
PROGRAMMER PERFORMANCE AND 
THE EFFECTS OF THE WORKPLACE 

Tom DeMarco and Tim Lister 

The Atlantic Systems Guild 
353 W. 12th Street 

New York, NY 10014 USA 

Abstract 

Wide variation in programmer performance has been frequently 
reported in the literature [l, 2, 31. In the absence of other explana- 
tion, most managers have come to accept that the variation is due 
to individual characteristics. The presumption that there are order- 
of-magnitude differences in individual performance makes accurate 
cost projection seem nearly impossible. 

In an extensive study, 166 programmers from 35 different 
organizations. participated in a one-day implementation 
benchmarking exercise. While there were wide variations across the 
sample, we found evidence that characteristics of the workplace and 
of the organization seemed to explain a significant part of the 
difference. 

Keywords: Management Issues, Productivity, Programmer 
Workplace. 

1. Introduction 

It is common wisdom that there is a huge variation in individual 
performance rates among programmers. Sackman, Erikson and 
Grant [l], for example, reported differences of as much as 25:l in 
the time required for a given programming task. Boehm [2] 
reported that the cost driver derived from individual characteristics 
of team members was nearly twice as large as the second largest 
driver. And Augustine [3) observed that more than 50% of the 
work is typically done by 20% of the people. 

While most programmers and managers accept that there are 
such variations, few have any idea where they themselves stand on 
the performance scale. Evidence that a particular person performed 
in the upper ten percentile across the industry would lead to elation; 
placement in the lower 10 percentile would lead to despondency - 
but neither would cause great surprise. Software developers (and 
the organizations they work for) remain largely ignorant of their 
own capacities. 

The issue of performance variation is further complicated by the 
suspicion that high and low performers tend to cluster in different 
organizations. In [4], Putnam indicated success in ascribing a tech- 
nology factor to organizations in order to explain their varying 
capacity. The technology factor was empirically derived, based on 
past performance. Once set for an organization, it was surprisingly 
constant across different projects and different teams. The 
usefulness of Putnam’s technology factor implies that the wide 
differences in performance may be more a function of corporate cul- 
ture and the workplace than of inherent individuality. 

If there are large differences between organizations, managers 
cannot afford to remain ignorant of where they stand. If the 
differences can be even partially explained by remediable characteris- 
tics of the environment and the workplace, then those characteristics 
deserve to be a major focus of our productivity improvement effort. 

CH2139-4/85/0000/0268 0 IEEE 1985 

2. The Coding War Games: A Public Benchmarking Exercise 

The 1984 Coding War Games were conceived as an opportunity 
for individuals to find out how they performed relative to a sample 
of their peers. A further objective was to test hypotheses about the 
effect of the workplace. 

The exercise was run according to the scheme of [S] as an open 
competition. Each organization submitted one or more competition 
pairs, each pair made up of two volunteer implementors. The two 
members of each pair performed the same one-day implementation 
task, working to the same specification. They were encouraged to 
compete with each other as well as with the rest of the sample. 
They worked at their own workspace (office, cubicle, terminal room, 
etc.), during normal working hours. They used the normal lan- 
guages, machines and development facilities provided by their 
organizations. The two members of each pair worked in the same 
language and used the same support environment. 

A total of 166 programmers from 35 organizations participated 
in the 1984 games. Characteristics of the participants are described 
in Figures 1 and 2. 

The exercise was implementation of a program to a rigid 
specification. The program involved syntactic and semantic edits on 
an input stream of calendar dates, followed by computation of 
day-intervals between specified dates as much as 8 centuries apart. 
The average program built in compliance with this specification was 
220 lines long. Two thirds of the programs were between 133 and 
297 lines in length. The average COBOL program was 237 lines. 
The specification called for on-line operation, but there was an 
alternative for batch operation which was used by approximately 
5% of the pairs. 

The project was organized in such a way that there were two 
well-defined milestones: 1) Clean compileHeady for test, and 2) AI1 
work complete. The entire sample was divided at the beginning into 
two “rounds.” Both rounds used the same exercise, but they used 
slightly variant test procedures. Round One programmers did no 
testing on their own code; each coder completed and desk-checked 
his/her program and, after producing an acceptable clean compile, 
then gave it to the other pair member to test. Round Two pro- 
grammers ran the exercise with the more familiar procedure of 
coding and then testing their own code. Because the different 
testing approaches gave a slightly different meaning to the Milestone 
1, data from the two rounds was compiled separately. Round One 
was composed of the first 100 entrants. 

After programmers had completed their own testing, they ran a 
pre-set acceptance test provided in sealed form with the instruction 
kit. The acceptance test consisted of ten sample inputs. Partici- 
pants recorded the outputs on a form which was returned to the 
organizers for analysis. The acceptance tests were designed to meas- 
ure coherency, accuracy, precision, robustness and edit efficiency of 
the programs. 

268 



Figure 1. Participants by Industry Sector 
INDUSTRY SECTOR 

Figure 2. Participants by Language 
LANGUAGES 

During the exercise, participants kept rigorous track of time 
spent. They noted periods of work, type of work, periods of inter- 
ruption and nature of each interruption. All this time data was 
recorded on a form supplied and returned to the organizers. 

Each participant filled out an extensive questionnaire designed 
to determine measurable characteristics of the workplace and 
environment as well as the individual’s subjective attitude toward 
these factors. 

3. Programmer Performance Across the Sample 

Figure 3 shows how participants performed (how much work 
time they used) in reaching Milestone 1. There is indeed a 
considerable difference across the sample: The variation from best to 
worst is a factor of 5.6 to 1. Average performance was 2.1 times 
slower than the best. The half above the median outperformed the 
half below the median by 1.9 to one. 

269 

While variation over the entire group was pronounced, there 
was very little variation within each pair. Consider these results: 

l The overall fastest performer was paired with the second fastest. 
l The overall slowest performer was paired with the second 

slowest. 
l Of the thirteen participants that did not finish the exercise, all 

but three were paired with other non-finishers. 

The two members of each pair were arbitrarily coded Red and 
Blue at the beginning of the exercise. The performance of one pair 
member turned out to be a strong predictor of the performance of 
the other. This is shown in Figure 4, where Red performance is 
plotted against Blue. Each point on the graph represents one pair’s 
joint performance. (The x-coordinate gives Blue and the y- 
coordinate gives Red.) A point on the 45 degree line would indicate 
a pair in which the two participants performed identically. The 
correlation coefficient between Red and Blue performance was 0.79. 



WORK TIME TO REACH MILESTONE 1 (MINUTES) 

Figure 3. Spread of Performance 

0 ,/’ 0 
/ / 

0 /’ 
9’ 

BLUE 
Figure 4. Correlation Between Teammates (Round One Data) 

The marked grouping of points around the 45 degree line sug- 
gests that characteristics of the workplace and corporate culture 
(which are constant for the two members of each pair) may explain 
much of the overall variation in programmer performance. The 
difference within a pair is an indication of truly individual perform- 
ance capacity. For the average pair in the sample, the difference 
between the two performers was a factor of 1.21 to one. For 80% 
of the pairs, performance of the two members was within 34% of 
each other. 

Figure 5 shows the quality of the resultant programs as judged 
by a sample of five key acceptance tests. Though they were not 
allowed to debug their programs at all, more than one third of 
Round One participants produced a program that passed the major 
tests of coherency, functionality and accuracy on its first run. 

0 i i 3 4 ABORT 

DEFECTS 

Figure 5. Spread of Defect Counts 

Figure 6 shows the relationship (actually, the lack of 
relationship) between time to reach the milestone and number of 
defects. There appeared to be no quality penalty for rapid perform- 
ance: Faster than median performers had fewer defects than slower 
than median performers, and those who performed in the top 25% 
in terms of time to reach the milestone had an average defect 
density 30% lower than that of the rest of the sample. 

270 



WORK TIME IN MINUTES 
Figure 6. Speed vs. Defects 

4. Characteristics of the Programmer Workplace 

It may be impossible to quantify the illusive concept of “corpo- 
rate culture,” and difficult to improve it substantially. But this need 
not be true of the programmer’s workplace and its surrounding 
environment. In this section, we shall set out observed characteris- 
tics of the workplace and in the next section we shall show how 
such characteristics were correlated to performance. 

The environmental questionnaire that each participant filled out 
asked for both objective data about the workplace (how much 
space, what provisions for privacy etc.) and subjective assessment by 
the participant (“Does your office space make you feel 
appreciated?“). From data taken from all 160 respondents, the 
following picture emerges of the prototypical programmer 
workplace: 

PROGRAMMER WORKPLACE 
(AVERAGES FROM THE SAMPLE) 

Dedicated space: 63 square feet 
Enclosure: cubicle walls (78%) 
Cubicle height: 5 feet 
Dedicated terminal: 60% 

There were substantial variations in these characteristics across 
the sample. Figure 7, for example, shows the variation in dedicated 
floor space. 

A rather grim picture of the workplace emerges from the 
subjective assessments by participants: 

PERCENT OF 
QUESTION RESPONDENTS 

Is your workplace acceptably quiet? 58% No 

Is there sufficient privacy? 61% No 

Do people often interrupt you 
needlessly? 62% Yes 

Is it difficult or impossible to work 
effectively in your workplace from 9-5? 41% Yes 

Does your workplace make you feel 
appreciated? 51% No 

Is your workplace at work as pleasant 
as your workplace at home? 54% No 

Reading through the respondents’ free-form comments about 
the environment is a distressing experience. Many programmers 
appear to be continually frustrated in attempts to work. They are 
plagued by noise and interruption, and pessimistic that the situation 
will ever be improved. The data recorded about actual interruptions 
supports the view that the so-called “work-day” is made up largely 
of frustration time. Reproduced below is a portion of one typical 
time-sheet from the exercise: 

WHAT INTERRUPTION 
WORK PERIOD TYPE OF CAUSED THE END OF 
FROM - TO WORK THIS WORK PERIOD? 

2:13 - 2:17 Coding 
2:20 - 2~23 Coding 
2~26 - 2~29 Coding 
2:31 - 2:39 Coding 
2:41 - 2:44 Coding 

Phone call 
Boss stopped in to chat 
Question from colleague 
Phone call 
Phone call 

DEDICATED SPACE 

(SCIIUARE FEET/PERSON) 
Figure 7. Variation of Dedicated Floor Space 

5. Effects of the Environment on Performance 

In order to detect any correlation between environment and per- 
formance, we divided the set of finishers into four groups based on 
performance. Average performance of those in the upper 25% was 
2.6 times better than that of those in the lower 25%. We then 
compared environmental factors recorded by the top 25% of 
performers to those of the lower 25%. A sample of results is 
presented below: 

ENVIRONMENTAL FACTOR TOP 25% BOTTOM 25% ALL 

Dedicated floor space 78 sqft. 46 sqft. 63 sqft. 
Acceptably quiet workspace 51% yes 29% yes 42% yes 
Acceptably private workspace 62% yes 19% yes 39% yes 
Can you silence your phone? 52% yes 10% yes 29% yes 
Can you divert your calls? 76% yes 19% yes 57% yes 
Do people often interrupt 
you needlessly? 38% yes 76% yes 62% yes 
Does your workspace make 
you feel appreciated? 57% yes 29% yes 45% yes 

271 



We concluded that the two groups work in significantly ditferent 
environments. The top performers are in fairly generous space that 
manages to protect them from at least some distractions. The tele- 
phone interruption problem has been addressed to the point that 
most people know their phones will be picked up by a clerical 
worker if ignored. The space is relatively pteasant and a culture of 
interrupt consciousness has evolved. People have relatively long 
periods of interrupt-free work. 

The bottom 25% work in tiny cubicles - eight of this group 
reported dedicated space of 40 square feet or less! The phones ring 
until answered and cannot be diverted. There is little or no inter- 
rupt consciousness, with managers among the worst offenders. (One 
participant wrote, “My boss switches his secretary’s phone to me 
when she’s 0~1.“) People are forced to work in short periods of 
time between interrupts. 

There is a danger here of confusing cause and effect. We have 
implied, for instance, that better (quieter) workspace may result in 
higher productivity. But it may be that high productivity has been 
rewarded by more floor space. Hence the best performers may have 
gravitated naturally to the more commodious and thus quieter 
space. To investigate this possibility, we analyzed three 
organizations that had submitted nine or more teams each. Within 
each of these organizations we found little or no variation in the 
main environmental factors. The best performers from each of the 
companies worked in more or less the same floor space and same 
noise level as the worst performers. 

As a further control, one organization had 18 programmers take 
part in the exercise, working in their normal workplace while 
another six worked in a specially contrived “clean room” 
environment, free from most interruptions and noise. The clean 
room group out-performed their peers by 40% in the time required 
to reach the milestone. 

Whether a better workplace causes higher productivity or higher 
productivity workers gravitate toward organizations with a better 
workplace should be of little concern to the software manager. 
Either argues for more concentration on the physical environment in 
which programmers (try to) work. 

6. Summary: The Case for Improving the Programmer Workplace 

In spite of widespread productivity consciousness, our industry 
has tended to ignore the effect of the workplace. The typical pro- 
ductivity manager considers changes to the physical characteristics 
of the workplace to be outside his/her charter. Our findings imply 
that the productivity charter should be widened: Environmental fac- 
tors such as noise, privacy and interruptibility may be keys to sub- 
stantial productivity improvement. For example, changing the 
workplace at a given company from that of typical of a “lower- 
25% performer” to that of an “upper-25% performer” offers the 
potential of a 2.6 to one improvement in the time to perform a 
complex programming activity. 

REFERENCES 

[l] Sackman, H., W.J. Erikson and E.E Grant.Exploratory 
Experimental Studies Comparing Online and Offline Program- 
ming Performance.” Communicutions of the ACM, Vol. 11, 
No.1 (January, 1968), pp 3-11. 

[2] Boehm, B.W. Software Engineering Economics. Englewood 
Cliffs, N.J.: Prentice-Hall, 1981. 

[3] Augustine, N.R. “Augustine’s Laws and Major System 
Development Programs.” Defense Systems Management Review, 
1979, pp 50-16. 

[4] Putnam, L.H. “A Genera1 Empirical Solution to the Macro 
Software Sizing and Estimating Problem.” IEEE Transactions 
on Software Engineering, Vol. SE-4, No. 4, July 1978, pp 345- 
361. 

(51 DeMarco, T. Controlling Software Projects: Management, 
Measurement and Estimation. New York: Yourdon Press, 
1982. 

272 


