The philosophy behind
Cleanroom software
engineering is o avoid
dependence on costly
defectremoval processes
by writing code increments
right the first fime

and verifying their
corectness before festing.
Its process model
incorporates the statisical
quality certification of code
increments as they
accumulate info a system.
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CLEANROOM

PROCESS MODEL

Today’s competitive pressures and
society’s increasing dependence on
software have led to a new focus on devel-
opment processes. The Cleanroom pro-
cess, which has evolved over the last de-
cade, has demonstrated thatit can improve
both the productvity of developers who
use it and the quality of the software they
produce.

Cleanroom software engineering is a
team-oriented process that makes devel-
opment more manageable and predictable
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because it is done under statistical quality
control.

Cleanroom is a modern approach to
software development. In traditional,
craft-based development, defects are re-
garded as inevitable and elaborate defect-
removal techniques are a part of the devel-
opment process. In such a process,
software proceeds from development to
unit testing and debugging, then to func-
tion and system testing for more debug-
ging. In the absence of workable alterna-
tives, managers encourage programmers
to get code into execution quickly, so de-
bugging can begin. Today, developers rec-
ognize that defect removal is an error-
prone, inefficient activity that consumes
resources better allocated to getting the
code right the first time.
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Cleanroom teams at IBM and other
organizations are achieving remarkable
quality results in both new-system devel-
opment and modifications and extensions
to legacy systems. The quality of software
produced by Cleanroom development
teams is sufficient (often near zero defects)
for the software to enter system testing
directly for first-ever execution by test
teams.

The theoretical foundations of Clean-
room — formal specification and design,
correctness verification, and statistical
testing — have been reduced to practice
and demonstrated in nearly a million lines
of code. Some Cleanroom projects are

profiled in the box on p. 56.

QUALITY COMPARISON

Quality comparisons between tradi-
tional methods and the Cleanroom pro-
cess are meaningful when measured from
first execution. Most traditional develop-
ment methods begin to measure errors at
function testing (or later), omitting errors
found in private unit testing. A traditional
project experiencing, say, five errors per
thousand lines of code (KLOC) in func-
tion testing may have encountered 25 or
more errors per KLOC when measured
from first execution in unit testing.

Atentry to unit testing, traditional soft-
ware typically exhibits 25 to 35 or more
errors per KLOC.! In contrast, the
weighted average of errors found in 17
Cleanroom projects, involving nearly a
million lines of code, is 2.3 errors per
KLOC. This number represents all errors
found in all testing, measured from first-
ever execution through test completdon —
itis the average number of residual errors
present after the development team has
performed correctness verification.

In addition to this remarkable differ-
ence in the number of errors, experience
has shown a qualitative difference in the
complexity of errors found in Cleanroom
versus traditional software. Errors left be-
hind by Cleanroom correctness verifica-
tion tend not to be complex design or in-
terface errors, but simple mistakes easily
found and fixed by statistical testing.

In this article, I describe the Clean-

room development process, from specifi-
cation and design through correctness
verification and statistical usage testing for
quality certification.

INCREMENTAL DEVELOPMENT

The Cleanroom process is based on
developing and certifying a pipeline of
software increments that accurnulate into
the final system. The increments are de-
veloped and certified by small, indepen-
dent teams, with teams of teams for large
projects.

System integraton is continual, and
functionality grows with
the addition of successive
increments. In this ap-
proach, the harmonious
operation of future incre-
ments at the next level of
refinement is predefined
by increments already in
execution, thereby mini-
mizing interface and de-
sign errors and helping
developers maintain in-
tellectual control.

The Cleanroom de-
velopment process is in-
tended to be “quick and clean,” not “quick
and dirty.” The idea is to quickly develop
the right product with high quality for the
user, then go on to the next version to
incorporate new requirements arising
from user experience.

In the Cleanroom process, correctness
is built in by the development team
through formal specification, design, and
verification. Team correctmess verification
takes the place of unit testing and debug-
ging, and software enters system testing
directly, with no execution by the develop-
ment team. All errors are accounted for
from first execution on, with no private
debugging permitted.

Figure 1 illustrates the Cleanroom
process of incremental development and
quality certification. The Cleanroom
team first analyzes and clarifies customer
requirements, with substantial user inter-
action and feedback. If requirements are in
doubt, the team can develop Cleanroom
prototypes to elicit feedback iteratively.

CLEANROOM
DEVELOPMENT
IS INTENDED
TO BE “QUICK
AND CLEAN,”
NOT “QUICK
AND DIRTY.”

As the figure shows, Cleanroom devel-
opment involves two cooperating teams
and five major activities:

¢ Specification. Cleanroom develop-
ment begins with specification. Together,
the development team and the certifica-
tion team produce two specifications:
functional and usage. Large projects may
have a separate specification team.

The functional specification defines
the required external system behavior in
all circumstances of use; the usage specifi-
cation defines usage scenarios and their
probabilities for all possible system usage,
both correct and incorrect. The func-
tional specification is the
basis for incremental soft-
ware development. The
usage specification is the
basis for generating test
cases for incremental sta-
tistical testing and quality
certification. Usage speci-
fications are explained in
the section on certifica-
tion.

¢ Increment planning.
On the basis of these
specifications, the devel-
opment and certification
teams together define an initial plan for
developing increments that will accumu-
late into the final system. For example, a
100 KLOC system might be developed in
fiveincrements averaging 20 KLLOC each.
The time it takes to design and verify in-
crements varies with their size and com-
plexity. Increments that require long lead
times may call for parallel development.

¢ Design and verification. The develop-
ment team then carries out a design and
correctness verification cycle for each in-
crement. The certification team proceeds
in parallel, using the usage specification to
generate test cases that reflect the ex-
pected use of the accumulating incre-
ments.

& Quality certification. Periodically, the
development team integrates a completed
increment with prior increments and de-
livers them to the test team for execution
of statistical test cases. The test cases are
run against the accumulated increments
and the results checked for correctness

IEEE SOFTWARE

51




Function

Incremental

development

planning

Fundiond spciicaton

Formal design

Carrectness verification

Incremental
development
plan

i

Stafistical
test-case
generation

Statistical festing

Quality-

certification
model

Figure 1. Cleanvoom process model. The stacked boxes indicate successive incyvements.

against the functional specification. Inter-
fail times, that is, the elapsed dmes be-
tween failures, are passed to a quality-cer-
tificadon model’ that computes objective
statistical measures of quality, such as
mean time to failure. The quality-certifi-
cation model employs a reliability growth
estimator to derive the statistical mea-
sures.

Certification is done continuously,
over the life of the project. Higher level
increments enter the certificadon pipeline

first. This means major architectural and

design decisions are validated in execution
before the development team elaborates
on them. And because certification is done
for all increments as they accumulate,
higher level increments are subjected to
more testing than lower level increments,
which implement localized functions.

¢ Feedback. Errors are returned to the
development team for correcdon. If the
quality is low, managers and team mem-

- bersinitiate process improvement. As with

any process, a good deal of iteration and
feedback is always present to accommo-
date problems and solutions.

In the next sections, I describe the
specification, design and verification, and
quality-certification procedures. A de-
tailed description of increment planning
and feedback mechanisms is outside the
scope of this article.

FUNCTIONAL SPECIFICATION

The object-based technology of box
structures has proved to be an effectve
technique for functional specification.’
Through stepwise refinement, objects are

defined and refined as different box struc-
tures, resulting in a usage hierarchy of ob-
jects in which the services of an object may
be used and reused in many places and at
many levels. Box structures, then, define
required system behavior and derive and
connect objects comprising a system ar-
chitecture.*

In the past, without a rigorous specifi-
cation technology, there was little incen-
tive to devote much effort to the specifica-
tion process. Specifications were
frequently written in natural language,
with inevitable ambiguities and omissions,
and often regarded as throwaway stepping
stones to code.

Box structures provide an economic
incendve for precision. Initial box-struc-
ture specifications often reveal gaps and
misunderstandings in customer require-
ments that would ordinarily be discovered
later in development at high cost and risk
to the project.

“They also address the two engineering
problems associated with system specifica-
tion: defining the right function for users
and defining the right structure for the spec-
ification itself. Box structures address the
first problem by precisely defining the cur-
rent understanding of required functions at
each stage of development, so that the func-
tions can be reviewed and modified if neces-
sary. The second problem is critical, espe-

. cially for large-system development. How

can we organize the myriad details of be-
havior and processing into coherent ab-
stractions humans can understand?

Box structures incorporate the crucial

! mathematical property of referential

transparency — the information content
of each box specification is sufficient to
define its refinement, without depending
on the implementation of any other box.
This property lets us organize large-sys-
tem specifications hierarchically, without
sacrificing precision at high levels or detail
atlow levels.

Box structures. Three principles govern
the use of box structures:*

¢ All data defined in a design is encap-
sulated in boxes.

¢ All processing is defined by using
boxes sequentially or concurrently.
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¢ Each box occupies a distinct place in
a system’s usage hierarchy.

Each box has three forms — black,
state, and clear — which have identical
external behavior but whose internals are
increasingly detailed.

Block box. An object’s black box is a pre-
cise specification of external, user-visible
behavior in all possible circumstances of its
use. The object may be an entire system or
any part of a system. Its user may be a
person or another object.

A black box accepts a stimulus (S) from
a user and produces a response (R). Each
response of a black box is determined by its
current stimulus history (SH), with a
black-box transition function

(S, SH) = (R)

A given stimulus will produce different
responses that are based on history of use,
notjuston the current simulus. Imagine a
calculator with two stimulus histories

Clear 713
and

Clear 7 1 3 +

If the next stimulus is 6, the first history
produces a response of 7136; the second,
6.

The objective of a black-box specifica-
tion is to define the responses produced
for every possible stimulus and stimulus
history, including erroneous and unex-
pected simuli. By defining behavior solely
in terms of stimulus histories, black-box
specifications neither depend on nor pre-
maturely define design internals.

Black-box specifications are often re-
corded as tables. In each row, the stimulus
and the condition on stimulus history are
sufficient to define the required response.
To record large specifications, classes of
behavior are grouped in nested tables and
compact specification functions are used
to encapsulate conditions on stimulus his-
tories.5

State box. An object’s state box is derived
from its black box by identifying the ele-
ments of stimulus history that must be re-
tained as state data between transitions to
achieve the required black-box behavior.

The transition function of a state box is

(s, 0S) = (R, NS),

[set w to
minimum of

value of x]
DO

[set w to value of x]
minimum of
12 and absolute ;=

value of x] of z and y]

END

z and absolute

[set y to absolute

[set w to minimum ;=

[set w to
minimum of

z and absolute
value of x]

DO

[set y to absolute
value of x}

IF x < 0

THEN

y = -X

ELSE

y 1= X

END

[set w to minimum
of z and yl

IF v < 2z

THEN

Wiz Yy

ELSE

W= 2

END

Figure 2. Stepwise refinement of a clear-box design fragment that can be verified. Each
Sfragment bas identical functional bebavior, even though the level of detail increases.

where OS and NS represent old state and
new state. Although the external behavior
of a state box s identical to its correspond-
ing black box, the stimulus histories are
replaced with references to an old state
and the generation of a new state, as its
transitions require.

As in the traditional view of objects,
state boxes encapsulate state data and ser-
vices (methods) on that data. In this view,
stimuli and responses are inputs and out-
puts, respectively, of specific state-box ser-
vice invocations that operate on state data.

Cear box. An object’s clear box is derived
from its state box by defining a procedure
to carry out the state-box transition func-
tion. The transition function of a clear box
is

(S, 08) = (R, NS) by procedure

So a clear box is simply a program that
implements the corresponding state box.
A clear box may invoke black boxes at the
next level, so the refinement process is re-
cursive, with each clear box possibly intro-
ducing opportunities for defining new ob-
jects or extensions to existing ones.

Clear boxes play a crucial role in the
usage hierarchy by ensuring the harmoni-
ous cooperation of objects at the next level
of refinement. Objects and their clear-box
connections are derived from immediate

processing needs at each stage of refine-
ment, not invented a priori, with uncer-
tain connections left to be defined later.
The design and verification of clear-box
procedures is the focus of the next sec-
tion.

Because state boxes can be verified
with respect to their black boxes and clear
boxes with respect to their state boxes, box
structures bring correctness verification to
object architectures.*

DESIGN AND VERIFICATION

The procedural control structures of
structured programming used in clear-
box design — sequence, alternation (if-
then-else), and iteration (while-do) — are
single-entry, single-exit structures that
cannot produce side effects in control
flow. (Control structures for concurrent
execution are dealt with in box structures,
but are outside the scope of this article.)

When it executes, a given control
structure simply transforms data from an
input state to an output state. This trans-
formation, known as its program function,
corresponds to a mathematical function: It
defines a mapping from a domain to a
range by a particular rule.

For integers w, x, v, and z, for example,
the program function of the sequence,
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nce
Control Correctness
structure: condition (for all orguments)
(£}
DO
g; Doesgfoﬁmed
h by hdo F?
END
Alternation
Control Correctuess
structure; condition:
[£]
IFp Whenever pis frue
THEN does gdo £ ond
g whenever pis false
ELSE does Ado f?
h
END
Iteration
Control Correciness
shructure: condition:
[£] Is fermination
WHILED guoranteed, and
Do whenever pis ue
g does gfollowed
END by fdo £ ond
whenever p's fulse
does doing
nothing do f?

Figure 3. Corvectness conditions in ques-

tion form for verifying each type of clear-
box control structure.

o

zZ €N O

abs (y)
max(x, z)

o]

D

is, in concurrent assignment form,
W, Z abs(y)), abs(y)
For integer x 2 0, the program func-
tion of the iteration
WHILE
x >1
DO
X 1= X -2
END
is, in English,

set odd x to 1,

1= max(x,

even x to 0

Design refinement. In designing clear-box
procedures, you define an ntended func-
tion, then refine it into a control structure
and new intended functions, as Figure 2
illustrates. Intended functions, enclosed in
braces, are recorded in the design and at-
tached to their control-structure refine-
ments. In essence, clear boxes are composed
of a finite number of control structures, each
of which can be checked for correctness.

Design simplification is an important
objective in the stepwise refinement of
clear boxes. The goal is to generate com-
pact, straightforward, verifiable designs.

Program: Subproofs:

[£f1] fl =

[£4] f3 =

THEN (£5] fa =
g4
g5
ELSE [£6]
g6 f5 =
g7
END
g8 f6 =
END
END

[DO gl;g2;[f2] END] ?

[WHILE pl DO

[DO g3;[f4];98 END] ?

[IF p2 THEN [f5]

[DO g4;g5 END] ?

[DO g6:;g7 END] 2

[£3] END] ?

ELSE (f6] END] ?

Figure 4. A clear-box procedure and its constituent subproofs. In the figure, each vi is
a predicate, each gi is an operation, and each ti is an intended function.

[ T T Wppp oyt

NUITEUIAEYY VETIIWITNIL. TO Verify t.‘llc cor-
rectess of each control structure, you de-
rive its program function — the function it
actually computes — and compare it to its
intended functon, as recorded in the de-
sign. A correctness theorem” defines how
to do this comparison in terms of lan-
guage- and application-independent cor-
rectness conditions, which you apply to each
control structure.

Figure 3 shows the correctness condi-
tions for the sequence, alternation, and it-
eration control structures. Verifying a se-
quence involves function composition and
requires checking exactly one condition.
Verifying an alternation involves case
analysis and requires checking exactly two
conditions. Verifying an iteration involves
function composition and case analysis in
arecursive equation and requires checking
exactly three conditions.

Correctess verification has several ad-
vantages:

& It veduces verification to a finite process.
As Figure 4 illustrates, the nested, se-
quenced way that control structures are
organized in a clear box naturally defines a
hierarchy that reveals the correctness con-
ditions that must be verified. An axiom of
replacement’ lets us substitute intended
functions for their control structure re-
finements in the hierarchy of subproofs.
For example, the subproof for the in-
tended function £1 in Figure 4 requires
proving that the composition of opera-
tions gl and g2 with intended subfunc-
don £2 has the same effect on data as 1.
Note that £2 substitutes for all the details
ofits refinement in this proof. This substi-
tution localizes the proof argument to the
contro] structure at hand. In fact, it lets
you carry out proofs in any order.

Itis impossible to overstate the positive
effect that reducing verification to a fi-
nite process has on quality. Even though
all but the most trivial programs exhibit
an essentally infinite number of execu-
tion paths, they can be verified in a finite
number of steps. For example, the clear
box in Figure 5 has exactly 15 correct-
ness conditions that must be verified.

¢ It lets Cleanroom teams verify every
line of design and code. Teams can carry
out the verification through group
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analysisand discussiononthebasisofthe
correctness theorem, and they can pro-
duce written proofs when extra confidence
in a life- or mission-critical system is re-
quired.

& It vesults in a near-zero defect level.
During a team review, every correctness
condition of every control structure is ver-
ified in turn. Every team member must
agree that each condition is correct, so an
error is possible only if every team mem-
ber incorrectly verifies a condition. The
requirement for unanimous agreement
based on individual verifications results
in software that has few or no defects be-
fore first execution.

¢ Itscalesup. Every software system, no
matter how large, has top-level, clear-box
procedures composed of sequence, alter-
nation, and iteration structures. Each of
these typically invokes a large subsystem
with thousands of lines of code—and each
of those subsystems has its own top-level
intended functions and procedures. So the
correctness conditions for these high-level
control structures are verified in the same
way as are those of low-level structures.
Verification at high levels may take, and
well be worth, more time, but it does not
take more theory.

& It produces better code than unit testing.
Unit testing checks only the effects of
executing selected test paths out of many
possible paths. By basing verification
on function theory, the Cleanroom ap-
proach can verify every possible effect
on all data, because while a program
may have many execution paths, it has
only one function. Verification is also
more efficient than unit testing. Most
verification conditions can be checkedin a
few minutes, but unit tests take substantial
time to prepare, execute, and check.

QUALITY CERTIFICATION

Statistical quality control is used when
you have too many items to testall of them
exhaustively. Instead, you statistcally
sample and analyze some items to obtain a
scientific assessment of the quality of all
items. This technique is widely used in
manufacturing, in which items on a pro-
duction line are sampled, their quality is

il o :=
PROC 0dd_BRefore_Even

odd_numbers (Q) || eve
(ALT Q}

DATA
odds : queue of int
evens : queue of int
X : integer

[ Q
;{: odds
evens

WHILE Q <>
DO

empty .,
odds

evens
enpty

| lodd_n

x := end(Q)
seq [x is odd -> odds :=
1 ltrue -> evens :=
If odd(x)
THEN

end(odds) := x
ELSE

end(evens) := X

END
P{ [Q i= Q || odds,
odds := empty |
WHILE odds <> empty
DO [end(Q) :=

X := end(odds)

end (Q)
END

‘{ [Q = Q ||
evens:= empty]

WHILE evens <> empty
DO [end(Q) := end(evens)

evens,

X
end(Q)

end (evens)
X

END

END odd-before-even

| leven_]

end(odds)?}
L7 I

etcoser |11

n_numbers (Q) ]

eger [initializes to empty]
eger [initializes to empty]

umbers (Q),
numbers (Q) ]

seq
odds || x
evens || x |

ite

wio
K

Figure 5. A clear-box procedure with 15

corvectness conditions to be verified. The

procedural control structures and the number of correctness conditions that must be
checked are shown in bold. Seq indicates a sequence, ite indicates an alternation (if-then-
else), and wdo indicates an iteration (while-do).

measured against a presumably perfect de-
sign, the sample quality is extrapolated to
the entire production line, and flaws in
production are corrected if the quality is
too low.

In hardware products, the statistics
used to establish quality are derived from
slight variations in the products’ physical
properties. But software copies are ident-
cal, bit for bit. What statistics can we sam-

ple to extrapolate quality?

Usage testing. It turns out that software
hasa statistical property of greatinterest to
developers and users — its execution be-
havior. How long, on average, will a soft-
ware product execute before it fails?

From this notion has evolved the pro-
cess of statistical usage testing,8 in which you

¢ sample the (essentially infinite) pop-
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Cleanroom projects report
a testing ervor vate per thousand
Imes of code, which represents
residual errors in the software
after correctness verification.
The projects briefly described
here are among 17 Cleanroom
projects, involving nearly a mil-
lion lines of code, that have re-
ported a weighted average of 2.3
ervors per KLOC found in all test-
ing, measured from first-ever exe-
cution of the code — a remark-
able quality achievement.!

& IBM Cobol Structuring Fa-
cility (Cobol/SF). This was
IBM’s first commercial Clean-
room product, developed by a
six-person tearn. This 85
KL.OC PL/I program automat-
ically transforms un-
structured Cobol programs
into functionally equivalent
structured form for im-
proved understandability
and maintenance. It had a
testing error rate of 3.4 er-
rors per KLOC; several
major components completed
certification with no errors
found. In months of intensive
beta testing at a major aero-
space corporation, all Cobol
programs executed identically
before and after structuring.

Productivity, including all
specification, design, verifica-
tion, certification, user publica-
tions, and management, aver-
aged 740 LOC per person-
month. So far, a small fraction
of a person-year per year
has been required for all
maintenance and customer
support. Although the prod-
uct exhibits a complexity
level on the order of 2 Cobol
compiler, just seven minor
errors were reported in the
first three years of field use, all
resulting in simple fixes.— R.C.
Linger and FLD. Mills, “A Case
Study in Cleanroom Software
Structuring Facility,” Proc. Com-
psac, IEEE CS Press, Los Al-
amitos, Calif,, 1988, pp. 10-17.

CLEANROOM QUALITY RESULTS

& NASA satellite-control proj-
ect. The Coarse/Fine Attitude
Determination System
(CFADS) of the NASA Atti-
tude Ground Support System
(AGSS) was the first Clean-
room project carried out by the
Software Engineering Labora-
tory of the NASA Goddard
Space Flight Center. The sys-
tem, comprising 40 KLOC of
Fortran, exhibited a testing
error rate of 4.5 errors per
KLOC. Productivity was 780
LOC per person-month, an 80
percent improvement over pre-
vious SEL averages. Some 60
percent of the programs com-
piled correctly on the firstat-
tempt. — A. Kouchakdjian, S.
Green, and VR. Basili, “Evalua-
tion of the Cleanroom Method-
ology in the Software Engi-
neering Laboratory,” Proc. 14th

Software Eng. Workshop, NASA

Goddard Space Flight Center,
Greenbelt, Md., 1989. ‘

¢ Martin Marietta Auto-
mated Documentation System.
A four-person Cleanroom
team developed the prototype
for this system, a 1,820-line re-
lational database application
written in Foxbase. Ithad 2’
testing error rate of 0.0 er-
rors per KLOC — no com-
pilation errors were found
and no failures were encoun-
tered in statistical testing -
and quality certification.
The software was certified
at target levels of reliability
and confidence. Team mem-
bers attributed error-free |
compilation and failure-free
testing to the rigor of the
Cleanroom method. — CJ.
Trammell, L H. Binder, and

C.E. Snyder, “The Automated
Production Control System: A

Case Study in Cleanroom Soft-
ware Engineering,” ACM
Trans. Software Eng. and Meth-
adology, Jan. 1992, pp. 81-94.

+ IBM AOEXPERT/MVS.
A 50-person team developed

this complex decision-support
facility that uses artificial intelli-
gence to predict and prevent
operating problems in an
MVS environment. The sys-
tem, written in PL/I, C, Rexx,
and TIRS, totaled 107
KLOC, developed in three in-
crements. It had a testing
error rate of 2.6 errors per
KLOC. Causal analysis of the
first 16-KLOC increment re-
vealed that five of its eight
components experienced no er-
rorsin testing.

The project reported devel-
opment team productivity of
486 LOC per person-month.
No operational errors have
been reported to date from
beta test and early user sites. —
PA. Haugler, “A Recent Clean-
room Success Story: The Red-
wing Project,” Proc. 17th Soft-
ware Eng. Workshop, NASA
‘Goddard Space Flight Center,
Greenbelt, Md., 1992.

& NASA satellite-control pro-
Jjeets. "Two satellite projects, a 20-
KLOC attitude-determination
subsystemn and a 150-KLOC
flight-dynamics system, were
the second and third Clean-
room projects undertaken at
NASA’s Software Engineering
Laboratory. These systems had
acombined testing error rate of
4.2 errors per KLOC. —S.E.
Green and Rose Pajerski,
“Cleanroom Process Evolution
in the SEL,” Proc. 16th Software
Eng. Werkshop, NASA God-
dard Space Flight Center,
Greenbelt, Md., 1991.

& IBM 3090F tape drive. A
five-person team developed the
device-controller design and
‘microcode in 86 KLOC of C,
including 64 KLOC of func-
tion definitions. This em-

' bedded software processes

multiple real-time 1/0 data
streams to support tape-
cartridge operations in a
multibus architecture. The
box-structure specification

for the chip-set semantics
revealed several hardware
errors. The project had a
testing error rate of 1.2 er-
rors per KLOC.

A one-module experiment
compared the effectiveness of
unit testing and correctness
verification. In unit testing,
the team took 10 person-days
to develop scaffolding code,
invent and execute test cases,
and check results. They found
seven errors, Correctness veri-
fication, which required an
hour-and-a-half in a team re-
view, found the same seven er-
rors plus three more,

To meeta business need,
the third code increment went
straight from development,
with no testing whatsoever,
into customer-evaluation dem-
onstrations using live data.
There were no errors of any
kind. A total of 490 statistical
tests were executed against the
final version of the system, with

no errors found. '

& Ericsson Telecorn OS32 op-
erating system. This 70-person,
18-month project specified, de-
veloped, and certified a 350-
KLOC operating system for a
new family of switching comput-
ers, The project had a testing
error rate of 1.0 errors per

Productivity was reported -
to have increased by 70 per- |
cent for development; 100
percent for testing. The team
significantly reduced develop-
ment time, and the project
was honored by Ericsson for
its contribution to the com-~
pany. — L.-G. Tann, “0S32
and Cleanroom,” Proc. Ist Enro-
pean Industrial Symp. Clean-
room Software Eng., Q-labs,
Lund, Sweden, 1993.
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ulation of all possible executions (correct
and incorrect) by users (people or other
programs) according to how frequently
you expect the executions to happen,

¢ measure their quality by determin-
ing if the executions are correct,

+ extrapolate the quality of the sample
to the populaton of possible executions,
and

¢ idendfy and correct flaws in the de-
velopment process if the quality is inade-
quate. ‘
Statistical usage testing amounts to
testing software the way users intend to
use it. The entire focus is on external sys-
tem behavior, not the internals of design !
and implementaton. Cleanroom certifi-
cation teams have deep knowledge of ex- |
pected usage, but require no knowledge of |
design internals. Their role is not to °
debug-in quality, an impossible task, but :
to scientifically certify software’s quality :
through statistical testing. f

In practice, Cleanroom quality certifi- |
cation proceeds in paralle] with develop- |
ment, in three steps.

1. Specify usage-probability distributions.
Usage-probability distributions define all
possible usage patterns and scenarios, in-
cluding erroneous and unexpected usage,
together with their probabilities of occur-
rence. They are defined on the basis of the
functional specification and other sources
of information, including interviews with
prospective users and the pattern of use in
prior versions.

Figure 6a shows a usage specification i
for a program with four user stimuli: up- |
date (U), delete (D), query (Q), and |
print (P). A simplified distribution that |
omits scenarios of use and other details |
shows projected use probabilities of |
32, 14, 46, and 8 percent, respectively.
"These probabilitics are mapped onto an
interval of 0 to 99, dividing it into four
partitions proportional to the probabili- |
ties. Usage-probability distributions for
large-scale systems are often recorded in !
formal grammars or Markov chains for !
analysis and automatic processing.
In incremental development, you can
stratify a usage-probability distribution -
into subsets that excrcise increasing |
functional content as increments are |

( P:om 77777 7 Ilsuge-ﬁrobnbiﬁty distribution ~ Distribution inferval -

U o 3% 0-31 1

b et 14% 32-45 ‘
Q query) e #%-9] 3

P i) 8% 92-99

oW |

! Test number Random numbers: Test cases: :
1 29 11 47 52 26 94 uuaaque
2 62 98 39 78 82 65 QPDQOQ
3 83 32 58 41 36 17 QDQDDU j
4 3 49 96 82 20 77 DQPQUQ |
(®)

Figure 6. (4) Simplified nsage probability distribution for a program with four user
© stimudi and (B) a sample of associated test cases.

MITF estimate

High-quality code

Figure 7. Two sample graphs. The curve for high-quality software shows exponential
improvement, such that the MTTF quickly exceeds the total test time. The curve for
low-quality software shows little MTTF growth. 1

i added, with the full distribution in effect
once the final incrementisin place. Inad- |

dition, you can define alternate distribu- !

| dons to certify infrequently used system

functions whose failure has important
consequences, such as the code for a nu-
clear-reactor shutdown system.

2. Derive test cases that are randomly gen-

o erated from wsage-probability distributions.
! Test cases are derived from the distribu-

. cases automatical Iy

tions, such that every test represents ac-

tual use and will effectively rehearse user
experience with the product. Because
test cases are completely prescribed by
the distributions, producing them is a me-

i chanical, automatable process.

Figure 6b shows test cases for the prob-
ability distribudon in Figure 6a. If you as-
sume a test case contains six stimuli, then

vou generate cach test by obtaining six
wwo-digit random numbers. These num-
bers represent the partiion in which the
corresponding samuli (U, D, Q, or P) re-
sides. In this way, each test case is faithful
to the distribution and represents a possi-
ble user execution. For testing large-scale
systems, usage grammars or Markov
chains can be processed to generate test

3. Execute test cases, assess vesults, and
compute quality measures. At this point, the
development team has released verified
code to the cerdficadon team for first-ever -
exccution. The certification team executes
each test case and checks the results
against system specifications. The team
records exccution time up to the point of
any failure in appropriate units, for exam-
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ple, CPU time, wall-clock time, or num-
ber of transactions.

These interfail times represent the qual-
ity of the sample of possible user execu-
tions. They are passed to a quality certifi-
cation model that computes the system’s
quality, including its
mean time to failure. The
quality-certification
model produces graphs
like the one in Figure 7.

Because the Clean-
room development pro-
cess rests on a formal, sta-
tistical design, these
MTTF measures provide
a scientific basis for man-
agement action, unlike the anecdotal evi-
dence from coverage testing (If few errors
are found, is that good or bad? If many
errors are found, is that good or bad?). In
theory, there is no way to ever know thata
software system has zero defects. How-
ever, as failure-free executions accumu-
late, it becomes possible to conclude that
the software is at or near zero defects with
high probability.

Extending MTTF. But there is more to the
story of statistical usage testing. Extensive

WE BELIEVE
USE OF THE
CLEANROOM
PROCESS
WILL GROW.

analysis of errors in large-scale software
systems reveals a spread in the failure rates
of errors of some four orders of magni-
tude.? Virulent, high-rate errors can liter-
ally occur every few hours for some users,
but low-rate errors may show up only after
accumulated decades ofuse
by many users.

High-rate errors are
responsible for nearly
two-thirds of software
failures reported,'® even
though they comprise less
than three percent of total
errors. Because statistical
usage testing amounts to
testing software the way
users will use it, high-rate errors tend to be
found first. Any errors left behind after
testing tend to be infrequently encoun-
tered by users.

Traditional coverage testing finds er-
rors in random order. Yet finding and
fixing low-rate errors has little effect on
MTTF and user perception of quality,
while finding and fixing errorsin failure-
rate order has a dramatic effect. Statisti-
cal usage testing is far more effective
than coverage testing at extending

MTTE!
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oftware that is formally engineered in

increments is well-documented and
under intellectual control throughout de-
velopment. The Cleanroom approach
provides a framework for managers to
plan (and replan) schedules, allocate re-
sources, and systematically accommodate
changes in fanctional content.

Experienced Cleanroom teams can
substantally reduce time to market. This
is due largely to the precision imposed on
development, which helps eliminate re-
work and dramatically reduces testing
time, compared with traditional methods.
Furthermore, Cleanroom teams are not
held hostage by error correction after re-
lease, so they can initate new develop-
ment immediately.

The cost of quality is remarkably low in
Cleanroom operations, because it mini-
mizes expensive debugging rework and
retesting.

Cleanroom technology builds on exist-
ing skills and software-engineering prac-
tices. It is readily applied to both new sys-
tem development and reengineering and
extending legacy systems. As the need for
higher quality and productivity in soft-
ware development increases, we believe
that use of the Cleanroom process will
continue to grow. 14
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