
CLEANROOM
PROCESS MODEL

The philosophy behind
Cleanroom software

engineering is to ovoid
dependence on costly

defect-removal processes
by writing code increments

right the first time
and verifying their

correctness before testing.
its process model

incorporates the statistical
quality certification of code

increments as they
accumulate into a system.

RICHARD C. LINGER
IBM Cleanroom Software

Technology Center

T oday’s competitive pressures and
societv’s increasing denendence on

I Y I

software have led to a new focus on devel-
opment processes. The Cleanroom pro-
cess, which has evolved over the last de-
cade, has demonstrated that it can improve
both the productivity of developers who
use it and the quality of the software they
produce.

Cleanroom software engineering is a
team-oriented process that makes devel-
opment more manageable and predictable

This article is based on a paper that appears in R-w. 1%
Id C’mf .?%$wure E&g.., f!ZEE CS Press, Las Alamitos,
Calif., 1993, pp. 2.13.The IEEESoftwareEditorial Board
has selected it as the best practice paper presented at
ICSE-15. The bard thanks Richard A DeMillo, ICSE-
I5 Program Cochair, for his help in arranging for its pub-
lication in IEEE Sofim.

because it is done under statistical quality
control.

Cleanroom is a modern approach to
software development. In traditional,
craft-based development, defects are re-
garded as inevitable and elaborate defect-
removal techniques are a part of the devel-
opment process. In such a process,
software proceeds from development to
unit testing and debugging, then to func-
tion and system testing for more debug-
ging. In the absence of workable altema-
tives, managers encourage programmers
to get code into execution quickly, so de-
b ugging can begin. Today, developers rec-
ognize that defect removal is an error-
prone, inefficient activity that consumes
resources better allocated to getting the
code right the first time.

50 07407459/94/5M co 0 1994 IEEE MARCH 1994

Cleanroom teams at IBM and other
organizations are achieving remarkable
quality results in both new-system devel-
opment and modifications and extensions
to legacy systems. The quality of software
produced by Cleanroom development
teams is sufficient (often near zero defects)
for the software to enter system testing
directly for first-ever execution by test
teams.

The theoretical foundations of Clean-
room - formal specification and design,
correctness verification, and statistical
testing - have been reduced to practice
and demonstrated in nearly a million lines
of code. Some Cleanroom projects are
profiled in the box on p. 56.

QUALITY COMPARISON

Quality comparisons between tradi-
tional methods and the Cleanroom pro-
cess are meaningful when measured from
first execution. Most traditional develop-
ment methods begin to measure errors at
function testing (or later), omitting errors
found in private unit testing. A traditional
project experiencing, say, five errors per
thousand lines of code (KLOC) in func-
non testing may have encountered 2S or
more errors per KLOC when measured
from first execution in unit testing.

At entry to unit testing, traditional soft-
ware typically exhibits 25 to 35 or more
errors per KLOC.’ In contrast, the
weighted average of errors found in 17
Cleanroom projects, involving nearly a
million lines of code, is 2.3 errors per
KLOC. This number represents all errors
found in all testing, measured from first-
ever execution through test completion -
it is the average number of residual errors
present after the development team has
performed correctness verification.

In addition to this remarkable differ-
ence in the number of errors, experience
has shown a qualitative difference in the
complexity of errors found in Cleanroom
versus traditional software. Errors left be-
hind by Cleanroom correcmess verifica-
tion tend not to be complex design or in-
terface errors, but simple mistakes easily
found and fixed by statistical testing.

In this article, I describe the Clean-

room development process, from specifi-
cation and design through correctness
verification and statistical usage testing for
quality certification.

INCREMENTAL DEVELOPMENT

The Cleanroom process is based on
developing and certifying a pipeline of
software increments that accumulate into
the final system. The increments are de-
veloped and certified by small, indepen-
dent teams, with teams of teams for large
projects.

System integration is continual, and
func;ionality g&s with
the addition of successive
increments. In this ap-
proach, the harmonious
operation of future incre-
ments at the next level of
rehnement is predehned
by increments already in
execution, thereby mini-
mizing interface and de-
sign errors and helping
developers maintain in-
tellectual control.

The Cleanroom de-
velopment process is in-

CLEANROOM
DEVELOPMENT
IS INTENDED
TO BE “QUICK
AND CLEAN,”
NOT “QUICK
AND DII

As the figure shows, Cleanroom devel-
opment involves two cooperating teams
and five major activities:

+ Specification. Cleanroom develop-
ment begins with specification. Together,
the development team and the certifica-
tion team produce two specifications:
functional and usage. Large projects may
have a separate specification team.

The functional specification defines
the required external system behavior in
all circumstances of use; the usage specifi-
cation defines usage scenarios and their
probabilities for all possible system usage,
both correct and incorrect. The func-

tional specification is the

RN.”

tended to be “quick and clean,” not “quick
and dirty.” The idea is to quickly develop
the right product with high quality for the
user, then go on to the next version to
incorporate new requirements arising
from user experience.

In the Cleanroom process, correcmess
is built in by the development team
through formal specification, design, and
verification. Team correctness verification
takes the place of unit testing and debug-
ging, and software enters system testing
directly, with no execution bythe develop-
ment team. All errors are accounted for
horn first execution on, with no private
debugging permitted.

Figure 1 illustrates the Cleanroom
process of incremental development and
quality certification. The Cleanroom
team first analyzes and clarifies customer
requirements, with substantial user inter-
action and feedback. Ifrequirements are in
doubt, the team can develop Cleanroom
prototypes to elicit feedback iteratively.

basis for incremental soft-
ware development. The
usage specification is the
basis for generating test
cases for incremental sta-
tistical testing and quality
certification. Usage speci-
fications are explained in
the section on certifica-
tion.

l Increment planning.
On the basis of these
specifications, the devel-
opment and certification

teams together define an initial plan for
developing increments that will accumu-
late into the final system. For example, a
100 KLOC system might be developed in
live increments averaging 20 KLOC each.
The time it takes to design and verify in-
crements varies with their size and com-
plexity. Increments that require long lead
times may call for parallel development.

+ Design and verijkation. The develop-
ment team then carries out a design and
correcmess verification cycle for each in-
crement. The certification team proceeds
in parallel, using the usage specification to
generate test cases that reflect the ex-
pected use of the accumulating incre-
ments.

l @4+~ cerhifiration. Periodically, the
development team integrates a completed
increment with prior increments and de-
livers them to the test team for execution
of statistical test cases. The test cases are
run against the accumulated increments
and the results checked for correctness

IEEE SOFTWARE 51

defined and refined as different box struc-
tures, resulting in a usage hierarchy of ot)-
jects in which the services of an object may
be used and reused in many places ,and at
many levels. Box structures, then, define
required system behavior and derive and
connect objects comprising a system ar- I r

Figure 1. CLeanmom plncess model. The stacked boxes indicate successizle hwements.

‘I-hey also address the two engineering
problems associated with system specifica-
tion: defining the right fun&n for users
and defining the right structure for the spcc-
ification itself. Box structures address the
first problem by precisely defining the FLU-
rent understanding of required fiu~ctions at
each stage of development, so that the fimc-
dons cdn be reviewed and modified ifneces-
sary. The second problem is critical, espe-
cially for large-system development. I Iow
can we organize the mead details of be-
havior and processing-into coherent ab- ~
stmctions humans can understand? ,’

Box structures incorporate the crucial ~
mathematical property of referential i

against the functional specification. Inter- ~ + Feedback. Errors are returned to the
fail times, that is, the elapsed times be- ~ development team for correction. If the
tween failures, are passed to a quality-cer- quality is low, managers and team mem-
tification model’ that computes objective hers initiate process improvement. As with
statistical measures of quality, such as any process, a good deal of iteration and
mean time to failure. The uualihr-certifi- ~ feedback is alwavs vresent to accommo- Wdnsparency - the information content
cation model employs a reliAbilit$ growth

i L

~ date problems and solutions. ~ of each box specification is sufficient to
estilnator to derive the statistical mea- h the next sections, I describe the 1 define its refinement, without depending
m-es. specification, design and verification, and 1 on the implementation of any other box.

Certification is done continuously, ~ quality-certification procedures. A de- This property lets us organize large-sy-
over the life of the project. Higher level tailed description of increment planning tern specifications hierarchically, without
increments enter the certification pipeline ~ and feedback mechanisms is outside the sacrificing precision at high levels or detail
first. This means major architectural and scope of this article. at low levels.
design decisions are validated in execution
before the development team elaborates H,JN~~IONAL SPECIFIQ?JION Box stnrdures. Three principles govern
on them. And because certification is done the use of box strucares:4
for all increments as they accumulate, The object-based technology of box + All data defined in a design is encap-
higher level increments are subjected to structnres has proved to be an effective sulated in boxes.
more testing than lower level increments, technique for functional specification.’ + All processing is defined by using
which implement localized functions. Through stepwise refinement, objects are boxes sequentially or concurrently.

chitecture.‘-’
In the past, without a rigorous specih- 1

cation technology, there was little incen-
tive to devote much effort to the specifica-
tion process. Specifications were
frequently written in natural lan_guage,
with inevitable ambiguities .and omissions,
and often regarded as throwaway stepping ~
stones to code.

Box structnres provide an economic
incentive for precision. Initial box-strut-
ture specifications often reveal gaps and
misunderstanding in customer require-
ments that would ordinarily be discovered
later in development at high cost and risk
to the project.

52 MARCH 1994

+ Each box occupies a distinct place in
a system’s usage hierarchy.

Each box has three forms - black,
state, and clear - which have identical
external behavior but whose internals are
increasingly detailed.

Bbdc box. An object’s black box is a pre-
cise specification of external, user-visible
behavior in all possible circumstances of its
use. The object may be an entire system or
any part of a system Its user may be a
person or another object.

A black box accepts a stimulus (S) from
a user and produces a response (R). Each
response ofa black box is determined by its
current stimulus history (SH), with a
black-box transition function

(S. SH) + (RI
A given stimulus will produce different

responses that are based on history of use,
not just on the current stimulus. Imagine a
calculator with two stimulus histories

Clear 7 1 3

and
Clear 7 1 3 +

If the next stimulus is 6, the first history
produces a response of 7136; the second,
6.

The objective of a black-box specifica-
tion is to define the responses produced
for every possible stimulus and stimulus
history, including erroneous and unex-
pected stimuli. By defining behavior solely
in terms of stimulus histories, black-box
specifications neither depend on nor pre-
maturely define design internals.

Black-box specifications are often re-
corded as tables. In each row, the stimulus
and the condition on stimuhrs history are
sufficient to define the required response.
To record large specifications, classes of
behavior are grouped in nested tables and
compact specification functions are used
to encapsulate conditions on stimulus his-
tories.6

sfote box. An object’s state box is derived
Tom its black box by identifying the ele-
ments of stimulus history that must be re-
tained as state data between transitions to
achieve the required black-box behavior.

The transition function of a state box is
(S. OS) -+ (R. NS),

IEEE SOFTWARE

r [set w to

I minimum of
z and absolute
value of x]

[set w to
minimum of
z and absolute
value of x]
DO

[set y to absolute
value of x]

[set w to minimum
of z and y]

END

1 II
:set w to
ninimum of
: and absolute
value of x]
m

[set y to absolute
value of x]
IFx<O
THEN

y := -x
ELSE

y := x
END

[set w to minimum
of z and y]
IFy<z
THEN

w := y
ELSE

w := z
END

‘&we 2. Stepwise rejnement of a clear-boxdesipfiagment that can be verified. Each
-agment has identicaljhctional behavior, even though the level of detail increases.

rhere OS and NS represent old state and
ew state. Although the external behavior
f a state box is identical to its correspond-
lg black box, the stimulus histories are
:placed with references to an old state
nd the generation of a new state, as its
an&ions require.

As in the traditional view of objects,
ate boxes encapsulate state data and ser-
1ce.5 (methods) on that data. In this view,
tiuli and responses are inputs and out-
ms, respectively, of specific state-box ser-
ice invocations that operate on state data.

C&M box An object’s clear box is derived
rom its state box by defining a procedure
D can-y out the state-box transition hmc-
ion. The transition function of a clear box
i

(S, OS) + (R, NS) by procedure
;o a clear box is simply a program that
nplements the corresponding state box.
L clear box may invoke black boxes at the
ext level, so the refinement process is re-
ursive, with each clear box possiblyintro-
ucing opportunities for defining new ob-
:cts or extensions to existing ones.

Clear boxes play a crucial role in the
sage hierarchy by ensuring the harmoni-
us cooperation of objects at the next level
f refinement Objects and their clear-box
onnections are derived from immediate

processing needs at each stage of refine-
ment, not invented a priori, with uncer-
tain connections left to be defined later.
The design and verification of clear-box
procedures is the focus of the next sec-
tion.

Because state boxes can be verified
with respect to their black boxes and clear
boxes with respect to their state boxes, box
jtructura bring correctness verification to
object architectures.4

DESIGN AND VERIFICATION

The procedural control structures of
structured programming used in clear-
box design - sequence, alternation (if-
then-else), and iteration (while-do) - are
single-entry, single-exit structures that
cannot produce side effects in control
flow. (Control snuctures for concurrent
execution are dealt with in box structures,
but are outside the scope of this article.)

When it executes, a given control
structure simply transforms data from an
input state to an output state. This trans-
formation, known as its pvg7amfin&m,
corresponds to a mathematical function: It
defines a mapping from a domain to a
range by a particular rule.

For integers w, x, y, and z, for example,
the program function of the sequence,

53

DO
t3:
h

Doesgfol!uwed
bvhdof?

END

lfl
IFP WhOOOVO1pktrue
THEN doesgdof;ani

g
ELSE

h
END

lfefatbn
C5d chwramss
sftwtrre:

If1
WHILEp
DO

4
END

Figure 3. Correctness conditions
tion fm for verzjjing each type
box control structure.

in ques
of clear

Program:

[fll
Do

ST1
92
If21

WHILE
Pl

DO [f3]
93
[f41
IF

P2
THEN [f5]

94
95

ELSE [f61
96
97

END
g8

END
END

DO
L := abs(y1
w := max(x. 2)

EN3

is, in concurrent assignment form,
w, z := max(x, abs(yi), abs(yj

For integer x 2 o , the program hmc
tion of the iteration

WHILE
X>l

DO
x := x -2

END

is, in English,
set odd x to 1, even x to 0

Desii refiint. In designing clear-bo
procedures, you define an intenakdfinc
tion,thenrefineitintoacontrolstructur
and new intended functions, as Figure
illustrates. Intended functions, enclosed in
braces, are recorded in the design and at
tached to their control-structure refine
men6 In essence, clear boxes are compcsel
of a finite number of control structures, eacl
ofwhicb can be checked for correctness.

Design simplification is an importan
objective in the stepwisc refinement c
clear boxes. The goal is to generate corn
pact, straightforward, verifiable designs.

Subproofs:

fl = [c8 gl;g2;[f2] END] ?

f2 = [WHILE pl DO [f3] END] ?

f3 = [Do g3;[f41;g8 END] ?

f4 = [IF p2 THEN [f51 ELSE if61 END] ?

f5 = [Do g4;g5 END1 ?

f6 = [W g6;g7 END1 ?

Xl
e I
2 I
n I

It
d

Figure 4. A clear-box procedure and its constituent subproofs. In tbe$gure, each pi 1
a predicate, each gi is an operation, and each f i is an intended$mction.

COIT~C~IZSS verifiartkn. To verify the cor-
recmess of each control structure, you de-
rive its program function- the function it
actually computes-and compare it to its
intended function, as recorded in the de-
sign. A correctness theorem’ defines how
to do this comparison in terms of lan-
guage- and application-independent CW-
rectne= conditions, which you apply to each
control structure.

Figure 3 shows the correctness condi-
tions for the sequence, alternation, and it-
eration control snuctures. Verifying a se-
quence involves function composition and
requires checking exactly one condition.
Verifying an alternation involves case
analysis and requires checking exactly two
conditions. Verifying an iteration involves
function composition and case analysis in
a recursive equation and requires checking
exactly three conditions.

Correctness verification has several ad-
vantages:

+ It reduces veri~cation to a finite process.
As Figure 4 illustrates, the nested, se-
quenced way that control structures are
organized in a clear box naturally defines a
hierarchy that reveals the correctness con-
ditions that must be verified. An axiom of
replacement’ lets us substitute intended
functions for their control structure re-
finements in the hierarchy of subproofs.
For example, the subproof for the in-
tended function f 1 in Figure 4 requires
proving that the composition of opera-
tions gl and g2 with intended subfunc-
tion f2 has the same effect on data as fl.
Note that f 2 substitutes for all the details
of its refinement in this proof. This substi-
tution localizes the proof argument to the
control structure at hand. In fact, it lets
you carry out proofs in any order.

It is impossible to overstate the positive
effect that reducing verification to a fi-
nite process has on quality. Even though
all but the most trivial programs exhibit
an essentially infinite number of execu-
tion paths, they can be verified in a finite
number of steps. For example, the clear
box in Figure 5 has exactly 15 correct-
ness conditions that must be verified.

l It lets Cleanmom teams verfi every
Line of design and code. Teams can carry
out the verification through group

54 MARCH 1994

analysisanddiscussiononthe basisofthe
correctness theorem, and they can pro-
duce written proofs when extra confidence
in a life- or mission-critical system is re-
quired.

l It rtxuli3 in a near-zero defect level.
During a team review, every correctness
condition of every corm01 structure is ver-
ified in turn. Every team member must
agree that each condition is correct, so an
error is possible only if every team mem-
ber incorrectly verifies a condition. The
requirement for unanimous agreement
based on individual verifications results
in software that has few or no defects be-
fore first execution.

+ Itsuh up. Every software system, no
matter how large, has top-level, clear-box
procedures composed of sequence, alter-
nation, and iteration structures. Each of
these typically invokes a large subsystem
with thousands of lines of code-and each
of those subsystems has its own top-level
intended functions and procedures. So the
correctness conditions for these high-level
control structures are verified in the same
way as are those of low-level struchu-es.
Verification at high levels may take, and
well be worth, more time, but it does not
take more theory.

+ Itpmduces better code than unit ttihg.
Unit testing checks only the effects of
executing selected test paths out of many
possible paths. By basing verification
on function theory, the Cleanroom ap-
proach can verify every possible effect
on all data, because while a program
may have many execution paths, it has
only one function. Verification is also
more efficient than unit testing. Most
verification conditions can be checked in a
few minutes, but unit tests take substantial
time to prepare, execute, and check

QUALITY CERTIFICATION

Statistical quality control is used when
you have too many items to test all of them
exhaustively. Instead, you statistically
sample and analyze some items to obtain a
scientific assessment of the quality of all
items. This technique is widely used in
manufacturing, in which items on a pro-
duction line are sampled, their quality is

IEEE SOFTWARE

I

seq
I

TQ := odd-numbers(Q) II even-numbers(Q)]
EOC Odd-Before-Even (ALT Q)

DATA
odds : queue of integer [initializes to empty]
evens : queue of integer [initializes to empty]
x : integer

END

C

[Q := empty,
odds := odds llodd-numbers(Q),
evens := evens lleven-numbers(Q) I

WHILE Q <> empty
DO

x := end(Q)

[x is odd -> odds := odds II x
ltrue -> evens := evens II x I
If odd(x)
THEN

end(odds) := x
ELSE

endtevens) := x
END

END

c
1 Q := Q II odds,

odds := empty 1
WHILE odds cz empty
DO [end(Q) := end(odds)l

x := end(odds)
end(Q) := x -

END

[Q := Q II evens,
evens:= empty]
WHILE evens <z empty
DO [end(Q) := end(evens)18g lw$

X := end(evens)
J

1
end(Q) := x

END

END odd-before-even

seq
I

I ite
2

-

m rdo
3

Figure 5. A clear-box procedure with 1 J correctness conditions to be verified. The
procedural control mm-tures and the number of correctness conditions that must be
checked are sbom in bold. Seq indicates a sequence, ite indicates an alternation ($then-
else), and wdo indicates an iteration (while-do).

measured against a presumably perfect de-
sign, the sample quality is extrapolated to
the entire production line, and 0aws in
production are corrected if the quality is
too low.

In hardware products, the statistics
used to establish quality are derived horn
slight variations in the products’ physical
properties. But software copies are identi-
cal, bit for bit. What statistics can we sam-

ple to extrapolate quality?

Usage testing. It turns out that software
has a statistical property ofgreat interest to
developers and users - its execution be-
havior. How long, on average, will a soft-
ware product execute before it fails?

From this notion has evolved the pro-
cess ofstatistical usage terting,8 in which you

l sample the (essentially infinite) pop-
/I

55

CEEAMMOH QUAUTY RESULTS
Cleanroom projects report + NASA saFatellite+ntrviproj~ this complex decision-support

a testing en-or rateper i?hmimd et-t. The Coarse/Fine Attitude facility that uses artilicial intelli-
liwsofcide,which represents Determination System gence to predict and prevent
residual errors in the software (CFADS) of the NASA Atti- operating problems in an
after correctness verification. tude Ground Support System MVS environment. The sys-
The projects briefly described (AGSS) was the first Clean- tern, written in PL/I, C, Rexx,
here are among 17 Cleanroom room project carried out by the and TIRS, totaled 107
projects, involving nearly a mil- Software Engineering Labom- BLOC, developed in three in-
lion lines of code, that have re- tory of the NASA Goddard crements. It had a testing
ported a weightedaverage of 2.3 Space Flight Center. The sys- error rare of 2.6 errors per
mmsperKLOC$midiraautart- t.em,comprising4OKLi3Cof KLOC. Causal analysis of the
ing, s+-md+@-m exe- Fortran, exhibited a testing first 16-KLOC increment re-
c&n2 oftbe code-a remarlc- error rate of 4.5 errotx per
able quality achievement’

vealed that five of its eight
KLOC. Produ~vi~was 780 components experienced no er-

* IBMCobolS~gFa- LQC per person-month, an 80 rors in testing.

c&y(W~.Thiswas percent improvement over pre- The project reported devel-

IBM’s first commercial Clean- vious SEL averages. Some 60 opment team productivity of

~~~~~~d~~d by a 
percent of the programs aim- 486 LOC per person-month. 
piled wrrectlyon the firstat- No operational errors have 

KLOC PI.& program automat- tempt -A. Kouchakdjian, S. been reported to date from 

ically transforms un- Green, and V;R Basili, “Evalua- beta test and early user sites. - 

structured Cobol programs tion of the CleanroomMethod- PA Hausler, “A Recent Clean- 

into functionally equivalent 01ogyinthes0ftwareEngi- room Suazess Story The Red- 

structured form for im- neering Laboratory? ISDC. l&b wing Project,” Proc. 17tb .%$- 

proved understandability t2$iwreEng. Wdbcy,NASA wmhg. W&bop,NASA 

and maintenance. It had a Goddard Space Flight Center, Goddard Space Flight Center, 

testing error rate of 3.4 er- Greenbelt, Md,, 1989. Greenbelt,Md, 1992. 

rors per KLOC; several + Marc inmmAm 
major components completed 

l NM sateLlite-con&pro- 

certification with no errors 
wd~mr System. jectr. Two satellite projects, a 20- 
A four-person Cleanroom KLOC attitude-determination 

fotmd. In months of intensive 
beta tesnng at a major aero- 

-&eloped me pmtotype subsystemanda 15OXLQC 

space wrporation, all Coboi 
ibr this system, a 1,820~line m- flightaynamics system, were 
lational database application the sewnd and third Clean- 

programs executed identically written in Foxbase. It had a 
before and after structuring. 

room projects undertaken at 

activity, including all 
testing error rate of 0.0 er- NASA% Software Engineering 

specification, design, verifica- 
rors per KLOC - no com- Laboratory. These systems had 

tion, certification, user publica- 
pilation errors were found a combined testing error rate of 
and no failures were eucoun- 

for the chip-set semantics 
revealed several hardware 
errors. The project had a 
testing error rate of 1.2 er- 
rors per KLOC. 

A one-module experiment 
wmpared the e@eetiveness of 
unit testing and corrermess 
verification. In unit testing, 
the team took 10 person-days 
to develop scaffolding code, 
invent and execute test cases, 
and check results. They tbund 
seven errors. Correctness veri- 
fication, which required an 
hour-and-a-half in a team re- 
view, found the same seven er- 
rors plus three more. 

To meet a business need, 
thethirdcodeincmmentwent 
straight from development, 
with no testing whatsoever, 
into custome.r-evaluation dem- 
onstrations using live data 
There were no errors ofany 
kind. Atotal of490 statistical 
tests were amted against the 
fhai version of the system, with 
no errors found 

lions, and management, aver- 
4.2 errors per KLQC. - SE. 

aged 740 LOC per person- 
tered in statistical testing Green and Rose Pajerski, 
and quality certification. “Cleanroom Process Evolution 

month. so far a small frattb The software was certified 
of a person-year per year 

in the SEL,” &x. 16th Sejiwm 

has been required for all 
at target levels of reliability Eq, WoneSop, NASA God- 
and confidence. Team mem- 

+ Erkm Tekma US32op 
eratingsystm. This 7(f-v, 
18monthproject.speci6ied,de- 
~andcerti6eda350- 
KLOCoperatingsystemfa 
new&milyofswit&ngcomput- 
em.Theprc&thadatesting 
ermrrate0f1.0erromper 
KLOC. 

maintenance and customer 
dard Space Flight Center, 

hers attributed error&ee 
support. Although the prod- 

Greenbelt, Md., 1991. 

uct exhibits a complexity 
compilation and &lure-Bee 

level on the order of a Cobol 
testingtotherigorofthe 6 Ib!M 309OE i%pe dniw. A 
Clea-m method, _ CJ. five-person team developed the 

compiler, just seven minor ?lIhmmell, L.H. Binder, and device-controller design and 
errors were reported in the C.E. Snyder, “The Automated mimde in 86 KLOC of C, 
first three years of field use, all Production Control System: A in&ding 64 KLOC of func- 
resuhinginsimple8xea-R.C. ~S+,~~l~S~ft- tion definitions. This em- 
LingerandHD.Mills,“ACase wareEngineejng,“A~ bedded software processes 
StUdyin-m Tri. Si$wm Eng. dMetb- multiple real-time I/O data 
Engirteering:~IBMcobol streams to support tape- 
Structuring Facility,” &tx. Corn- 

Qdology, Jan 1992, pp. 81-94. 
cartridge operations in a 

Productivity was reported 
to have increased by 70 per- 
cent for development; 100 
percent for testing. The team 
significantly reduced develop- 
ment time, and the project 
was honored by Ericsson for 
its contribution to the eom- 
pany. - L.-G. Tann, WS32 
and Cleanroom,” Pmt. 1st Em- 
pm IMWp. clem- 
mom Sojiware Esg., Q-labs, 
Lund, Sweden, 1993, 

pw, IEEE CS Press, Los Al- + LBMAOEXPERThHVS. multibus architecture. The 
amitos, Calif., 1988,~~. 10-17. A SO-person team developed box-structure specification 

REFEBENCES 
1. PA. Hmler, RC. Liiq and CJ. 

Tramnell, “Adopting C W  
sofhvareEngin@eriagwith a 
PhdAp@iBM$mJ, 
Mar. 1994, to appear. 

56 MARCH 1994 



ulation of all possible executions (correct 
and iny)rrect) by users (people or other 
pr+gwns) according to how frequently 
you expect the executions to happen, 

+ measure their quality hy detcrmin- 
ing ifthe executions are correct, 

l extrapolate the quality of the sample 
to the population of possible executions, 
and 

+ ident@ and correct flaws in the de- 
velopment process if the quality is inade- 
quate. 

Statistical usage testing amounts to 
testing sofbare the way users intend to 
use it. The entire focus is on exTema1 s?;s- 
tern behavior, not the internals of design 
and implementation. Cleanroom certifi- 
cation teams have deep knowledge of ex- 
pected usage, hut require no knowledge of 
design internals. Their role is not to 
debug-in quality, an impossible task, but 
to scientifically certif+ software’s quality 
through statishcal test&. 

In practice, Cleanroom quality certifi- 
cation proceeds in parallel with dcvelop- 
ment, in three steps. 

I. Spmfi lts~~sc-pla(‘crbilih &tdmtiom. 
Usage-proh~lt)ili~~ distrihubons define all 
possible usage patterns and scenarios, in- 
cluding erroneous and unexpected usage, 
together with their probabilities of occur- 
rence. ‘I-hey are defined on the hasis of the 
funczional specifkition and other sourccs 
of inforlnation, including interviews with 
prospe&e users and the pattcm of use in 
prior versions. 

Figure ha shows a usage specification 
for a program with four user stimuli: up- 
date (C). delete (D), quc? ((J), and 
print(P). Asimplified distribution that 
omits scenarios of use and other details 
shows projected use probabilities of 
32, 14, 46, and 8 percent, respectively. 
These prohahilitics are mapped onto an 
interval of 0 to 99, dividing it into four 
partitions proportional to the prohahili- 
ties. Usage-probability distributions for 
large-scale systems are often recorded in 
fonnal grammars or Alarkov chains for 
analysis and automatic processing. 

III incremental development, you can 
strati+ a ~lsage-pi-ot,al,ili~ distribution 
into subsets that cxcrcise increasing 
functional content as increments are 

Program stimuli Usage-probability distribution Distribution interval 

U (update) 32% o-31 

0 (delete) 1404 32-45 

Q (query) 46% 46- 91 

P (plint) 8% 92-99 

[Al 
Test number Raadom numbers: Test cases: 

1 29 11 47 52 26 94 UUQQUP 

2 62 98 39 78 82 65 QPDQQQ 

3 83 32 58 41 36 17 QDQDDU 

4 36 49 96 82 20 77 DQPQUQ 
WI 

Fig-u-e 6. (A) Sinqdified mqy pt-obnbilit?, rlirtribution f&p n p~‘ogrmn zith few u.w 
stiwmli ad (B) fl strmple ofmsori~ted test cmx 

added, with the full distribution in effect 
once the thd increment is in place. In ad- 
dition. you can define alternate distrihu- 
tions to certify infrequently used system 
funct-ions whose failure has important 
consequences, such as the code for a nu- 
clear-reactor shutdown system. 

2. Lkrix tcrt mes thnt fm mdim~y gn- 
e7xfd fi117~ cl.~~i~~[,-pral~~~bilih, rhtr-il~~~tiom. 
Xst c&es are derived fron; the distrihu- 
Cons, such that every test represents ac- 
tual USC: and will effectively rehearse user 
experience with the product. Because 
test cases arc completely prescrihcd 1)) 
the distributions, producing them is a me- 
chanical, automatable process. 

Figure 61, shows testcascs for the proh- 
ahilit), distiihution in Figure (,a. If you as- 
sume a test case contains six ~th& then 

you generatc each test hy obtaining six 
hvo-digit random numhers. These num- 
hers represent the partition in w-hi& the 
corresponding stimuli (U, D, C.I, or P) re- 
sides. In this way, each test case is fkhful 
to the distribution and represents a possi- 
hle user execution. For testing large-scale 
s)5tenis, usage grammars or Llarkov 
chains can hc processed to generdte test 
cases automatically. 

3. IGrin te tert c~n.w, msm.~ x~ults, mid 
rnv/p/ct~ qdiq ~~w~w~.r. At this point, the 
development team has released w-itied 
code to the certification team for first-ever 
execution. The certification team cxccutcs 
each test case and checks the results 
against system specifications. The team 
records execution time up to the point of 
any failure in appropriate units, for esam- 

IEEE SOFTWARE 57 



ple, CPU time, wall-clock time, or num- 
ber of transactions. 

These interfailtimesrepresent the qual- 
ity of the sample of possible user execu- 
tions. They are passed to a quality certifi- 
cation model that computes the system’s 
quality, including its 

analysis of errors in large-scale software 
systems reveals a spread in the failure rates 
of errors of some four orders of magni- 
tude.’ Virulent, high-rate errots can liter- 
ally occur every few hours for some users, 
but low-rate errors may show up only after 

accumulated decades ofuse 
mean time to failure. The 
quality-certification 
model produces graphs 
like the one in Figure 7. 

WE BELIEVE 
USE OF THE 
CLEANROOM 
PROCESS 
WILL GROW. 

Because the Clean- 
room development pro- 
cess rests on a formal, sta- 
tistical design, these 
M’ITF measures provide 
a scientific basis for man- 
agement action, unlike the anecdotal evi- 
dence from coverage testing (If few errors 
are found, is that good or bad? If many 
errors are found, is that good or bad?). In 
theory, there is no way to ever lmow that a 
software system has zero defects. How- 
ever, as failure-free executions accumu- 
late, it becomes possible to conclude that 
the software is at or near zero defects with 
high probability. 

users will use it, high-rate errors tend to be 
found first. Any errors left behind after 
testing tend to be infrequently encoun- 
tered by users. 

Extending MTlF. But there is more to the 
story of statistical usage testing. Extensive 

Traditional coverage testing finds er- 
rors in random order. Yet finding and 
fixing low-rate errors has little effect on 
MTTF and user perception of quality, 
while finding and fixing errors in failure- 
rate order has a dramatic effect. Statisti- 
cal usage testing is far more effective 
than coverage testing at extending 
MTTE’O 

by many users. 
High-rate errors are 

responsible for nearly 
two-thirds of software 
failures reported,t’ even 
though they comprise less 
than three percent oftotal 
errors. Because statistical 
usage testing amounts to 
testing software the way 

ACKNOWLEDGiWENTS 
I thank Kim Hathaway for her assistance in developing this art&. Suggestions by Michael Deck, Philip 

Ha&r, Harlan Mills, Mark Pleszkoch, and Alan Spangler are appreciated. I also thank the members of the 
Cleanroom teams, whose quality results are reported in this article, and who continue to achieve new levels of 
quality and productivity. 

REFERENCES 
1. M. Dyer, The Ckammm Appwcb to Sojiwam Qua&, John Wiley & Sons, New York, 1992. 
2. PA. Cwritt, M. Dyer, and H.D. Mills, “Certifying the Reliability of Software,” LEEE Trans. on So&me 

Eng., Jan. 1986,~~. 3-11. 
3. H.D. Mills, R.C. Linger, and AR. Hewer, Bimipksofl~mtim SyxtemA&ys~and Design, Academic 

Press, San Diego, 1986. 
4. H.D. Mills, “Stepwise Refinement and Verification in Box-Structured Systems,” Cmnputer, June 1988, pp. 

23-35. 

5. AR. Hewer and H. D. Mills, “Box Sa~cture Methods for System Development with Objects,” IEMSys- 
temry.:,No.2, 1993, pp.232.251. 

6. M.G. Pleszkoch et al., “Function-Theoretic Principles of Program Understandiig,” Pm. Z?rdHmaii Int’ 
Cmzf Syam Srienre~, IEEE CS Press, Los Alamitos, Calif., 1990, pp. 74-81. 

7. RC. Linger, H.D. Mills, and B.I. Witt, Shrctured Programming: Theolyandt’rarti~, Addison-Wesley, 
Reading, Mass., 1979. 

8. J.H. Poore and H. D. Mills, “Bringing Software Under Statistical Quality Conaol,” Qua& Pmgres Nov. 
1988, pp. 52-55. 

9. E.N. Adams, “Optimizing Preventive Service of Software Products,” IBM?. Research and Developmmr, Jan 
1984,~~. 2-14. 

10. RH. Cobb and H.D. Mills, “Engineering So&are Under Statistical Quality Control,” IEEE So&we, 
Nov. 1990, pp. 44-54. 

S oftware that is formally engineered in 
increments is well-documented and 

under intellectual control throughout de- 
velopment. The Cleanroom approach 
provides a framework for managers to 
plan (and replan) schedules, allocate re- 
sources, and systematically accommodate 
changes in functional content 

Experienced Cleanroom teams can 
substantially reduce time to market. This 
is due largely to the precision imposed on 
development, which helps eliminate re- 
work and dramatically reduces testing 
time, compared with traditional methods. 
Furthermore, Cleanroom teams are not 
held hostage by error correction after re- 
lease, so they can initiate new develop- 
ment immediately. 

The cost of quality is remarkably low in 
Cleanroom operations, because it mini- 
mizes expensive debugging rework and 
retesting. 

Cleanroom technology builds on exist- 
ing skills and software-engineering prac- 
tices. It is readily applied to both new sys- 
tem development and reengineering and 
extending legacy systems. As the need for 
higher quality and productivity in soft- 
ware development increases, we believe 
that use of the Cleanroom process will 
continue to grow. + 

Richard C. Linger is a 
member of the senior tech- 
nical staff at IBM and the 
founder and manager of the 
IBM Cleanmom Software 
Technology Center. His in- 
terests are software specifi- 
cation, design, and correct- 
nes5 velificadon; statistical 
testing and reliability certiii- 

mtion; and the wansition from craft-based to engineer- 
ng-based software development 

Linger received a BS in elecnical engineering 
porn Duke University. He is a member of the IEEE 
amputer Society and ACM. 

Address questions abeut this article to Linger at 
!0221 Darlington Dr., Gaitbersburg,MD 20879. 

58 MARCH 1994 


