
830 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 8, AUGUST 1991

A Case History Analysis of Software Error
Cause-Effect Relationships

Takeshi Nakajo and Hitoshi Kume

Abstract- Software errors have been studied from various
perspectives; however, most investigations have been limited to
an individual section or a partial path of the cause-effect relation-
ships of these errors. The bresent study analyzes approximately
700 errors in 4 commercial measuring-control software prod-
ucts, and then identifies the cause-effect relationships of errors
occurring during software development. The analysis method
used was: (i) defining appropriate observation points along the
path leading from cause to effect of a software error, followed
by gathering the corresponding data by analyzing each error
using Fault Tree Analysis, and (ii) categorizing each observation
point’s data, and then summarizing the relationships between two
adjoining points using a cross-indexing table. This paper presents
four major cause-effect relationships and discusses the effects of
the Structured Analysis and Structured Design methods on these
relationships.

Index Terms- Software development, cause-effect relation-
ships, case-based error analysis, program faults, human errors,
process flaws, structured analysis and structured design, Fault
Tree Analysis.

I . INTRODUCTION

M any problems due to human error occur during software
development, yet effectively eliminating root causes

from design processes to prevent their recurrence is difficult
unless the types of human errors and their cause-effect rela-
tionships are identified [l]. This identification is especially im-
portant for long-term improvement of software-development
techniques.

Although there have been many quality investigations of
human errors in software development (e.g., [2]-[5]), most
have been limited to examining an individual section or a
partial path of the cause-effect relationships of software errors,
with no previous report systematically investigating these
relationships.

This paper examines empirical errors in four commercial,
measuring-equipment, control software packages, and then
identifies the cause-effect relationships of these errors. Sec-
tion II describes a method used to analyze the cause-effect
relationships based on software-error case data. Applying this
case-based method, Section III shows that four major error

Manuscript received January 2, 1990; revised March 22, 1991. Recom-
mended by M. S. Deutsch.

T. Nakajo was with the Faculty of Engineering, University of Tokyo,
Bunkyo-ku, Tokyo 113, Japan. He is now with the Department of Industrial
and System Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku,
Tokyo 112, Japan.

H. Kume is with the Faculty of Engineering, University of Tokyo, Bunkyo-
ku, Tokyo 113, Japan.

IEEE Log Number 9101143.

occurrence mechanisms exist, whereas the effects of Structured
Analysis and Structured Design methods [6], [7] on these
mechanisms are discussed in Section IV. Finally, Section V
compares the presented analysis method with the common
empirical methods used to identify software-error cause-effect
relationships.

II. IDENTIFICATION OF CAUSE-EFFECT

RELATIONSHIPS BASED ON ERROR CASE DATA

One method of identifying the cause-effect relationships
of software errors is to analyze error case data. Fault Tree
Analysis (FTA) accomplishes this by using a logic tree diagram
to present each error’s cause-effect relationships, and develops
a countermeasure for each error [S]. Although this method can
handle the complex structure of cause-effect relationships, it
is difficult for FTA to extract the relationships common to
all errors under investigation, because it analyzes each error
individually.

The presented analysis method basically follows FTA, yet
facilitates the extraction of the cause-effect relationships in-
herent in software errors by restricting the logic tree diagram’s
structure using predefined observation points, and presenting
the relationships between two observation points using cross-
indexing tables, i.e.,

1) Define observation points along an error’s logical path
from cause to effect

2) Gather observation point data by analyzing each error
using FTA

3) Categorize each observation point’s data
4) Identify the relationships between each two adjoining

observation points using a cross-indexing table
5) Summarize the major cause-effect relationships based

on a series of the cross-indexing tables.
The key elements in the above analysis method are: 1)

observation points, and 2) categorization of each observation
point’s data.

Fig. 1 shows various types of error information along the
path from cause to effect. The following considerations must
be incorporated when choosing the observation points:

1) A human error occurring during software development is
first detected as “system failure”; however, the “system
failures” vary widely. Tracing back to the source of
a human error reveals that “inappropriate work system
management” was ultimately responsible for the error,
although the details surrounding this state vary and are
strongly dependent on the organization’s characteristics.

00985589/91/0800-0830$01.00 0 1991 IEEE

N.4KAJ0 .~ND KuME: ~ALY~IS OF SOFIVARE ERROR CAUSE-EFFECT RELATIONSHIPS 831

Work Systen Flaw

\naPprOPrlate :
+ ~ana~eaent i lndivldual F l a w

of Work System ‘\ I 1

System Failure
Program Fault
Human Error

Work System
Flaw

Inappropriate
Management of
Work System

System behavior mismatched with certain system operation specifications
Incorrect program codes defining software behavior
Unintended deviations from work standards or targets caused by the carelessness
of designers or programers, such as forgetfulness, mistakes OP misunderstanding
Inherent characteristics of methods, workers and environments affecting
human BTPOI‘ occurrence and deviation. Classified into three types:
Process Flaws, Individual Flaws and Environmental Flaw
Inappropriate system managing work system elements, such as methods,
workers and environments

Fig. 1. Causwzffect process of software errors

It is therefore important to choose observation points
where the most common information can be gathered;
i.e., somewhere along the cause-to-result process rather
than at either the original cause or final result points

2) The final purpose of identifying cause+effect relation-
ships is to eliminate the root causes that produce “system
failure”; thus it is important to choose an observation
point which indicates the causes to be eliminated. For
example, to improve not only individual product qual-
ity but also product development techniques, “program
faults” and “human errors” as well as “work system
flaws” must be included in the set of observation points

3) In the data analysis case using FTA, the effects and their
causes have a one-to-many correspondence; therefore it
is important to focus on a specific part of the causes.
For instance, to improve software design techniques,
“process flaws” must be focused among three types of
“work system flaws” which mutually cause a human
error.

Another key issue in this analysis method is the cate-
gorization of each observation point’s data. The following
considerations must be accordingly included:

1) There are two data classification methods: one is based
on predefined criteria, and the other on data similarity.
The latter method is called “clustering” and is effective
even when there is no theoretical model of the process
which produces the data, with the Affinity Diagram
method [9] being a non-numerical data-clusteringmethod

2) When a group of results has theoretically no correlation
with a group of causes, it is appropriate to independently
classify the causes corresponding to each group of
results.

III. CAUSE-EFFECT RELATIONSHIPS IN

MEASURING EQUIPMENT-CONTROL SOFTWARE

The method described in Section II was applied to 670 soft-

ware errors occurring during the software development phase
of 4 commercial measuring equipment control packages. This
analysis identified the cause-effect relationships of software
errors in order to improve the developmental techniques of
high-reliability software.

Two of the four software packages investigated were sub-
systems of an IC measuring system, with one being a set
of “intrinsic routines” for users’ measurement programs, and
the other an application program using these routines. The
other two were firmware products which control measuring
instruments for electronic components. The four products,
respectively referred to as A, B, C, and D, have the following
common characteristics:

1) Significantly hardware-specific, since they are designed
for initializing, setting, and measuring hardware

2) Consist of a set of unit functions that can be combined
to produce various required functions

3) Numerous global variables for memorizing hardware
equipment status are required.

The errors used in the analysis were all found during or
after the module testing phase.

The three following observation points were selected:
1) Program fault
2) Human error
3) Process flaw.

The specifics of each error corresponding to these observation
points were collected through source code investigation, de-
sign documents and their change histories, and an interview
with the designer or programmer who made the error. The
Affinity Diagram method was selected for observation point
data classification, with Table I showing an example of data
collected.

A. Types of Program Faults

Fig. 2 shows the results of “program fault” data classifica-

832 IEEE TRANSAaIONS ON SOFIWARE ENGINEERING, VOL. 17, NO. 8, AUGUST 1991

TABLE I
AN EXAMPLE OF ERROR CASE DATA

Observation Point Data Collected
Program Fault *Reading data from a file in the wrong order
Human Error *Misunderstanding the sequence of the data stored

in the file - 1
Process Flaw *The global variable structure in which the data is

stored is different from that of the file
-The programmer could not easily refer to the
information about the file structure when he was
coding the program 1

Prog-Dram
Faults

+ II) Module Interface Faults (289/56.9)

;2.7%

P r o d u c t A Product B
(a) S y s t e m p r o d u c t s

i Internal inconsistencies in a module
f Logic Faults: Logical inconsistency (38/7.5)

Ex) A logical equation that is always true
‘- Programming Faults: Program rwle violation (12/2.4)

Ex) Reference to undefined local variables 01‘ labels

Mismatching in the data transference or control
1 between a module and its environment, i.e., other

modules, global variables, data files and hardware
(Not caused by Fault I)
Name Faults: Name mismatch (53/10.4)
Ex) Referring to a nonexistent global variable

- Structural Faults: structure, type or
configuration mismatch (99/19.5)

P r o d u c t C P r o d u c t D

(b) Firmware products
Ex) Mismatch between a subprogram’s argument type and

its calling statement’s corresponding variable
- Value Faults: Value meaning or possible

variable range mismatch (99/19.5)
Ex) Substituting the wrong value for an argument that

switches a sub-module’s function- Procedural Faults: Data transfer OP control
procedures mismatch (38/1.5) Note: (1) Goodness of fit test [lo] using a 5% significance lwel did not

Ex) Failure to set hardware to a receiving state reject the hypothesis that the proportion of internal errors 1s

before transferring data
constant for all products.

(2) Goodness of fit test using a 1% significance level rejected the
hypothesis that program fault distribution in Products A and B
is the same as that in Products C and D.III) Module Function Faults (169/33.3)

Incorrect operations of a module resulting in
unsatisfied upper functionality requirements

k Operating Faults: Operation omission or
unnecessary operations (59/11.6)
Ex) Failure to set an item to hardware that will be

used in the following commands or modules.
Condition Faults: Incorrect operation
conditions (79/15.6)
Ex) Use of an incorrect limit value in judging

whether or not to reset hardware
L- Behavioral Faults: Incorrect behaviors (31/6.1)

Ex) Displaying terms not conforming to requirements

* fiumbers in parentheses show the totals and ratios of errors
falling under corresponding categories, obtained by classifying
508 program faults in product A and B

Fig. 2. Types of program faults.

tion, where program fault is the observation point nearest to
the end of the cause-effect chain.

Fig. 3 and the numbers in parentheses in Fig. 2 show the
proportions and total number of program faults corresponding
to each of the categories. From these figures the following can
be seen:

1) Interface faults and module function faults together
constitute more than 90% of the total for all products

2) In the system software programs, interface faults oc-
curred more frequently than module function faults,
whereas the latter occurred more frequently in firmware
products than the former

Fig. 3. Proportions of three major types of program faults.

3) In the system software programs, the name, structural,
and value faults were the most common types of inter-
face faults, with the operating and condition faults being
the most common types of module function faults.

B. Cause-Eflect Relationships Between Human
Error and Program Fault

This section focuses on the two major program fault types
identified in Section III-A: interface fault and function fault,
and describes human-error categorization results, followed by
examining the relationships between human error and program
faults.

An interface fault-mismatching between various software
components-is closely related to technical information com-
munication between the various component’s development
teams. On the other hand, a module function fault is closely
related to designing software which satisfies the users’ needs.
Because it is well known that differences in these types of
works greatly affect the types of human errors which occur
during the work process, 289 human errors causing interface
faults and 169 human errors causing function faults in system
software products A and B were independently classified. Fig.
4 shows the human-error categorization results.

NAKAJO AND KUME: ANALYSIS OF SOFTWARE ERROR CAUSE-EFFECT RELATIONSHIPS 833

““UIUI
Errors
C*“S-

L-l

ing
Inter-
face
F*“ItS

Human
E~IYXS
CT*“%-

c

ing
F”“V
tion
F*“ltS

Communication Errors within a Development Team

- Misunderstandings of Software Interface Specifications:
Omissions and misunderstandings in communicating and
recognizing interface specifications related to the
software that the team is responsible for developing

Ex.1) When changing the module name, forgetting
to change the relevant calling statements

Ex.2) Misunderstanding the data sequence stored in .?A file

-I Communication Errors between a Development Team and Others

Misunderstandings of Hardware Interface Specifications:
Omissions and misunderstandings in communicating and
recognizing interface specifications related to the
hardware that the developed saftware controls

Ex.1) Forgetting to communicate a hardware
configuration change to the software designers

Ex.2) Misunderstanding hardware data transfer procedures
- Misunderstandings of Other Software’s Interface

Specifications:
Omissions and misunderstandings in communicating and
recognizing specifications related ta other software
that the software being developed exchanges data with

Ex.1) Misunderstanding the calling sequence of
a module developed by another team

(a) Human erw~s causing interface faults

1Errors in Recognizing Requirements

- Misunderstandings of System Functions:
Omissions and misunderstandings concerning the system
functions required as system external specifications

I
Ex.1) Forgetting to consider the order in which

measurements shall be displayed
Ex.2) Overlooking possible misoperations by user

Errors in Deplaying Requirements
J

- Misunderstandings of Module Functions:
Omissions and misunderstandings concerning the module
functions and their relationships to system functions

Ex.1) Overlooking relevant environmental conditions
when calling a module

Ex.2) Forgetting to save a calculated value for global
variables in a module designed to set hardware

- Misunderstandings of Program Segment Functions:
Omissions and misunderstanding concerning the program
segment functions and their relations to module functions

Ex.1) Misunderstanding an algorithm for sart~ng data

(b) Human 811110115 causing functian faults

Fig. 4. Categories of human errors.

Table II summarizes the relationships between human error
and program faults using the categorizations in Figs. 2 and 4.
From Table II the following can be seen:

1) More than 50% of interface faults were due to a mis-
understanding of software interface specifications; i.e.,
communication errors within a development team. On
the other hand, in the case of communication errors
occurring between a development team and others, mis-
understanding of hardware interface specifications oc-
curred more frequently

2) Misunderstanding of software interface specifications
causes primarily name, structural, or value faults, while
misunderstanding of hardware interface specifications
causes structural, value, or procedural faults

3) Approximately 45% of the function faults were caused
by a misunderstanding of system functions (i.e., an
error in recognizing requirements), with about 40% of
function faults being caused by a misunderstanding of
module functions

4) System function misunderstandings cause mainly con-
dition and behavioral faults, while module function
misunderstandings cause operating faults more than con-
dition faults.

Program
Faults\
Human
Errors

Name
Faults

Structural
Faults
Value
Faults

Procedural
Faults
Total

Program
Faults\
Human
Errors

Operating
Faults

Condition
Faults

Behavioral
Faults
Total

Note:

TABLE II
PROGRAM FAULTAND HUMAN ERRORS

Team 1
Misunder- 1 Misunder- 1 Misunder-

I I I
63 30 6 99

47 42 10 99
I I I

4 28 6 38
I I I

156(54.0) 106(36.7) 1 27(9 . 3) 289
133(46.0)

I) The Relationships Causing Function Faults
Requirement I Requirement Deployment I
Recognition I

Total

Misunder- I Misunder- (Misunder-

48 20 11 79

18 4 9 31
I I

76(45.0) 68(40.2) 1 25(15.8) 169
93(55.0)

(1) These tables resulted from an error analysis on Products A and B.
(2) Goodness of fit test [lo] using a 1% significance level rejected the
hypothesis that the proportions of program faults due to
misunderstandings of software interface specifications are the same as
due to misunderstandings of hardware interface specifications, and the
hypothesis that the proportions of program faults due to
misunderstandings of system functions are the same as due to
misunderstandings of module functions.

C. Cause-Effect Relationships Between Process
Flaw and Human Error

This section focuses on the following four major human-
error types by describing the process flaw categorization
results, and then examines the relationships between process
flaws and human error.

Error I: Human errors causing interface faults:
1) Misunderstanding of software interface specifications
2) Misunderstanding of hardware interface specifications.
Error II: Human errors causing function faults:
1) Misunderstanding of system functions
2) Misunderstanding of module functions.
Process flaws causing 406 human errors in Products A and

B (falling under the 4 above categories) were classified based

834 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 8, AUGUST 1991

!rrors\Process Flaws
HLJI

Misunderstanding of
Software Interface

Specifications

MAI
Huma

v ERRORS ANO PROCESS FLAWS CAUSING INTERFACE
Design-Principle Flaws

Inappropriate interface definitions prone to be
misunderstood and misdeveloped
1) Definitions inconsistent and distributed (113)*

Ex) Parameter structure varies widely for
modules when each module is individually
defined
2) Complicated correspondence between
definitions (53)

Errors
Causing
Interface

Faults
Misunderstanding of
Hardware Interface

Specifications

Ex) Variable structure is different from that of
the data to be stored
3) Insufficient discrimination between defined
items (37)

Ex) Global variables or modules have similar
names
4) Ambiguous labels defining items (59) Ex)
Flag variable name does not present the system
state that it implies

* Numbers in parentheses show the total process flaws of Products A and B in each category. A
design-management flaw are counted for each human error.

Design Principle Flaws

rl

Flaws related to fundamental principles that
PI%- designers OP programers must follow in order to
cess define proper and understandable interface
FlWS or functional structures.

Ex) The global variable structure in which the data
is stored is different from that of the file

3) The major design-management flaws that cause the mis-
understanding of hardware interface specifications were
unclear documentation of hardware accessing methods

4) Dependent/unsymmetrical system unit or module func-
tion definitions were the design-principle flaws that
cause the misunderstanding of system and module func-
tions

Design Management Flaws

Flaws related to the methods and procedures
facilitating design management, i.e., how to
document and communicate information on the inter-
faces and functional structures so that designers
and programers can utilize them properly
and evaluate their correctness.
Ex) The programmer could not easily refer to the

information about the file structure when
he was coding the program

5) The design-management flaws that cause the misunder-
standing of system functions were unsystematic require-
ment documentation and insufficient documentation on
how to combine system unit functions to satisfy these
requirements

6) The design-management flaws that cause the misunder-
standing of module functions were inappropriate doc-
umentation of the relationships between system and
module functions.

Fig. 5. Categories of process flaws.

on their similarity. Fig. 5 shows the process flaw categorization
results.

As a result, it is concluded that the error-occurrence mecha-
nisms in the development of these products consist of the four
major paths shown in Fig. 6.

Tables III and IV summarize the relationships between
process flaws and human errors using the categorizations in
Figs. 4 and 5. From these tables the following can be seen:

1) Inconsistent and distributed interface definitions were
the major design-principle flaws that cause the misun-
derstanding of software and hardware interface specifi-
cations

IV. E FFECTS O F STRUCTURED ANALYSIS AND STRUCTURED

D E S I G N M E T H O D S O N E R R O R -OC C U R R E N C E M E C HA N I S M S

2) The design-management flaws that cause the misun-
derstanding of software interface specifications were
inappropriate documentation for module calling methods
and/or file and global variable definitions

This section describes the effects of Structured Analysis
(SA) and Structured Design (SD) methods [6], [7] on the previ-
ously identified four error-occurrence mechanisms. Although
the SA/SD methods are generally used in designing simply
structured software, when used as design-management tools
they can help suppress these error mechanisms.

A measuring-equipment control system product, similar to
Products A and B, was chosen to evaluate the SA/SD methods’
effects on error-occurrence mechanisms. For comparison, six

TABLE III
LILTS

Design-Management Flaws
Lack of methods for recording and referring
software interface definitions
1) Inappropriate communication of module

calling information (80)
Ex) The necessary operations before calling

modules is not clearly documented
2) Inappropriate of communication of global
variable or file access information (76)

Ex) Global variable value meanings are not
clearly documented
Lack of communication methods between
software engineers and hardware engineers
1) Inappropriate communication of hardware
physical configurations (24)

Ex) The number of hardware components and
the connection between them are shown only by
circuit diagrams
2) Inappropriate communication of hardware
access information (82) Ex) Methods of
reading or writing hardware memories and each
memory’s meanings are unsystematically
documented in hardware specifications

.a1 design-principle flaw and a vital

NAKAJO AND KUME: ANALYSIS OF SOFTWARE ERROR CAUSE-EFFECT RELATIONSHIPS 835

TABLE IV
N ERRORSAND PROCESS FLAWS CAUSING FUNCTION .ULTS

Design-Principle Flaws
Comolicated corresoondence between
requirements and the means of realizing them
1) Functions defined unsymmetrically (91)*

Ex) Some commands do not make sense and
are unexecutable under certain conditions
2) Functions defined dependently (53) Ex)
Functions related to user interface and equipment
control are included in a module because module
structures are designed so as to satisfy
performance requirements

Design Management Flaws
Lack of systematic methods to describe
external system functions
1) Inappropriate documentation of users’
requirements and system unit functions (71)

Ex) The conditions where each command can
be executed are documented using natural
language
2) Inappropriate documentation of relationships
between requirements and system unit functions
(5)

HI I,
irrors\Process Flaws

__-.
Hum:

Misunderstanding of System
Functions

Errors
Causing
Function

Faults

Misunderstanding of Module
Functions

* Numbers in the parentheses show the total process flaws of Products A and B in each category. A

Ex) How to combine commands for function
realization is undocumented
Lack of methods describing module functions
and the relationships between module and
external system functions
1) Inappropriate documentation of module
functions (15)

Ex) The conditions where each module can be
executed are not completely documented
2) Inappropriate documentation of relationships
between system unit and module functions (53)

Ex) The relationships between commands and
modules are incompletely documented
al design-principle flaw and a vital

design-management flaw are counted for each human error

TABLE V
CHARACTERISTICS AND DEVELOPMENT CONDITIONS OF THE COMPARED

SUBSYSTEMS
Charac t e r i s t i c 1 Subsystems Subsystems

Process -1
Development Condi- Developed using Developed without

tion\Subsvstems %/SD Methods usine &A/SD
Mithods

Number of 6(including 5 intrinsic 6(including 4 intrinsic
Subsystems* subsystems) subsystems)

The Size of Codes 24.9 KNCSS** 27.0 KNCSS
The Size of Reused 1.7 KNCSS 12.0 KNCSS

Flaws +
Lack of methods for
recording and referring

+
Lack of communication
methods between

Codes***
Program Language

Number of
Programers

Experience of
Programers

System Specification
Develooment

7z!s%$rl

C C
5 persons 6 persons

34 years 34 years

No difference

[Module interface faults 1
(Structural, value and
procedural faults)

(b) Mechanism 2(a) Mechanism 1

and the relationships
between module and
external system
functions
(Relationships between
upper functions

Processes
* Subsystems of a single system were selected and compared.
* * KNCSS = 1000 Noncommented source statements.
* * * All codes reused were reviewed and modified if necessary.

Complicated correspond-
ence between reauire-
merits and the means of

PrOCeSS realizing them
Flaws +

Lack of systematic
method to describe
external system I

uct were developed without using SA/SD methods (Control
group). Table V shows the characteristics and development
conditions for both groups. All errors discovered during and
after the module testing phase were analyzed and compared.

Fig. 7 shows the occurrence rates and proportions of the
three program fault types for both groups, with Table VI giving
the relationships between human error and program fault for
the SA/SD group. This information, combined with that of
Fig. 3 and Table II, yielded the following:

Misunderstandings of
module functions

Human Misunderstandings of
ErrOr& system functions

Program Module function faults
Faults (Condition)

Module function faults
(Operation, Condition)

(d) Mechantsm 1(cl Mechanism 3

Fig. 6. Error-occurrence mechanisms of measuring equipment control soft- 1) The internal fault proportion was constant for the four
ware. test groups; i.e., M/SD, Control, and Products A and B

2) The internal fault-occurrence rate in the M/SD group
product subsystems were developed using M/SD methods
(SA/SD group), and six other subsystems of the same prod-

was the same as in the Control group
3) The interface fault proportion in the Control group was

836 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 8, AUGUST 1991

Program Faults\Human
Errors

TABLE VI
PROGRAM FAULTS AND HUMAN ERRORS IN THE SUBSYSTEMS DEVELOPED USING S&SD METHODS

(a) The Relationships Causing Interface Faults
Communication within a Communication between a Development Team and Others

Development team
Misunderstanding of Misunderstanding of Misunderstanding of Other
Software Interface Hardware Interface Software’s Interface

Specifications Specifications Specifications

Total

Name Faults 1 0 0 1
Structural Faults I 2 1 10

Value Faults 1 2 0 3
Procedural Faults 1 0 0 1

Total

Program Faults\Human
Errors

I
4(26.7) l(6.7)

lO(66.7) 5(33.3)
(b) The Relationships Causing Function Faults

Requirement Recognition Requirement Deployment
Misunderstanding of System Misunderstanding of Misunderstanding of

Functions Module Functions Program Segment
Functions

15

Total

Operating Faults
Condition Faults
Behavioral Faults

Total

3 10 0 13
4 I 1 12
4 0 0 4

17(58.6) l(3.5)
ll(37.9) UJ(62.1) 29

4)

5)

6)

the same as in Products A and B, whereas its proportion
in the SA/SD group was smaller than in Products A
and B
The interface fault-occurrence rate in the SA/SD group
was about a half of the Control group’s
The function fault-occurrence rate in the &A/SD group
was approximately 35% smaller than that in the Control
group
Although the amount of data was not sufficient to
determine the relationships between human error and
program faults, for the SA/SD group the proportion of
structural faults due to software-interface specification
misunderstandings increased, and the proportion of con-
dition faults due to system-function misunderstandings
decreased.

It is concluded that in this experiment the M/SD methods
suppressed the four error-occurrence mechanisms, and also
that the effects on 1 and 2 were greater than those on 3 and 4.

V. D I S C U S S I O N

The metric-based method is a common method of em-
pirically analyzing software error cause-effect relationships
[5], [ll], [12]. This is an application of the method used
to analyze hardware cause-effect relationships, and primarily
uses correlation coefficients between two metrics measuring
results and their causes. The method’s general outline is:

1) Divide the products under investigation into appropriate-
sized units for analyzing causeeeffect relationships; i.e.,
systems, subsystems, or modules

2) Define the metrics which measure the unit characteristics
and the unit-producing processes and then gather data

3) Calculate the correlation coefficients between the unit’s
metrics and the processes’ metrics and then evaluate

(a) Croup developed us,ng SR/SD methods

“‘% (‘) 4 4 . 3 % (27) 4.0

17.5%

rn 3 . 0
z
5
\ 2 . n
2

j 1.0

0 .0
Tota, Inter- Inter- Func-

“.3I face *lo”

(b) Gro”p developed s~thout “sing SA/SD methods

(1) Goodness of fit test [lo] usmg a 5X sigmficance level did not
reject the hypothesm that internal fault pmport*on is constant for
four test groups. ,.e., %/SD, Control, and Products A and B, the
hypothesis that the internal fault occui-rmce rate in SA/SD grout is
the same as in Control group, and the hypothesis that Interface
fault proportum is constant for Control group and Products A and B.

(2) Goodness of fit test usmg a 1% sigmflcance level reJected the
hvoothesls that interface fault mm~ort~on 1s constant for S.A/SD
group and Products A and B, and ihe hypothesis that the interface
fault occurrence rate based on the code size exrludmg reused code
,n SA/SD group 1s the same as I” Control group. Even mcludmg the
reused code, the test stat ist ic value was near to the 5% signlflCanCP
paint.

(3) The statistic value of goodness of fit test for the hypothesis that
t h e functmn fault occurrenre r a t e ,n %/SD gro”~ IS t h e same a s In
Control group was nrar to the 5X significanw pant when excluding
rmsed code.

Fig. 7. Effects of W/SD methods on program faults.

The key elements of this metric-based method are the size
of the units used in Sten 1 and the metric tvpes defined inthem.

NAKAJO AND KUME: ANALYSIS OF SOFTWARE ERROR CAUSE-EFFECT RELATIONSHIPS 837

Step 2, especially the process characteristic measurements.
Method effectiveness is highly dependent upon these ele-
ments (e.g., large units decrease the amount of data for
calculating correlation coefficients and do not isolate the
effects of various causes, whereas small units increase data
variance and the respective correlation coefficient variance).
Usually trial-and-error techniques determine the appropriate
unit sizes, and similarly the process characteristic metrics are
primarily selected based on either specific engineering models
or experience.

Another approach in determining the cause-effect rela-
tionships of software errors is to individually analyze each
error. FTA is one such method, where unit sizes and process
characteristic metrics are not required to be determined in
advance. FTA is flexible enough to handle each error’s com-
plex cause-effect relationships; however, this flexibility makes
it difficult for FTA to extract the relationships common to
various errors. Additionally, analyzing more than one error
at a time in order to obtain a fault tree diagram presenting
common cause-effect relationships often results in a subjective
analysis unrelated to individual errors. Another FTA method
weakness is the number of man-hours necessary to collect
data. In the metric-based method, data can be automatically
collected once the metrics are established. Contrastingly, the
FTA method is difficult and inappropriate to limit the data
range in advance, and as a result requires more data-collection
time. This degree of difference significantly depends on the
development environment, especially on the error-tracking
system.

As in FTA, the presented case-based analysis method does
not require the unit sizes and process characteristic metrics
to be determined in advance and can be applied without
specific engineering models of the cause-effect relationships.
The case-based method overcomes the FTA weakness by using
both predefined observation points and a phased approach
which individually tracks each error’s case data to extract the
common cause-effect relationships inherent in the data. On
the other hand, this case-based analysis method still requires
a considerable amount of man-hours, because it basically
falls under the category of the FTA method. The man-hours
necessary for data collection are more critical than those
necessary for data analysis; however, the data collection time
can be fairly reduced once appropriate observation points are
established.

VI. CONCLUSIONS

The paper focused on measuring-equipment control soft-
ware and identified cause-effect relationships of software
errors. Four major error-occurrence mechanisms were iden-
tified-two are related to hardware and software interface
specification misunderstandings, and the other two are related
to system and module function misunderstandings. The effects
of the Structured Analysis and Structured Design methods on
software errors were also evaluated using these mechanisms.
The structured methods could suppress the error-occurrence
mechanisms, being more effective on hardware and software
interface mechanisms than on system and module function

mechanisms. The presented case-based cause-effect relation-
ship analysis method can be expected to supplement the
metric-based and FTA methods. These conclusions were drawn
from specific software packages and are thus limited to them.
Given the similarities of software development procedures,
however, the presented results can be generalized and applied
to the development of other software products.

A C K N O W L E D G M E N T

The authors wish to thank the following employees of
Yokogawa-Hewlett-Packard Co. Ltd.: M. Mori (Instrument
Division Manager) for his beneficial advice, and K. Sasabuchi,
T. Akiyama, and I. Azuma (Product Assurance Section), and
F. Turuda, M. Tada (Research and Development Sections),
and many other software engineers for their help with the
collection and analysis of software-error information.

R E F E R E N C E S

Ill

PI

I31

(41

[51

I61

[71

[*I

[91

[lOI

[Ill

[=I

W. S. Humphrey, Managing the Software Process. Reading, MA:
Addison-Wesley, 1988, pp. 363-388.
A. Enders, “An analysis of errors and their causes in system programs,”
IEEE Trans. Software Eng., vol. SE-l, pp. 14&149, June 1975.
N. F. Schneidewind and H. M. Hoffman, “An experiment in software
error data collection and analysis,” IEEE Trans. Software Eng., vol.
SE-5, pp. 276286, May 1979.
E. A. Young, “Human errors in programming,” In?. J. Man-Machine
Studies, vol. 6, no. 3, pp. 361-376, May 1974.
V. R. Basili and T. Perricone, “Software errors and complexity: an
empirical investigation,” Commun. ACM, vol. 27, no. 1, pp. 42-52, Jan.
1984.
T. DeMarco, StructuredAnalysis and System Specification. Enalewood
Cliffs, NJ: Prentice-Hall, 1579. . . 1
C. Gane and T. Sarson, Structured System Analysis: Tools and Tech-
niques. New York: Improved System Technologies, 1979.
N. G. Leveson and R. R. Harvey, “Software fault tree analysis,” J. Syst.
Sofhvare, vol. 3, no. 2, pp. 173-182, June 1983.
S. Mizuno, Management for Quality Improvement: The 7New QC Tools.
Cambridge, MA: Productivity Press, 1988, pp. 115-142.
I. Guttman and S. S. Wilks, Introductory Engineering Statistics. New
York: Wiley, 1965, ch. 12.
V. R. Basili and D. Rombach, “Tailoring the software process to project
goals and environments,”m Proc. 9th Int. Co@ Software Eng., Mar.
1987, pp. 345-357.
V. R. Basili, R. W. Selby, and D. H. Hutchens, “Experimentation
in software engineering,” IEEE Trans. Software Eng., vol. SE-12, pp.
733-743, July 1986.

Takeshi Nakajo received the B.S., M.S., and Ph.D.
degrees in engineering from the University of Tokyo,
Japan, in 1979, 1981, and 1986, respectively.

He was a Research Assistant at the University of
Tokyo from 1987 to 1990, and has been a Lecturer at
Chuo University since 1990, where his special field
is in quality improvement, especially the prevention
of human errors, with his current research interests
being in software-error analysis and design and
testing methods. Dr. Nakajo is a member of IEEE
Computer Society.

838 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 8, AUGUST 1991

Hitoshi Kume received the B.S., MS., and Ph.D.
degrees in engineering from the University of Tokyo,
Japan, in 1960, 1962, and 1965, respectively.

He was an Associate Professor at the University
of Tokyo from 1974 to 1980, and has been a
Professor since 1980, where his special field is in
quality control. Since 1960 he has been engaged
in consulting work for the improvement of quality
systems in Japan’s various manufacturing industries.

Dr. Kume is a member of the American Soci-
ety for Quality Control and a Japan Delegate to

iagement and Quality Assurance) of the International
tdardization.

