-
sumption of all available memory when a web page with
very large fonts was displayed. As part of a solution2 for
this modification task, a developer added code to limit the
font size in the version of Mozilla that uses the gtk UI
toolkit, but missed a similar required change in the ver-
sion that uses the UI toolkit xlib. The source code in
gtk/nsFontMetricsGTK.cpp does not reference the
code in xlib/nsFontMetricsXlib.cpp because the
code in the gtk version and the code in xlib version are
used in different configurations of Mozilla. However, an
analysis of the CVS revision history for Mozilla indicates
that these two files were changed 41 times together in the
development of Mozilla.

To augment the existing static and dynmaic analy-
ses to help developers identify relevant code, we have
been investigating an approach based on the mining of
change patterns—files that have changed together fre-
quently enough—from a system’s source code versioning
information. Mined change patterns can be used to recom-

1A modification task is often referred as a bug.
2We refer to the files that contribute to an implementation of a modifi-

cation task as a solution.

mend possibly relevant files as a developer performs a mod-
ification task. Specifically, as a developer starts changing
files, denoted by the set fS , our approach recommends ad-
ditional files for consideration, denoted by the set fR. Our
initial focus has been on the use of association rule mining
[2] to determine the change patterns.

To assess our approach, we evaluate the recommenda-
tions our tool can make on two large open source projects,
Eclipse3 and Mozilla4, based on recommendations’ pre-
dictability and the interestingness. Predictability measures
the coverage and the accuracy of the recommendations
against the files actually changed during modification tasks
recorded in the development history. The interestingness
criteria measure the value of correct recommendations.

2 Approach

Our approach consists of three stages. In the first stage,
we extract the data from a software configuration manage-
ment (SCM) system and pre-process the data to be suit-
able as input to a data mining algorithm. In the second
stage, we apply an association rule mining algorithm to
form change patterns. In the final stage, we recommend
relevant source files as part of a modification task by query-
ing against mined change patterns. Having extracted the
change patterns in the first two stages, we do not need to
re-generate the change patterns each time we query for a
recommendation.

In the first stage, we need to determine which software
artifacts—in our case, files—were checked in together. Sys-
tems such as CVS, which is used for the systems we targeted
in our validation, do not track this information; as a result,
we must process the revision history to attempt to recreate
these sets. We form the sets using the following heuris-
tic: an atomic change set consists of file revisions that were
checked in by the same author with the same check-in com-
ment close in time. We follow Mockus and colleagues in
defining proximity in time of check-ins by the check-in time
of adjacent files that differ by less than three minutes [6].

3URL at http://www.eclipse.org/
4URL at http://www.mozilla.org/

In the second stage, we use an association rule mining
algorithm to extract sets of items that happen frequently
enough amongst the transactions in a database. In our con-
text, such sets refer to source files that tend to change to-
gether. In our study, we use frequent pattern mining [2],
which finds recurring sets of items—or source files in our
context—among transactions in a database D. The strength
of the pattern {s1, . . . , sn} is measured by support, which is
the number of transactions in D containing s1, . . . , and sn.
A frequent pattern describes a set of items that has support
greater than a predetermined threshold min support.

Applying a data mining algorithm to the pre-processed
data results in a collection of change patterns. Each change
pattern consists of the names of source files that have been
changed together frequently in the past. To provide a rec-
ommendation of files relevant to a particular modification
task at hand, the developer needs to provide the name of at
least one file that is likely involved in the task. The files
to recommend are determined by querying the relevant pat-
terns to find those that include the identified starting file(s);
we use the notation fS →fR to denote that the set of files fS

results in the recommendation of the set of files fR. When
the set of starting file has cardinality of one, we use the no-
tation fs →fR.

3 Validation

The validation process involved determining if source
code recommended from a change pattern was relevant for
a given modification task. This validation process required
dividing the development history information for a system
into training and test data. The training data was used to
generate change patterns that were then used to recommend
source for the test data.

To determine if our approach can provide good recom-
mendations, we investigated the recommendations in the
context of completed modification tasks made to each sys-
tem. These modification tasks are recorded in each project’s
Bugzilla bug tracking system5, which also keeps track of
enhancement tasks. We refer to both bugs and enhance-
ments as modification tasks, and we refer to the files that
contribute to an implementation of a modification task as a
solution. Since Bugzilla does not record which source files
are involved in a solution for a modification task, we use
heuristics based on development practices to determine this
information. We chose tasks for which the files involved in
the solution were checked in during the time period identi-
fied as the test data and for which at least one file involved
in the solution was covered by a change pattern extracted
from the training data.

To recommend possibly relevant files using our ap-
proach, at least one file that is likely involved in the solu-

5URL at http://www.bugzilla.org/

tion must be specified by the developer. In our validation,
we chose to specify exactly one file fs to generate a set
of recommended files fR; we chose this approach because
it represents the minimum amount of knowledge a devel-
oper would need to generate a recommendation. We evalu-
ate the usefulness of the recommended files fR in terms of
two criteria: predictability and interestingness, described in
the rest of Section 3.

Predictability

The predictability of the recommendations is measured in
terms of precision and recall. The precision of a recom-
mendation fs →fR refers to the accuracy of the recommen-
dations and is measured by the fraction of recommendations
fR that did contribute to the files in the solution (denoted by
fsol) of the modification task, as shown in Equation 1. The
recall of a recommendation fs →fR refers to the coverage
of the recommendations and is measured by the fraction of
files in the solution (denoted by fsol) that are recommended,
shown in Equation 2.

precisionfR
=

|fR ∩ fsol|

|fR|
(1)

recallfR
=

|fR ∩ fsol|

|fsol − fs|
(2)

Interestingness

Even if a recommendation is applicable, we have to con-
sider whether or not the recommendation is interesting.
For example, a recommendation that a developer changing
the C source file foo.h should consider changing the file
foo.c would be too obvious to be useful to a developer.
To evaluate recommendations in this dimension, we assign a
qualitative interestingness value to each recommendation of
one of three levels—surprising, neutral, or obvious—based
on structural and non-structural information that a devel-
oper might easily extract from the source.

Structural information refers to relationships between
program elements that are stated in the source using pro-
gramming language constructs. These structural hints be-
tween two source code fragments in the Java programming
language that we consider in our analysis are field accesses,
field writes, method calls, instance creation, class checks,
header-implementation relationship, inheritance, method
declaration ,field declaration, and whether source code frag-
ments are in the same directory.

Non-structural information refers to relationships be-
tween two entities in the source code that are not sup-
ported by the programming language. Non-structural infor-
mation includes information in comments, naming conven-
tions, string literals, data sharing (in which there may not be

2

a shared type), and reflection (e.g., invoking of a method on
an object even if the method is not known until runtime, or
getting information about a class’ fields).

The interestingness value of a recommendation, fr

where fs →fR and fr ∈ fR, is based on how likely it is
that a developer pursuing and analyzing fs would consider
the file fr as part of the solution of a modification task. We
assume that such a developer has access to simple search
tools (e.g. grep) and basic static analysis tools that enable
a user to search for references, declarations, and implemen-
tors of direct forward and backward references for a given
point in the source (e.g., an integrated development envi-
ronment).

We categorize a recommendation fs →fr as obvious
when

• a method that was changed in fs has a direct
fine-grained reference—reads, writes, calls, creates,
checks— to a method, field or class in fr, or

• a class that was changed in fs has a strong coarse-
grained relationship—inheritance, method declaration,
field declaraion—as a class in fr.

We categorize a recommendation as surprising when

• fs has no direct structural relationships with fr, or

• a fragment in fs contains non-structural information
about fr.

A recommendation is neutral when

• a method in fs, other than the one that was changed
in fs, has a direct fine-grained reference to a method,
field, or class in fr, or

• a class that was changed in fs has a weak coarse-
grained relationship—it indirectly inherits from, is in
the same package or directory that has more than 20
files—with a class that was changed in fr.

If fs and fr have more than one relationship, the interest-
ingness value of the recommendation is determined by the
interestingness value of the most obvious relationship.

3.1 Predictability results

Figure 1 shows the precision and recall values that result
from applying the frequent pattern algorithm on each sys-
tem. The lines connecting the data points on the recall ver-
sus precision plot show the trade-off between precision and
recall as the parameter values are altered. The label beside
each data point indicates the min support threshold used in
the frequent pattern mining algorithm. Each data point rep-
resents the average precision and recall. In the computation

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

recall vs. precision summary plotrecall

precision

MozillaEclipse

fp15

fp10

fp05
fp30

fp15

fp20

fp25

Figure 1. Recall prec. on Eclipse & Mozilla.

of the averages, we included only the precision and recall
for recommendations from modification tasks M in the test
data where each task’s solution contained at least one file
from a change pattern. We used each file fs in the solution
of a modification task m ∈ M to generate a set of recom-
mended files fR and calculated fR’s precision and recall
described in 3. The average precision is the mean of such
precision values and analogously for the average recall.

The recall and precision values for the generated change
patterns for Mozilla are encouraging; precision is around
0.5 with recall between 0.2 and 0.3 (meaning that, on aver-
age, around 50% of the recommended files are in a solution
and 20% to 30% of the files in a solution are recommended).
The line plot shows a steady trade-off between recall and
precision when min support changes. However, the recall
and precision values in the Eclipse case are less satisfactory;
precision is only around 0.3, recall is around 0.1 to 0.2, and
the line plot shows some strange behaviour, namely when
min support threshold equals 15 there is a sudden decrease
in both precision and recall. The small number of patterns
and small number of files covered by patterns may cause
this behaviour because few recommendations can be made.

3.2 Interestingness results

To assess the interestingness of the recommendations,
we randomly chose 20 modification tasks from each project
for the period of time covered by the test data. For each
file (fs) associated with the check-in for a modification task
that was also contained in at least one change pattern, we
determined which other files (fR) would be recommended.
For each recommendation, we determined its interesting-
ness level according to the criteria described in Section 3.

Table 1 presents a categorization of recommendations for
Mozilla. We were able to generate recommendations for 15
of the 20 selected modification tasks. These 15 tasks in-
clude two cases involving surprising recommendations, two

3

Int. Description Mod. ids (and no. of recmm.)
sur cross-language 150099(6)
sur duplicate code

bases
92106(2),143094(2),145560(2),
145815(2), 150339(2)

neu distant instance cre-
ation/being created
& call dependence

123068 (2)

neu distant inheritance 74091 2)
obv header-

implementation
92106(2),99627(2),104603(2),
135267(8),144884(2),
150735(2),74091(2),123068(2)

obv interface-
implementation

135267(2)

obv direct inheritance 74091(12)
obv direct call depen-

dence
99627(2)

obv same package with
less than 20 files

135267(6)

Table 1. Mozilla recom. by interestingness

cases involving neutral recommendations, and five cases in-
volving obvious recommendations. We focus the discussion
on some of the cases categorized as surprising.

The “cross-language” case in the surprising category
demonstrates how our approach can reveal interesting de-
pendencies on files written in different languages and on
non-code artifacts that may not be easily found by a de-
veloper. For example, for Mozilla, a developer specifies
the layout of widgets in XUL (XML-based User interface
Language), which eases the specification of the UI and pro-
vides a common interface for the UI on different platforms.
XUL does not solely define the UI; a developer must still
provide supporting code in a variety of formats, including
XML schema files and Javascript files. This situation oc-
curred in the solution of modification task #150099, which
concerned hiding the tab bar in the web browser by default.
The solution involved adding a new menu item for display-
ing the user’s preference of showing or hiding the tab bar
in a XUL file, declaring the menu item in a XML schema
file, and initializing the default settings of the menu item
as call-back code in a Javascript file. Our approach gener-
ated six surprising recommendations involving Javascript-
XUL6, XML schema-XML, and XML schema-Javascript.

The “duplicate code bases” case from the surprising cat-
egory demonstrates how our approach can reveal poten-
tially subtle dependencies between evolving copies of a
code base. For example, as part of the solution of modi-
fication task #92106, two scripts that built different applica-
tions in the XML content model module TransforMiix

6The terminology “Javascript-XUL” means that given a Javascript file,
an XUL was recommended, and given an XUL file, a Javascript file was
recommended

Int. Description Mod. ids (and no. of recom)
sur cross-

platform/XML
24635(230)

neu distant call depen-
dence

21330(2), 24567(2)

neu distant inheritance 25041(12)
obv containment 13907(2), 23096(2), 24668(2)
obv framework 21330(2)
obv same package with

less than 20 files
21330(2)

obv instance cre-
ation/being created

23587(4)

obv method call depen-
dence

21330(2), 23587(4),
24657(2), 25041(2)

obv direct inheritance 25041(8)
obv interface-

implementation
24730(2)

Table 2. Eclipse recom. by interestingness

needed to be updated. One script was for building an appli-
cation for transforming XML documents to different data
formats, and the other script was for building a benchmark-
ing application for the former application. Much of the two
build scripts shared the same text, and changes to one script
usually required similar changes to the other script. In fact,
this code duplication problem was later addressed and elim-
inated (modification task #157142). When either of these
build scripts was considered to be modified, our approach
was able to provide a recommendation that the developer
should consider the other script, resulting in two surprising
recommendations.

Table 2 shows the categorization of recommendations
for Eclipse. Fewer of the selected modification tasks for
Eclipse resulted in recommendations than for Mozilla. We
could not provide recommendations for 11 of the modifi-
cation tasks because the changed files were not covered by
a change pattern. Of the nine tasks that resulted in recom-
mendations, eight of them had solutions involving files in
which the classes were structurally dependent. We group
these into seven cases involving obvious recommendations,
two cases involving neutral recommendations, and one case
involving surprising recommendations that we focus on.

The “cross-platform/XML” case involved recommenda-
tions for non-code artifacts, which as we argued above, may
not be readily apparent to a developer and may need to be
determined by appropriate searches. For example, modifi-
cation task #24635 involved a missing URL attribute in an
XML file that describes which components belong to each
platform version. The change involved 29 files that spanned
different plug-ins for different platform versions. Our ap-
proach generated 230 surprising recommendations. This
large number of recommendations can be made because the

4

solution for the problem contains 29 files of which 18 match
at least one change pattern. Each of these 18 files, when
used as the starting file, typically generated recommenda-
tions of over 10 files, summing to 230 recommendations.

4 Related Work

Zimmermann and colleagues, independently from us,
have developed an approach that also uses association rule
mining on CVS data to recommend source code that is po-
tentially relevant to a given fragment of source code [9].
The rules determined by their approach can describe change
associations between files or more fine-grained entities such
as methods. Both Zimmermann’s approach and ours pro-
duce similar quantitative results: precision and recall that
measure the predictability of the recommendations are sim-
ilar in value. The qualitative analyses differ. They present
some change associations that were generated from their ap-
proach, and argue that these associations are of interest. In
contrast, we analyzed the recommendations provided in the
context of completed modification tasks, emphasizing when
the results would be of value to a developer. We assessed
the value of the recommendations using the interestingness
criteria that we developed.

Hipikat is a tool that provides recommendations about
project information a developer should consider during a
modification task [4]. Hipikat draws its recommended in-
formation from a number of different sources, including
the source code versions, modification task reports, news-
group messages, email messages, and documentations. In
contrast to our approach, Hipikat uses a broader set of in-
formation sources. This broad base allows Hipikat to be
used in several different contexts for recommending a dif-
ferent artifacts for a change task. When a recommendation
is requested based on a description of a modification task
at hand, Hipikat recommends similar modifications com-
pleted in the past, with their associated file revisions. Our
approach is complementary to Hipikat, as it does not rely
upon a similar modification task having occurred in the past.

Impact analysis approaches (e.g., [3]) attempt to deter-
mine, given a point in the code base involved in a modifi-
cation task, all other points in the code base that are tran-
sitively dependent upon the seed point. This information
may help a developer determine what parts of the code base
are involved in the modification task. Many of these ap-
proaches are based on static slicing (e.g., [5]) and dynamic
slicing (e.g., [1]). In contrast to these approaches, our data
mining approach can work over code written in multiple
languages and platform, and scales to use on large systems.
In addition, dynamic slicing relies on an executable pro-
gram and the availability of appropriate inputs of the pro-
gram, whereas our approach can work with code that is
non-executable, or with code that consists of components

running on different platforms. On the other hand, slic-
ing approaches can provide finer-grained information about
code related to a modification task, without relying on the
code being changed repeatedly in the past.

5 Conclusion

We have described our approach of mining revision his-
tory to help a developer identify pertinent source code for
a change task at hand. We have validated our hypothesis
that our approach can provide useful recommendations by
applying the approach to two open-source systems, Eclipse
and Mozilla, and then evaluating the results based on the
predictability and likely interestingness to a developer. Al-
though the precision and recall are not high, recommenda-
tions can reveal valuable dependencies that may not be ap-
parent from other existing analyses. In addition to providing
evidence for our hypothesis, we have developed a set of in-
terestingness criteria for assessing the utility of recommen-
dations; these criteria can be used in qualitative analyses of
source code recommendations provided by other systems.

References

[1] H. Agrawal and J. R. Horgan. Dynamic program slicing. In
Proc.of PLDI, 1990.

[2] R. Agrawal, T. Imielinski, and A. N. Swami. Mining associ-
ation rules between sets of items in large databases. In Proc.
of ICMD, 1993.

[3] R. Arnold and S. Bohner. Software Change Impact Analysis.
IEEE Computer Society Press, 1996.

[4] D. Cubranic and G. C. Murphy. Hipikat: Recommending per-
tinent software development artifacts. In Proc.of ICSE, 2003.

[5] K. Gallagher and J. Lyle. Using program slicing in software
maintenance. TSE, 17(8), 1991.

[6] A. Mockus, R. T. Fielding, and J. Herbsleb. Two case studies
of open source software development: Apache and Mozilla.
TOSEM, 11(3), 2002.

[7] D. L. Parnas. On the criteria to be used in decomposing sys-
tems into module. In CACM, 1972.

[8] M. Weiser. Program slicing. TSE, 10(7), 1984.
[9] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller. Min-

ing version histories to guide software changes. To appear in
Proc.of ICSE, 2004.

5

