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T oday’s competitive pressures and 
societv’s increasing denendence on 

I Y  I 

software have led to a new focus on devel- 
opment processes. The Cleanroom pro- 
cess, which has evolved over the last de- 
cade, has demonstrated that it can improve 
both the productivity of developers who 
use it and the quality of the software they 
produce. 

Cleanroom software engineering is a 
team-oriented process that makes devel- 
opment more manageable and predictable 

This article is based on a paper that appears in R-w. 1% 
Id C’mf .?%$wure E&g.., f!ZEE CS Press, Las Alamitos, 
Calif., 1993, pp. 2.13.The IEEESoftwareEditorial Board 
has selected it as the best practice paper presented at 
ICSE-15. The bard thanks Richard A DeMillo, ICSE- 
I5 Program Cochair, for his help in arranging for its pub- 
lication in IEEE Sofim. 

because it is done under statistical quality 
control. 

Cleanroom is a modern approach to 
software development. In traditional, 
craft-based development, defects are re- 
garded as inevitable and elaborate defect- 
removal techniques are a part of the devel- 
opment process. In such a process, 
software proceeds from development to 
unit testing and debugging, then to func- 
tion and system testing for more debug- 
ging. In the absence of workable altema- 
tives, managers encourage programmers 
to get code into execution quickly, so de- 
b ugging can begin. Today, developers rec- 
ognize that defect removal is an error- 
prone, inefficient activity that consumes 
resources better allocated to getting the 
code right the first time. 
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Cleanroom teams at IBM and other 
organizations are achieving remarkable 
quality results in both new-system devel- 
opment and modifications and extensions 
to legacy systems. The quality of software 
produced by Cleanroom development 
teams is sufficient (often near zero defects) 
for the software to enter system testing 
directly for first-ever execution by test 
teams. 

The theoretical foundations of Clean- 
room - formal specification and design, 
correctness verification, and statistical 
testing - have been reduced to practice 
and demonstrated in nearly a million lines 
of code. Some Cleanroom projects are 
profiled in the box on p. 56. 

QUALITY COMPARISON 

Quality comparisons between tradi- 
tional methods and the Cleanroom pro- 
cess are meaningful when measured from 
first execution. Most traditional develop- 
ment methods begin to measure errors at 
function testing (or later), omitting errors 
found in private unit testing. A traditional 
project experiencing, say, five errors per 
thousand lines of code (KLOC) in func- 
non testing may have encountered 2S or 
more errors per KLOC when measured 
from first execution in unit testing. 

At entry to unit testing, traditional soft- 
ware typically exhibits 25 to 35 or more 
errors per KLOC.’ In contrast, the 
weighted average of errors found in 17 
Cleanroom projects, involving nearly a 
million lines of code, is 2.3 errors per 
KLOC. This number represents all errors 
found in all testing, measured from first- 
ever execution through test completion - 
it is the average number of residual errors 
present after the development team has 
performed correctness verification. 

In addition to this remarkable differ- 
ence in the number of errors, experience 
has shown a qualitative difference in the 
complexity of errors found in Cleanroom 
versus traditional software. Errors left be- 
hind by Cleanroom correcmess verifica- 
tion tend not to be complex design or in- 
terface errors, but simple mistakes easily 
found and fixed by statistical testing. 

In this article, I describe the Clean- 

room development process, from specifi- 
cation and design through correctness 
verification and statistical usage testing for 
quality certification. 

INCREMENTAL DEVELOPMENT 

The Cleanroom process is based on 
developing and certifying a pipeline of 
software increments that accumulate into 
the final system. The increments are de- 
veloped and certified by small, indepen- 
dent teams, with teams of teams for large 
projects. 

System integration is continual, and 
func;ionality g&s with 
the addition of successive 
increments. In this ap- 
proach, the harmonious 
operation of future incre- 
ments at the next level of 
rehnement is predehned 
by increments already in 
execution, thereby mini- 
mizing interface and de- 
sign errors and helping 
developers maintain in- 
tellectual control. 

The Cleanroom de- 
velopment process is in- 

CLEANROOM 
DEVELOPMENT 
IS INTENDED 
TO BE “QUICK 
AND CLEAN,” 
NOT “QUICK 
AND DII 

As the figure shows, Cleanroom devel- 
opment involves two cooperating teams 
and five major activities: 

+ Specification. Cleanroom develop- 
ment begins with specification. Together, 
the development team and the certifica- 
tion team produce two specifications: 
functional and usage. Large projects may 
have a separate specification team. 

The functional specification defines 
the required external system behavior in 
all circumstances of use; the usage specifi- 
cation defines usage scenarios and their 
probabilities for all possible system usage, 
both correct and incorrect. The func- 

tional specification is the 

RN.” 

tended to be “quick and clean,” not “quick 
and dirty.” The idea is to quickly develop 
the right product with high quality for the 
user, then go on to the next version to 
incorporate new requirements arising 
from user experience. 

In the Cleanroom process, correcmess 
is built in by the development team 
through formal specification, design, and 
verification. Team correctness verification 
takes the place of unit testing and debug- 
ging, and software enters system testing 
directly, with no execution bythe develop- 
ment team. All errors are accounted for 
horn first execution on, with no private 
debugging permitted. 

Figure 1 illustrates the Cleanroom 
process of incremental development and 
quality certification. The Cleanroom 
team first analyzes and clarifies customer 
requirements, with substantial user inter- 
action and feedback. Ifrequirements are in 
doubt, the team can develop Cleanroom 
prototypes to elicit feedback iteratively. 

basis for incremental soft- 
ware development. The 
usage specification is the 
basis for generating test 
cases for incremental sta- 
tistical testing and quality 
certification. Usage speci- 
fications are explained in 
the section on certifica- 
tion. 

l Increment planning. 
On the basis of these 
specifications, the devel- 
opment and certification 

teams together define an initial plan for 
developing increments that will accumu- 
late into the final system. For example, a 
100 KLOC system might be developed in 
live increments averaging 20 KLOC each. 
The time it takes to design and verify in- 
crements varies with their size and com- 
plexity. Increments that require long lead 
times may call for parallel development. 

+ Design and verijkation. The develop- 
ment team then carries out a design and 
correcmess verification cycle for each in- 
crement. The certification team proceeds 
in parallel, using the usage specification to 
generate test cases that reflect the ex- 
pected use of the accumulating incre- 
ments. 

l @4+~ cerhifiration. Periodically, the 
development team integrates a completed 
increment with prior increments and de- 
livers them to the test team for execution 
of statistical test cases. The test cases are 
run against the accumulated increments 
and the results checked for correctness 
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defined and refined as different box struc- 
tures, resulting in a usage hierarchy of ot)- 
jects in which the services of an object may 
be used and reused in many places ,and at 
many levels. Box structures, then, define 
required system behavior and derive and 
connect objects comprising a system ar- I r 

Figure 1. CLeanmom plncess model. The stacked boxes indicate successizle hwements. 

‘I-hey also address the two engineering 
problems associated with system specifica- 
tion: defining the right fun&n for users 
and defining the right structure for the spcc- 
ification itself. Box structures address the 
first problem by precisely defining the FLU- 
rent understanding of required fiu~ctions at 
each stage of development, so that the fimc- 
dons cdn be reviewed and modified ifneces- 
sary. The second problem is critical, espe- 
cially for large-system development. I Iow 
can we organize the mead details of be- 
havior and processing-into coherent ab- ~ 
stmctions humans can understand? ,’ 

Box structures incorporate the crucial ~ 
mathematical property of referential i 

against the functional specification. Inter- ~ + Feedback. Errors are returned to the 
fail times, that is, the elapsed times be- ~ development team for correction. If the 
tween failures, are passed to a quality-cer- quality is low, managers and team mem- 
tification model’ that computes objective hers initiate process improvement. As with 
statistical measures of quality, such as any process, a good deal of iteration and 
mean time to failure. The uualihr-certifi- ~ feedback is alwavs vresent to accommo- Wdnsparency - the information content 
cation model employs a reliAbilit$ growth 

i  L  

~ date problems and solutions. ~ of each box specification is sufficient to 
estilnator to derive the statistical mea- h the next sections, I describe the 1 define its refinement, without depending 
m-es. specification, design and verification, and 1 on the implementation of any other box. 

Certification is done continuously, ~ quality-certification procedures. A de- This property lets us organize large-sy- 
over the life of the project. Higher level tailed description of increment planning tern specifications hierarchically, without 
increments enter the certification pipeline ~ and feedback mechanisms is outside the sacrificing precision at high levels or detail 
first. This means major architectural and scope of this article. at low levels. 
design decisions are validated in execution 
before the development team elaborates H,JN~~IONAL SPECIFIQ?JION Box stnrdures. Three principles govern 
on them. And because certification is done the use of box strucares:4 
for all increments as they accumulate, The object-based technology of box + All data defined in a design is encap- 
higher level increments are subjected to structnres has proved to be an effective sulated in boxes. 
more testing than lower level increments, technique for functional specification.’ + All processing is defined by using 
which implement localized functions. Through stepwise refinement, objects are boxes sequentially or concurrently. 

chitecture.‘-’ 
In the past, without a rigorous specih- 1 

cation technology, there was little incen- 
tive to devote much effort to the specifica- 
tion process. Specifications were 
frequently written in natural lan_guage, 
with inevitable ambiguities .and omissions, 
and often regarded as throwaway stepping ~ 
stones to code. 

Box structnres provide an economic 
incentive for precision. Initial box-strut- 
ture specifications often reveal gaps and 
misunderstanding in customer require- 
ments that would ordinarily be discovered 
later in development at high cost and risk 
to the project. 
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+ Each box occupies a distinct place in 
a system’s usage hierarchy. 

Each box has three forms - black, 
state, and clear - which have identical 
external behavior but whose internals are 
increasingly detailed. 

Bbdc box. An object’s black box is a pre- 
cise specification of external, user-visible 
behavior in all possible circumstances of its 
use. The object may be an entire system or 
any part of a system Its user may be a 
person or another object. 

A black box accepts a stimulus (S) from 
a user and produces a response (R). Each 
response ofa black box is determined by its 
current stimulus history (SH), with a 
black-box transition function 

(S. SH) + (RI 
A given stimulus will produce different 

responses that are based on history of use, 
not just on the current stimulus. Imagine a 
calculator with two stimulus histories 

Clear 7 1 3 

and 
Clear 7 1 3 + 

If the next stimulus is 6, the first history 
produces a response of 7136; the second, 
6. 

The objective of a black-box specifica- 
tion is to define the responses produced 
for every possible stimulus and stimulus 
history, including erroneous and unex- 
pected stimuli. By defining behavior solely 
in terms of stimulus histories, black-box 
specifications neither depend on nor pre- 
maturely define design internals. 

Black-box specifications are often re- 
corded as tables. In each row, the stimulus 
and the condition on stimuhrs history are 
sufficient to define the required response. 
To record large specifications, classes of 
behavior are grouped in nested tables and 
compact specification functions are used 
to encapsulate conditions on stimulus his- 
tories.6 

sfote box. An object’s state box is derived 
Tom its black box by identifying the ele- 
ments of stimulus history that must be re- 
tained as state data between transitions to 
achieve the required black-box behavior. 

The transition function of a state box is 
(S. OS) -+ (R. NS), 
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r [set w to 

I minimum of 
z and absolute 
value of x] 

[set w to 
minimum of 
z and absolute 
value of x] 
DO 

[set y to absolute 
value of x] 

[set w to minimum 
of z and y] 

END 

1 II 
:set w to 
ninimum of 
: and absolute 
value of x] 
m 

[set y to absolute 
value of x] 
IFx<O 
THEN 

y := -x 
ELSE 

y := x 
END 

[set w to minimum 
of z and y] 
IFy<z 
THEN 

w := y 
ELSE 

w := z 
END 

‘&we 2. Stepwise rejnement of a clear-boxdesipfiagment that can be verified. Each 
-agment has identicaljhctional behavior, even though the level of detail increases. 

rhere OS and NS represent old state and 
ew state. Although the external behavior 
f a state box is identical to its correspond- 
lg black box, the stimulus histories are 
:placed with references to an old state 
nd the generation of a new state, as its 
an&ions require. 

As in the traditional view of objects, 
ate boxes encapsulate state data and ser- 
1ce.5 (methods) on that data. In this view, 
tiuli and responses are inputs and out- 
ms, respectively, of specific state-box ser- 
ice invocations that operate on state data. 

C&M box An object’s clear box is derived 
rom its state box by defining a procedure 
D can-y out the state-box transition hmc- 
ion. The transition function of a clear box 
i 

(S, OS) + (R, NS) by procedure 
;o a clear box is simply a program that 
nplements the corresponding state box. 
L clear box may invoke black boxes at the 
ext level, so the refinement process is re- 
ursive, with each clear box possiblyintro- 
ucing opportunities for defining new ob- 
:cts or extensions to existing ones. 

Clear boxes play a crucial role in the 
sage hierarchy by ensuring the harmoni- 
us cooperation of objects at the next level 
f refinement Objects and their clear-box 
onnections are derived from immediate 

processing needs at each stage of refine- 
ment, not invented a priori, with uncer- 
tain connections left to be defined later. 
The design and verification of clear-box 
procedures is the focus of the next sec- 
tion. 

Because state boxes can be verified 
with respect to their black boxes and clear 
boxes with respect to their state boxes, box 
jtructura bring correctness verification to 
object architectures.4 

DESIGN AND VERIFICATION 

The procedural control structures of 
structured programming used in clear- 
box design - sequence, alternation (if- 
then-else), and iteration (while-do) - are 
single-entry, single-exit structures that 
cannot produce side effects in control 
flow. (Control snuctures for concurrent 
execution are dealt with in box structures, 
but are outside the scope of this article.) 

When it executes, a given control 
structure simply transforms data from an 
input state to an output state. This trans- 
formation, known as its pvg7amfin&m, 
corresponds to a mathematical function: It 
defines a mapping from a domain to a 
range by a particular rule. 

For integers w, x, y, and z, for example, 
the program function of the sequence, 
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DO 
t3: 
h 

Doesgfol!uwed 
bvhdof? 

END 

lfl 
IFP WhOOOVO1pktrue 
THEN doesgdof;ani 

g 
ELSE 

h 
END 

lfefatbn 
C5d chwramss 
sftwtrre: 

If1 
WHILEp 
DO 

4 
END 

Figure 3. Correctness conditions 
tion fm for verzjjing each type 
box control structure. 

in ques 
of clear 

Program: 

[fll 
Do 

ST1 
92 
If21 

WHILE 
Pl 

DO [f3] 
93 
[f41 
IF 

P2 
THEN [f5] 

94 
95 

ELSE [f61 
96 
97 

END 
g8 

END 
END 

DO 
L := abs(y1 
w  := max(x. 2) 

EN3 

is, in concurrent assignment form, 
w, z := max(x, abs(yi), abs(yj 

For integer x 2 o , the program hmc 
tion of the iteration 

WHILE 
X>l 

DO 
x := x -2 

END 

is, in English, 
set odd x to 1, even x to 0 

Desii refiint. In designing clear-bo 
procedures, you define an intenakdfinc 
tion,thenrefineitintoacontrolstructur 
and new intended functions, as Figure 
illustrates. Intended functions, enclosed in 
braces, are recorded in the design and at 
tached to their control-structure refine 
men6 In essence, clear boxes are compcsel 
of a finite number of control structures, eacl 
ofwhicb can be checked for correctness. 

Design simplification is an importan 
objective in the stepwisc refinement c 
clear boxes. The goal is to generate corn 
pact, straightforward, verifiable designs. 

Subproofs: 

fl = [c8 gl;g2;[f2] END] ? 

f2 = [WHILE pl DO [f3] END] ? 

f3 = [Do g3;[f41;g8 END] ? 

f4 = [IF p2 THEN [f51 ELSE if61 END] ? 

f5 = [Do g4;g5 END1 ? 

f6 = [W g6;g7 END1 ? 

Xl 
e I 
2 I 
n I 

It 
d 

Figure 4. A  clear-box procedure and its constituent subproofs. In tbe$gure, each pi 1 
a predicate, each gi is an operation, and each f i is an intended$mction. 

COIT~C~IZSS verifiartkn. To verify the cor- 
recmess of each control structure, you de- 
rive its program function- the function it 
actually computes-and compare it to its 
intended function, as recorded in the de- 
sign. A  correctness theorem’ defines how 
to do this comparison in terms of lan- 
guage- and application-independent CW- 
rectne= conditions, which you apply to each 
control structure. 

Figure 3 shows the correctness condi- 
tions for the sequence, alternation, and it- 
eration control snuctures. Verifying a se- 
quence involves function composition and 
requires checking exactly one condition. 
Verifying an alternation involves case 
analysis and requires checking exactly two 
conditions. Verifying an iteration involves 
function composition and case analysis in 
a recursive equation and requires checking 
exactly three conditions. 

Correctness verification has several ad- 
vantages: 

+ It reduces veri~cation to a finite process. 
As Figure 4 illustrates, the nested, se- 
quenced way that control structures are 
organized in a clear box naturally defines a 
hierarchy that reveals the correctness con- 
ditions that must be verified. An axiom of 
replacement’ lets us substitute intended 
functions for their control structure re- 
finements in the hierarchy of subproofs. 
For example, the subproof for the in- 
tended function f 1 in Figure 4 requires 
proving that the composition of opera- 
tions gl and g2 with intended subfunc- 
tion f2 has the same effect on data as fl. 
Note that f 2 substitutes for all the details 
of its refinement in this proof. This substi- 
tution localizes the proof argument to the 
control structure at hand. In fact, it lets 
you carry out proofs in any order. 

It is impossible to overstate the positive 
effect that reducing verification to a fi- 
nite process has on quality. Even though 
all but the most trivial programs exhibit 
an essentially infinite number of execu- 
tion paths, they can be verified in a finite 
number of steps. For example, the clear 
box in Figure 5 has exactly 15 correct- 
ness conditions that must be verified. 

l It lets Cleanmom teams verfi every 
Line of design and code. Teams can carry 
out the verification through group 
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analysisanddiscussiononthe basisofthe 
correctness theorem, and they can pro- 
duce written proofs when extra confidence 
in a life- or mission-critical system is re- 
quired. 

l It rtxuli3 in a near-zero defect level. 
During a team review, every correctness 
condition of every corm01 structure is ver- 
ified in turn. Every team member must 
agree that each condition is correct, so an 
error is possible only if every team mem- 
ber incorrectly verifies a condition. The 
requirement for unanimous agreement 
based on individual verifications results 
in software that has few or no defects be- 
fore first execution. 

+ Itsuh up. Every software system, no 
matter how large, has top-level, clear-box 
procedures composed of sequence, alter- 
nation, and iteration structures. Each of 
these typically invokes a large subsystem 
with thousands of lines of code-and each 
of those subsystems has its own top-level 
intended functions and procedures. So the 
correctness conditions for these high-level 
control structures are verified in the same 
way as are those of low-level struchu-es. 
Verification at high levels may take, and 
well be worth, more time, but it does not 
take more theory. 

+ Itpmduces better code than unit ttihg. 
Unit testing checks only the effects of 
executing selected test paths out of many 
possible paths. By basing verification 
on function theory, the Cleanroom ap- 
proach can verify every possible effect 
on all data, because while a program 
may have many execution paths, it has 
only one function. Verification is also 
more efficient than unit testing. Most 
verification conditions can be checked in a 
few minutes, but unit tests take substantial 
time to prepare, execute, and check 

QUALITY CERTIFICATION 

Statistical quality control is used when 
you have too many items to test all of them 
exhaustively. Instead, you statistically 
sample and analyze some items to obtain a 
scientific assessment of the quality of all 
items. This technique is widely used in 
manufacturing, in which items on a pro- 
duction line are sampled, their quality is 
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seq 
I 

TQ := odd-numbers(Q) II even-numbers(Q) ] 
EOC Odd-Before-Even (ALT Q) 

DATA 
odds : queue of integer [initializes to empty] 
evens : queue of integer [initializes to empty] 
x : integer 

END 

C 

[ Q := empty, 
odds := odds llodd-numbers(Q), 
evens := evens lleven-numbers(Q) I 

WHILE Q <> empty 
DO 

x := end(Q) 

[x is odd -> odds := odds II x 
ltrue -> evens := evens II x I 
If odd(x) 
THEN 

end(odds) := x 
ELSE 

endtevens) := x 
END 

END 

c 
1 Q := Q II odds, 

odds := empty 1 
WHILE odds cz empty 
DO [end(Q) := end(odds)l 

x := end(odds) 
end(Q) := x - 

END 

[ Q := Q II evens, 
evens:= empty] 
WHILE evens <z empty 
DO [end(Q) := end(evens)18g lw$ 

X := end(evens) 
J 

1 
end(Q) := x 

END 

END odd-before-even 

seq 
I 

I ite 
2 

- 

m rdo 
3 

Figure 5. A clear-box procedure with 1 J correctness conditions to be verified. The 
procedural control mm-tures and the number of correctness conditions that must be 
checked are sbom in bold. Seq indicates a sequence, ite indicates an alternation ($then- 
else), and wdo indicates an iteration (while-do). 

measured against a presumably perfect de- 
sign, the sample quality is extrapolated to 
the entire production line, and 0aws in 
production are corrected if the quality is 
too low. 

In hardware products, the statistics 
used to establish quality are derived horn 
slight variations in the products’ physical 
properties. But software copies are identi- 
cal, bit for bit. What statistics can we sam- 

ple to extrapolate quality? 

Usage testing. It turns out that software 
has a statistical property ofgreat interest to 
developers and users - its execution be- 
havior. How long, on average, will a soft- 
ware product execute before it fails? 

From this notion has evolved the pro- 
cess ofstatistical usage terting,8 in which you 

l sample the (essentially infinite) pop- 
/I 
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CEEAMMOH QUAUTY RESULTS 
Cleanroom projects report + NASA saFatellite+ntrviproj~ this complex decision-support 

a testing en-or rateper i?hmimd et-t. The Coarse/Fine Attitude facility that uses artilicial intelli- 
liwsofcide,which represents Determination System gence to predict and prevent 
residual errors in the software (CFADS) of the NASA Atti- operating problems in an 
after correctness verification. tude Ground Support System MVS environment. The sys- 
The projects briefly described (AGSS) was the first Clean- tern, written in PL/I, C, Rexx, 
here are among 17 Cleanroom room project carried out by the and TIRS, totaled 107 
projects, involving nearly a mil- Software Engineering Labom- BLOC, developed in three in- 
lion lines of code, that have re- tory of the NASA Goddard crements. It had a testing 
ported a weightedaverage of 2.3 Space Flight Center. The sys- error rare of 2.6 errors per 
mmsperKLOC$midiraautart- t.em,comprising4OKLi3Cof KLOC. Causal analysis of the 
ing, s+-md+@-m exe- Fortran, exhibited a testing first 16-KLOC increment re- 
c&n2 oftbe code-a remarlc- error rate of 4.5 errotx per 
able quality achievement’ 

vealed that five of its eight 
KLOC. Produ~vi~was 780 components experienced no er- 

* IBMCobolS~gFa- LQC per person-month, an 80 rors in testing. 

c&y(W~.Thiswas percent improvement over pre- The project reported devel- 

IBM’s first commercial Clean- vious SEL averages. Some 60 opment team productivity of 

~~~~~~d~~d by a 
percent of the programs aim- 486 LOC per person-month. 
piled wrrectlyon the firstat- No operational errors have 

KLOC PI.& program automat- tempt -A. Kouchakdjian, S. been reported to date from 

ically transforms un- Green, and V;R Basili, “Evalua- beta test and early user sites. - 

structured Cobol programs tion of the CleanroomMethod- PA Hausler, “A Recent Clean- 

into functionally equivalent 01ogyinthes0ftwareEngi- room Suazess Story The Red- 

structured form for im- neering Laboratory? ISDC. l&b wing Project,” Proc. 17tb .%$- 

proved understandability t2$iwreEng. Wdbcy,NASA wmhg. W&bop,NASA 

and maintenance. It had a Goddard Space Flight Center, Goddard Space Flight Center, 

testing error rate of 3.4 er- Greenbelt, Md,, 1989. Greenbelt,Md, 1992. 

rors per KLOC; several + Marc inmmAm 
major components completed 

l NM sateLlite-con&pro- 

certification with no errors 
wd~mr System. jectr. Two satellite projects, a 20- 
A four-person Cleanroom KLOC attitude-determination 

fotmd. In months of intensive 
beta tesnng at a major aero- 

-&eloped me pmtotype subsystemanda 15OXLQC 

space wrporation, all Coboi 
ibr this system, a 1,820~line m- flightaynamics system, were 
lational database application the sewnd and third Clean- 

programs executed identically written in Foxbase. It had a 
before and after structuring. 

room projects undertaken at 

activity, including all 
testing error rate of 0.0 er- NASA% Software Engineering 

specification, design, verifica- 
rors per KLOC - no com- Laboratory. These systems had 

tion, certification, user publica- 
pilation errors were found a combined testing error rate of 
and no failures were eucoun- 

for the chip-set semantics 
revealed several hardware 
errors. The project had a 
testing error rate of 1.2 er- 
rors per KLOC. 

A one-module experiment 
wmpared the e@eetiveness of 
unit testing and corrermess 
verification. In unit testing, 
the team took 10 person-days 
to develop scaffolding code, 
invent and execute test cases, 
and check results. They tbund 
seven errors. Correctness veri- 
fication, which required an 
hour-and-a-half in a team re- 
view, found the same seven er- 
rors plus three more. 

To meet a business need, 
thethirdcodeincmmentwent 
straight from development, 
with no testing whatsoever, 
into custome.r-evaluation dem- 
onstrations using live data 
There were no errors ofany 
kind. Atotal of490 statistical 
tests were amted against the 
fhai version of the system, with 
no errors found 

lions, and management, aver- 
4.2 errors per KLQC. - SE. 

aged 740 LOC per person- 
tered in statistical testing Green and Rose Pajerski, 
and quality certification. “Cleanroom Process Evolution 

month. so far a small frattb The software was certified 
of a person-year per year 

in the SEL,” &x. 16th Sejiwm 

has been required for all 
at target levels of reliability Eq, WoneSop, NASA God- 
and confidence. Team mem- 

+ Erkm Tekma US32op 
eratingsystm. This 7(f-v, 
18monthproject.speci6ied,de- 
~andcerti6eda350- 
KLOCoperatingsystemfa 
new&milyofswit&ngcomput- 
em.Theprc&thadatesting 
ermrrate0f1.0erromper 
KLOC. 

maintenance and customer 
dard Space Flight Center, 

hers attributed error&ee 
support. Although the prod- 

Greenbelt, Md., 1991. 

uct exhibits a complexity 
compilation and &lure-Bee 

level on the order of a Cobol 
testingtotherigorofthe 6 Ib!M 309OE i%pe dniw. A 
Clea-m method, _ CJ. five-person team developed the 

compiler, just seven minor ?lIhmmell, L.H. Binder, and device-controller design and 
errors were reported in the C.E. Snyder, “The Automated mimde in 86 KLOC of C, 
first three years of field use, all Production Control System: A in&ding 64 KLOC of func- 
resuhinginsimple8xea-R.C. ~S+,~~l~S~ft- tion definitions. This em- 
LingerandHD.Mills,“ACase wareEngineejng,“A~ bedded software processes 
StUdyin-m Tri. Si$wm Eng. dMetb- multiple real-time I/O data 
Engirteering:~IBMcobol streams to support tape- 
Structuring Facility,” &tx. Corn- 

Qdology, Jan 1992, pp. 81-94. 
cartridge operations in a 

Productivity was reported 
to have increased by 70 per- 
cent for development; 100 
percent for testing. The team 
significantly reduced develop- 
ment time, and the project 
was honored by Ericsson for 
its contribution to the eom- 
pany. - L.-G. Tann, WS32 
and Cleanroom,” Pmt. 1st Em- 
pm IMWp. clem- 
mom Sojiware Esg., Q-labs, 
Lund, Sweden, 1993, 

pw, IEEE CS Press, Los Al- + LBMAOEXPERThHVS. multibus architecture. The 
amitos, Calif., 1988,~~. 10-17. A SO-person team developed box-structure specification 
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ulation of all possible executions (correct 
and iny)rrect) by users (people or other 
pr+gwns) according to how frequently 
you expect the executions to happen, 

+ measure their quality hy detcrmin- 
ing ifthe executions are correct, 

l extrapolate the quality of the sample 
to the population of possible executions, 
and 

+ ident@ and correct flaws in the de- 
velopment process if the quality is inade- 
quate. 

Statistical usage testing amounts to 
testing sofbare the way users intend to 
use it. The entire focus is on exTema1 s?;s- 
tern behavior, not the internals of design 
and implementation. Cleanroom certifi- 
cation teams have deep knowledge of ex- 
pected usage, hut require no knowledge of 
design internals. Their role is not to 
debug-in quality, an impossible task, but 
to scientifically certif+ software’s quality 
through statishcal test&. 

In practice, Cleanroom quality certifi- 
cation proceeds in parallel with dcvelop- 
ment, in three steps. 

I. Spmfi lts~~sc-pla(‘crbilih &tdmtiom. 
Usage-proh~lt)ili~~ distrihubons define all 
possible usage patterns and scenarios, in- 
cluding erroneous and unexpected usage, 
together with their probabilities of occur- 
rence. ‘I-hey are defined on the hasis of the 
funczional specifkition and other sourccs 
of inforlnation, including interviews with 
prospe&e users and the pattcm of use in 
prior versions. 

Figure ha shows a usage specification 
for a program with four user stimuli: up- 
date (C). delete (D), quc? ((J), and 
print(P). Asimplified distribution that 
omits scenarios of use and other details 
shows projected use probabilities of 
32, 14, 46, and 8 percent, respectively. 
These prohahilitics are mapped onto an 
interval of 0 to 99, dividing it into four 
partitions proportional to the prohahili- 
ties. Usage-probability distributions for 
large-scale systems are often recorded in 
fonnal grammars or Alarkov chains for 
analysis and automatic processing. 

III incremental development, you can 
strati+ a ~lsage-pi-ot,al,ili~ distribution 
into subsets that cxcrcise increasing 
functional content as increments are 

Program stimuli Usage-probability distribution Distribution interval 

U (update) 32% o-31 

0 (delete) 1404 32-45 

Q (query) 46% 46- 91 

P (plint) 8% 92-99 

[Al 
Test number Raadom numbers: Test cases: 

1 29 11 47 52 26 94 UUQQUP 

2 62 98 39 78 82 65 QPDQQQ 

3 83 32 58 41 36 17 QDQDDU 

4 36 49 96 82 20 77 DQPQUQ 
WI 

Fig-u-e 6. (A) Sinqdified mqy pt-obnbilit?, rlirtribution f&p n p~‘ogrmn zith few u.w 
stiwmli ad (B) fl strmple ofmsori~ted test cmx 

added, with the full distribution in effect 
once the thd increment is in place. In ad- 
dition. you can define alternate distrihu- 
tions to certify infrequently used system 
funct-ions whose failure has important 
consequences, such as the code for a nu- 
clear-reactor shutdown system. 

2. Lkrix tcrt mes thnt fm mdim~y gn- 
e7xfd fi117~ cl.~~i~~[,-pral~~~bilih, rhtr-il~~~tiom. 
Xst c&es are derived fron; the distrihu- 
Cons, such that every test represents ac- 
tual USC: and will effectively rehearse user 
experience with the product. Because 
test cases arc completely prescrihcd 1)) 
the distributions, producing them is a me- 
chanical, automatable process. 

Figure 61, shows testcascs for the proh- 
ahilit), distiihution in Figure (,a. If you as- 
sume a test case contains six ~th& then 

you generatc each test hy obtaining six 
hvo-digit random numhers. These num- 
hers represent the partition in w-hi& the 
corresponding stimuli (U, D, C.I, or P) re- 
sides. In this way, each test case is fkhful 
to the distribution and represents a possi- 
hle user execution. For testing large-scale 
s)5tenis, usage grammars or Llarkov 
chains can hc processed to generdte test 
cases automatically. 

3. IGrin te tert c~n.w, msm.~ x~ults, mid 
rnv/p/ct~ qdiq ~~w~w~.r. At this point, the 
development team has released w-itied 
code to the certification team for first-ever 
execution. The certification team cxccutcs 
each test case and checks the results 
against system specifications. The team 
records execution time up to the point of 
any failure in appropriate units, for esam- 
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ple, CPU time, wall-clock time, or num- 
ber of transactions. 

These interfailtimesrepresent the qual- 
ity of the sample of possible user execu- 
tions. They are passed to a quality certifi- 
cation model that computes the system’s 
quality, including its 

analysis of errors in large-scale software 
systems reveals a spread in the failure rates 
of errors of some four orders of magni- 
tude.’ Virulent, high-rate errots can liter- 
ally occur every few hours for some users, 
but low-rate errors may show up only after 

accumulated decades ofuse 
mean time to failure. The 
quality-certification 
model produces graphs 
like the one in Figure 7. 

WE BELIEVE 
USE OF THE 
CLEANROOM 
PROCESS 
WILL GROW. 

Because the Clean- 
room development pro- 
cess rests on a formal, sta- 
tistical design, these 
M’ITF measures provide 
a scientific basis for man- 
agement action, unlike the anecdotal evi- 
dence from coverage testing (If few errors 
are found, is that good or bad? If many 
errors are found, is that good or bad?). In 
theory, there is no way to ever lmow that a 
software system has zero defects. How- 
ever, as failure-free executions accumu- 
late, it becomes possible to conclude that 
the software is at or near zero defects with 
high probability. 

users will use it, high-rate errors tend to be 
found first. Any errors left behind after 
testing tend to be infrequently encoun- 
tered by users. 

Extending MTlF. But there is more to the 
story of statistical usage testing. Extensive 

Traditional coverage testing finds er- 
rors in random order. Yet finding and 
fixing low-rate errors has little effect on 
MTTF and user perception of quality, 
while finding and fixing errors in failure- 
rate order has a dramatic effect. Statisti- 
cal usage testing is far more effective 
than coverage testing at extending 
MTTE’O 

by many users. 
High-rate errors are 

responsible for nearly 
two-thirds of software 
failures reported,t’ even 
though they comprise less 
than three percent oftotal 
errors. Because statistical 
usage testing amounts to 
testing software the way 
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S oftware that is formally engineered in 
increments is well-documented and 

under intellectual control throughout de- 
velopment. The Cleanroom approach 
provides a framework for managers to 
plan (and replan) schedules, allocate re- 
sources, and systematically accommodate 
changes in functional content 

Experienced Cleanroom teams can 
substantially reduce time to market. This 
is due largely to the precision imposed on 
development, which helps eliminate re- 
work and dramatically reduces testing 
time, compared with traditional methods. 
Furthermore, Cleanroom teams are not 
held hostage by error correction after re- 
lease, so they can initiate new develop- 
ment immediately. 

The cost of quality is remarkably low in 
Cleanroom operations, because it mini- 
mizes expensive debugging rework and 
retesting. 

Cleanroom technology builds on exist- 
ing skills and software-engineering prac- 
tices. It is readily applied to both new sys- 
tem development and reengineering and 
extending legacy systems. As the need for 
higher quality and productivity in soft- 
ware development increases, we believe 
that use of the Cleanroom process will 
continue to grow. + 
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