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Abstract

Programmers’ work is often defined by the correctness, robustness, and flexibility of

their code, rather than the efficiency with which they produce it. This makes current

usability analysis techniques ill-suited to analyze programming systems, since their focus

is more on problems with learnability and efficiency of use, and less on error-proneness.

We propose a framework and empirical methodology that focuses specifically on

describing the causes of software errors in terms of chains of cognitive breakdowns. The

framework is derived from past classifications of software errors, psychological studies

of software errors, and research on the mechanisms of human error. Our experiences

using the framework to study errors in the Alice programming system suggests that our

methodology can help highlight common causes of software errors, and provide

important design knowledge for reducing programming systems’ error-proneness. We

believe our contribution has important implications for programming system design,

software engineering, the psychology of programming, and computer science education.
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1 Introduction

"Human fallibility, like gravity, weather and terrain, is just another
foreseeable hazard…The issue is not why an error occurred, but how it
failed to be corrected. We cannot change the human condition, but we
can change the conditions under which people work."

James Reason, Managing the Risks of

Organizational Accidents [1]

In 2002, The National Institute of Standards and Technology published a study of major

U.S. software engineering industries, finding that software engineers spend an average of

70% to 80% of their time testing and debugging, with the average bug taking 17.4 hours

to fix. The study estimated that such testing and debugging costs the US economy over

$50 billion annually [2]. One reason for these immense costs is that as software systems

become increasingly large and complex, the difficulty of detecting, diagnosing, and

repairing software errors has also increased. Because this trend shows no sign of slowing,

there is considerable interest in designing programming systems that can demonstrably

prevent software errors, and better help programmers diagnose and repair the

unprevented errors.

Unfortunately, the design and evaluation of such “error-robust” programming systems

still poses a significant of a challenge to HCI research. Most techniques that have been

proposed for evaluating computerized systems, such as GOMS [3] and Cognitive

Walkthroughs [4], have focused on low-level details of interaction, bottlenecks in

learnability and performance, and the close inspection of simple tasks. In programming

activity, however, even “simple” tasks are complex, and the bottlenecks are more often in

repairing errors than in learning. Even with the more design-oriented techniques,



4

understanding a programming system’s error-proneness has been something of a

descriptive dilemma. Nieslen’s Heuristic Evaluation suggests little more than to prevent

user errors by finding common error situations [5]. Green’s Cognitive Dimensions [6],

though successfully applied to numerous programming systems [7, 8], characterizes

error-proneness simply as “the degree to which a notation invites mistakes.”

In this paper, we offer an alternative technique, specifically designed to objectively

analyze the causes of software errors in a programming system. Our approach is to

integrate three strands of research:

• Past classifications of software errors;

• Models and theories of the cognitive causes of software errors; and

• Research on the cognitive mechanisms of human error.

From this prior work, we derive a framework for describing chains of cognitive

breakdowns that lead to software errors, and a methodology for sampling these chains by

observing programmers’ interaction with a programming system. We hope that these

contributions will not only be valuable tools for improving visual languages and

environments, but also for guiding the design of new error-robust languages,

environments, and visualizations.

This paper is divided into six parts. In the next section, we review past classifications of

software errors, models and theories that suggest the causes of software errors, and

research on human errors in general. In Section 3, we describe our framework and in

Section 4 we detail an empirical methodology for using the framework to study a

programming system’s error-proneness. In Section 5, we describe our experiences using

the framework and methodology to analyze the causes of software errors in the Alice
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event-based 3D programming system [10]. We end in Section 6 with a discussion of the

strengths and applicability of the framework to programming system design, software

engineering, psychology of programming, and computer science education.

1 Software Errors: Definitions, Classifications and Causes

In this section, we review classifications of software errors, empirical studies, and

cognitive research on human error. We do this with the intent of integrating the causes

and characteristics of software errors into a single framework. To help frame our

discussion, let us first clarify some relevant terminology.

1.1 Software Errors and Related Terminology

The goal of software engineering is to build a product that meets a particular need. In

the software development process, the correctness of a software system can be defined

relative to this need at many levels of abstraction. These include:

• Users’ expectations of the software’s behavior and functionality;

• A software designer’s interpretation of users’ expectations, known as requirement

specifications;

• A software architect’s formal and informal interpretations of the requirement

specifications, known as design specifications;

• A programmer’s understanding, or mental model, of design specifications.

Thus, when we use the term software error, we are speaking relative to a certain

specification of a system’s behavior. Because we are interested in what a programming

system can do to prevent software errors, we will consider errors relative only to design
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specifications. While the causes of software errors certainly include problems with the

requirement and design specifications, these problems are typically outside the control of

programming systems (and thus outside the scope of this paper).

Relative to design specifications, we define three terms: software errors, runtime faults

and runtime failures. A runtime failure is an event that occurs when a program’s

behavior—often some form of visual or numerical program output—does not comply

with design specifications. Of course, a program’s behavioral requirements may also be

in terms performance, usability, and security, among other software quality attributes.

Runtime failures are usually the first indication to the programmer that their program

contains errors. A runtime fault is a machine state that may cause a runtime failure. For

example, a runtime fault may be a wrong value in a CPU register, branching to an invalid

memory address, or a hardware interrupt that should not have been activated. A software

error is a fragment of code that may cause a runtime fault during program execution. For

example, software errors in loops include a missing increment statement, a leftover

“break” command from a debugging session, or a conditional expression that always

evaluates to true. It is important to note that while a runtime failure guarantees that one or

more runtime faults have occurred, and a runtime fault guarantees one or more software

errors exist, software errors do not always cause runtime faults, and runtime faults do not

always cause runtime failures. The relationships between these three concepts are

illustrated in Figure 1.
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Figure 1. The relationship between software errors in code, runtime faults during execution, and

runtime failures in program behavior. These images will be used to represent these three

concepts throughout this paper.

Using these definitions, a number of other terms can be clarified. A bug is an amalgam

of one or more of software errors, runtime faults, and runtime failures. For example, a

programmer can refer to a software error as a bug, as in “Oh, there’s the bug on line 43,”

as a runtime failure, as in “Oh, don’t worry about that. It’s just a bug…” or even as all

three, as in “I fixed four bugs today.” Debugging involves determining what runtime

faults led to a runtime failure, determining what software errors were responsible for

those runtime faults, and repairing them. Testing involves searching for runtime failures

and recording information about runtime faults to aid in debugging. Corrective

maintenance aims to discover and repair (test and debug) software errors, whereas

adaptive maintenance aims to change the requirements and code accordingly. Thus,

adaptive maintenance can introduce software errors by merely changing specifications.

The last term we define is programming system. A programming system consists of

three components: (1) interfaces, which constitute a programming environment; (2)

information, including program code and runtime data, which the programmer creates,

manipulates, searches, and reveals via the programming environment’s interfaces; and (3)

notations, which are the formalisms in which information is represented. These three



8

components and their relationships are illustrated in the columns of Figure 2. For

example, a programmer interacts with code, which is represented in a particular language

notation, via the editing environment. A programmer interacts with the machine’s

behavior, which is in terms of memory, registers, instructions, call stacks, and so on,

using a debugger.

Figure 2. A programming system, which includes all of the interfaces, languages, and other tools that

a programmer uses to accomplish programming tasks.

1.2 Classifications of Software Errors

In the past three decades, there has been little work in classifying and describing

software errors. Yet, the work that has been done was largely successful in motivating
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many novel and effective tools to help programmers find and repair software errors. For

example, in the early ‘80’s, the Lisp Tutor drew heavily from analyses of novices’ errors

[11], and nearly approached the effectiveness of a human tutor. More recently, the testing

and debugging features of the Forms/3 visual spreadsheet language [12] were largely

motivated by studies of the type and prevalence of spreadsheet errors [13]. Table 1

summarizes some of the most often cited classifications chronologically. In hindsight, it

is clear that these classifications are not about software errors alone. Rather, they

combine many aspects of software errors, runtime faults, and runtime failures.
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Table 1. Studies classifying “bugs”, “errors” and “problems” in various languages, expertise, and

programming contexts.

Study Bug / Error / Cause Description Author’s Comments
Assignment bug Errors assigning variables values Requires understanding of behavior
Iteration bug Errors iterating Requires understanding of language

Gould 1975
[14] Novice
Fortran Array bug Errors accessing data in arrays Requires understanding of language

Visual bug Grouping related parts of expression
Naive bug Iteration instead of parallel processing ‘…need to think step-by-step’
Logical bug Omitting or misusing logical connectives
Dummy bug Experience with other languages interfering ‘…seem to be syntax oversights’
Inventive bug Inventing syntax
Illiteracy bug Difficulties with order of operations

Eisenberg
1983 [15]
Novice
APL

Gestalt bug Unforeseen side effects of commands ‘…failure to see the whole picture’

Missing Omitting required program element
Spurious Unnecessary program element
Misplaced Required program element in wrong place

Johnson et
al. 1983 [16]
Novice
Pascal Malformed Incorrect program element in right place

Errors have contexts: input/output,
declaration, initialization and update
of variables, conditionals, scope
delimiters, or combinations.

Data-type inconsistency Misunderstanding data types
Natural language Applying natural language semantics to code
Human-interpreter Assuming computer interprets code similarly
Negation & whole-part Difficulties constructing Boolean expressions
Duplicate tail-digit Incorrectly typing constant values
Knowledge interference Domain knowledge interfering w/ constants
Coincidental ordering Malformed statements produce correct output
Boundary Unanticipated problems with extreme values
Plan dependency Unexpected dependencies in program

Sphorer &
Soloway
1986 [17]
Novice
Basic

Expectation/interpretation Misunderstanding problem specification

‘All bugs are not created equal.
Some occur over and over again in
many novice programs, while others
are more rare…Most bugs result
because novices misunderstand the
semantics of some particular
programming language construct.’

Algorithm awry Improperly implemented algorithms ‘proved…incorrect or inadequate’
Blunder or botch Accidentally writing code not to specifications ‘not… enough brainpower’
Data structure debacle Errors using and changing data structures “did not preserve…invariants”
Forgotten function Missing implementation ‘I did not remember everything’
Language liability Misunderstanding language/environment
Module mismatch Imperfectly knowing specification ‘I forgot the conventions I had built’
Robustness Not handling erroneous input ‘tried to make the code bullet-proof”
Surprise scenario Unforeseen interactions in program elements ‘forced me to change my ideas’

Knuth
1989 [18]
While writing
TeX in SAIL
and Pascal

Trivial typos Incorrect syntax, reference, etc. ‘my original pencil draft was correct’

Clobbered memory Overwriting memory, subscript out of bounds
Vendor problems Buggy compilers, faulty hardware
Design logic Unanticipated case, wrong algorithm
Initialization Erroneous type or initialization of variables
Variable Wrong variable or operator used
Lexical bugs Bad parse or ambiguous syntax

Eisenstadt
1993 [19]
Industry
experts
COBOL,
Pascal,
Fortran, C Language Misunderstandings of language semantics

Also identified why errors were
difficult to find: cause/effect chasm;
tools inapplicable; failure did not
actually happen; faulty knowledge of
specs; “spaghetti” code.

Omission error Facts to be put into code, but are omitted
Logic error Incorrect or incorrectly implemented algorithm
Mechanical error Typing wrong number; pointing to wrong cell

Quantitative errors: “errors that lead
to an incorrect, bottom line value”

Overload error Working memory unable to finish without error
Strong but wrong error Functional fixedness (a fixed mindset)

Panko
1998 [13]
Novice
Excel

Translation error Misreading of specification

Qualitative errors: “design errors
and other problems that lead to
quantitative errors in the future”
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We have analyzed these classifications and have identified four salient aspects of

software errors. The first is the surface quality of a software error. This refers to the

particular syntax, language construct, data structure, code library, or other programming

information involved in a software error. Eisenberg’s dummy bug is a class of syntax

oversights; Knuth’s trivial typos and Panko’s mechanical errors simply describe

unintended text in a program. Clearly, these categories are greatly influenced by the

particular language being used to write a program.

A second aspect of software errors is the cognitive issue that likely caused the software

error. The classifications mention knowledge issues, such as a programmer’s lack of

knowledge about language syntax, control constructs, data types, and other programming

concepts. Eisenberg’s inventive bug, Sphorer and Soloway’s data-type inconsistency, and

Johnson’s misplaced and malformed categories all refer to knowledge issues. There are

also attentional issues, referring to software errors that were likely due to forgetting or a

lack of vigilance. Knuth’s forgotten function category and Eisenstadt’s variable bugs are

good examples. There are also strategic issues, referring to problems like unforeseen code

interactions or poorly designed algorithms. Eisenstadt’s design logic bugs and Knuth’s

surprise scenario category are good examples.

A third aspect of software errors is the programming activity in which the cause of the

software error occurred. For example, some categories blame specification activity, in

which the programmer’s invalid or inadequate comprehension of the design

specifications led to error. Knuth’s mismatch between modules bugs and Sphorer and

Soloway’s expectation and interpretation problems are good examples.  Another activity

is algorithm design, in which the problematic design of an algorithm or unforeseen
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interactions with other code led to error. Sphorer and Soloway’s plan dependency

problem is a one example. There is also mention of testing and debugging activity, in

which a software error caused a common type of runtime fault. Eisenstadt’s clobbered

memory bugs and Sphorer and Soloway’s boundary problems are good examples.

A fourth and final aspect of software errors is the type of action that led to error. The

actions mentioned in the classifications are similar to those in Green’s Cognitive

Dimensions of Information Artifacts [6]. We list all six actions in Table 2 with examples

of each action in programming activity. One action is creation: programmers can

introduce software errors when creating code, but also, the creation of specifications can

predispose software errors (as in Sphorer and Soloway’s expectation/interpretation

problems). Other actions include modifying specifications and code, reusing existing

code, designing software architectures, algorithms, and objects, and exploring code and

runtime data. Finally, programmers spend a considerable amount of time understanding

specifications, data structures, languages, and other information.

Table 2. Actions performed during programming activity, adapted from Green’s Cognitive Dimensions

of Information Artifacts [6].

Action Examples of the action in programming activity
Creating Writing code, or creating design and requirement specifications
Reusing Reusing example code, copying and adapting existing code
Modifying Modifying code or changing specifications
Designing Considering various software architectures, data types, algorithms, etc.
Exploring Searching for code, documentation, runtime data
Understanding Comprehending a specification, an algorithm, a comment, runtime behavior, etc.

Although these classifications sometimes confuse software errors, runtime faults, and

runtime failures, we can learn many important things from them. For example, a

particular software error has many possible causes, including cognitive problems with

knowledge, attention, and strategies. What looks like an erroneously coded algorithm on
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the surface may have been caused by an invalid understanding of the specifications, a

lack of expertise, inattention, or some other cause. Because of this, we can see that

understanding software errors solely by their surface qualities paints an incomplete

picture. We also learn that these cognitive problems can occur in many activities: during

the creation and comprehension of specifications, during algorithm and module design,

while writing a variable name and even while testing and debugging. Finally, we learned

that there are many types of programming actions that can lead to error.

1.3 Human Error in Programming Activity

Classifications of software errors have given us a general sense of how cognitive

problems are manifested into software errors. However, to understand how the interaction

between a programmer and a programming system can lead to software errors, we need

to discuss the underlying cognitive mechanisms of human error. James Reason, through

his work in Human Error [20], provides a solid foundation for understanding these

mechanisms. In this section, we adapt two aspects of his research to the domain of

programming: (1) a high-level understanding of the causes of failure, and (2) a

classification of three general failures of human cognition.

1.3.1 High-level causes of failure

Thus far we have considered what Reason refers to as active errors: errors whose

effects are felt almost immediately, such as syntax errors that prevent successful

compilation. Reason also defines latent errors, “whose adverse consequences may lie

dormant within the system for a long time, only becoming evident when they combine

with other factors to breach the system’s defenses.” Thus, the fundamental idea is that
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there are several layers to complex systems, and each layer may have a number of latent

errors that predispose failure. Layers also have a set of defenses, which prohibit latent

errors from becoming active errors. When we combine these ideas, we see that failures

are ultimately due to a causal chain of failures both within and between layers.

Figure 3. Dynamics of software error production, based on Reason's “Swiss-cheese” model of failure.

Each layer has latent errors (the holes), predisposing certain types of failures. Layers also have

defenses against failures (where there are no holes). Many layers of failure must occur for

software errors to be introduced into code.

We apply these ideas to software engineering in Figure 3. In the figure, we can see

there are many layers, and each layer has its own type of latent errors and defenses. For

example, specifications, which have information such as control and data flow semantics,

are meant as high-level defenses against software errors. However, specifications are

often ambiguous, incomplete, or even incorrect, predisposing programmers to
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misunderstandings about the true requirements. Therefore, by improving software

engineering practices, there will be fewer latent errors in design specifications, which will

prevent programmers’ invalid or incomplete understanding of specifications.

Programmers, with knowledge and expertise as defenses, are still prone to a host of

cognitive breakdowns that may lead to software errors (we will explain these in the next

section). By educating programmers, we can reduce the number of software errors

introduced into code. Components of a programming system, such as the compilers,

libraries, programming languages, and environment, may have many built-in defenses

against software errors, but may also have usability issues that predispose the

programmer to cognitive breakdowns. For example, compilers defend against syntax

errors, but in displaying confusing error messages, may misguide programmers in

repairing the syntax errors.

It is important to note that the “holes” in each of these layers are not static; latent errors

may only cause failure under particular circumstances, just like a program may only fail

with particular input. Furthermore, because programmers adapt to changes in their

environment, properties of the programming system can effectively open and close holes

in programmers’ cognition.

1.3.2 Skill, Rule, and Knowledge Breakdowns

Within this broad view of failure, we focus on the programmer’s latent errors—what we

will call cognitive breakdowns—and how the programming system might be involved in

predisposing these cognitive breakdowns.

Reason’s central thesis about human behavior is that in any given context, individuals

will behave in the same way they have in the past. Under most circumstances, these
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“default” behaviors are sufficient; however, under exceptional or novel circumstances,

they can lead to error. In programming, this means that when solving problems,

programmers tend to prefer strategies that have been successful in the past. Most of the

time, these default strategies are successful, but sometimes they break down—hence the

term cognitive breakdowns.

In order to clarify the sources of these breakdowns, Reason discusses three general

types of cognitive activity, each prone to certain types of cognitive breakdowns. The

most proceduralized of the three, skill-based activity, usually fails because of a lack of

attention given to performing routine, skillful patterns of actions. Rule-based activity,

which is driven by learned expertise, usually fails because the wrong rule is chosen, or

the rule is inherently bad. Knowledge-based activity, centered on conscious, deliberate

problem solving, suffers from cognitive limitations and biases inherent in human

cognition. We will discuss all three types of activity, and their accompanying

breakdowns, in detail.

Skill-based activities are routine and proceduralized, where the focus of attention is on

something other than the task at hand. Some skill-based activities in programming

include typing a text string, opening a source file in a particular programming

environment, or compiling a program by pressing a button in an IDE. These are

practiced, routine, automatic tasks that can be left in “auto-pilot” while a programmer

attends to more problem-oriented matters. An important characteristic of skill-based

activities is that because attention is focused internally on problem solving and not

externally on performing the routine action, programmers may not notice important

changes in the external environment. These breakdowns can lead to errors.
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Table 3 lists Reason’s two categories of skill breakdowns. Inattention breakdowns are

due to a failure to pay attention to performing routine actions at critical times. For

example, imagine a programmer finishing the end of a for loop header when a smoke

detector goes off. When he returns to his task after the interruption, he fails to complete

the increment statement, introducing an error. Inattention breakdowns are not due only to

interruptions: they may also occur because of the intrusion of strong habits. For example,

consider a programmer that tends to save modifications to a source file after every

change, so that important modifications are not lost. At one point during modifications,

he deletes a large block of code he thinks is unnecessary, but immediately after, realizes

he needed the code after all. Unfortunately, his strong habit of saving every change has

already intruded, and he loses the code permanently (a good motivation for sophisticated

undo mechanisms in programming environments).

Overattention breakdowns are the opposite of inattention breakdowns: they are due to

attending to routine actions when it would have been best to “leave it in auto-pilot.” For

example, imagine a programmer has copied and pasted a block of code and is quickly

coercing each reference to a contextually appropriate variable. While planning his next

goal in his head, he notices that he has not been paying attention, and looks two lines

down from where he actually was. He falsely assumes that the statements above were

already coerced, which causes him to neglect two variables, and thus introduce two

software errors into his code.
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Table 3. Types of skill breakdowns, adapted from Reason [20].

Rule-based activities involve the use of cognitive rules for acting in certain contexts.

These rules consist of some condition, which checks for some pattern of signs in the

current context. If the current context matches the condition, then corresponding actions

are performed. For example, when expert C programmers need to print a list of values

from an array, they might employ the rule, “If something needs to be done to a list of

values, type for(int i = some_initial_value; i < some_terminating_value; i++) and then

choose the initial and terminating values.” These rules are much like the concept of

programming plans [21], and are thought to underlie the development of programming

expertise [22].

Table 4 lists Reason’s two categories of rule breakdowns. The first category is wrong

rule. Because rules are defined by prior experience, they make implicit predictions about

the future state of the world. These predictions of when and how the world will change

are incorrect in some circumstances, and thus a rule that is perfectly reasonable in one

context may be selected in an inappropriate context. For example, one common error in

Visual Basic.NET is that programmers will use the “+” operator to add numeric values

represented in two strings, not realizing that the variables are strings. Under normal

Inattention Type Events resulting in breakdown

Strong habit intrusion In the middle of a sequence of actions ➞ no attentional check ➞
contextually frequent action is taken instead of intended action

Interruptions External event ➞ no attentional check ➞ action skipped or goal forgotten

Delayed action Intention to depart from routine activity ➞ no attentional check between
intention and action ➞ forgotten goal

Exceptional stimuli Unusual or unexpected stimuli ➞ stimuli overlooked ➞ appropriate action
not taken

Failure to attend to
a routine action at a
critical time causes
forgotten actions,
forgotten goals, or
inappropriate
actions.

Interleaving Concurrent, similar action sequences ➞ no attentional check ➞ actions
interleaved

Overattention Type Events resulting in breakdown

Omission Attentional check in the middle of routine actions ➞ assumption that actions
are already completed ➞ action skipped

Attending to routine
action causes false
assumption about
progress of action.

Repetition Attentional check in the middle of routine actions ➞ assumption that actions
are not completed ➞ action repeated
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circumstances, use of the “+” operator to add numbers is a perfectly reasonable rule;

however, because there were no distinguishing signs of the variables’ types in the code, it

was applied inappropriately.

Empirical studies of programming have reliably demonstrated many other types of

wrong rule breakdowns. For example, Davies’ framework of knowledge restructuring in

the development of programming expertise suggests that a lack of training in structured

programming can lead to the formation of rules appropriate for one level of program

complexity, but inappropriate for higher levels of complexity [22]. For example, in

Visual Basic, the rule “if I need to share data amongst all of the event-handlers, create a

global variable on the form” is appropriate, but using this rule in object-oriented

languages is inappropriate. Ko and Uttl demonstrated that in learning an unfamiliar

statistical programming system, expert programmers’ existing rules for other languages

negatively influenced their acquisition of rules for the new system [23]. In their studies,

experienced Java programmers expected loops to operate on a single data element at a

time, when in fact they operated on a whole set of cases at once. In a study of Pascal,

Shackelford studied novices use of three types of while loops, finding that while most

students had appropriate rules for choosing the type of loop for a problem, the same rules

failed when applied to similar, but critically different problems [24].
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Table 4. Types of rule breakdowns, adapted from Reason [20].

Wrong rule Type Events resulting in breakdown

Problematic signs Ambiguous or hidden signs ➞ conditions evaluated with insufficient info ➞
wrong rule chosen ➞ inappropriate action

Information overload Too many signs ➞ important signs missed ➞ wrong rule chosen ➞
inappropriate action

Favored rules Previously successful rules are favored ➞ wrong rule chosen ➞ inappropriate
action

Favored signs Previously useful signs are favored ➞ exceptional signs not given enough
weight ➞ wrong rule chosen ➞ inappropriate action

Use of a rule that
is successful in
most contexts, but
not all.

Rigidity Familiar, situationally inappropriate rules preferred over unfamiliar,
situationally appropriate rules ➞ wrong rule chosen ➞ inappropriate action

Bad rule Type Events resulting in breakdown

Incomplete encoding Some properties of problem space are not encoded ➞ rule conditions are
immature ➞ inappropriate action

Inaccurate encoding Properties of problem space encoded inaccurately ➞ rule conditions are
inaccurate ➞ inappropriate action

Exception proves rule Inexperience ➞ exceptional rule often inappropriate ➞ inappropriate action

Use of a rule with
problematic
conditions or
actions.

Wrong action Condition is right but action is wrong ➞ inappropriate action

The second type of rule breakdowns are bad rules, where a rule has problematic

conditions or actions. These rules are come from learning difficulties, a lack of

experience, or a lack of understanding about a program’s semantics. For example,

Perkins, Fay and Soloway demonstrated that “fragile knowledge”—inadequate

knowledge of programming concepts, algorithms, and data structures, or an inability to

apply the appropriate knowledge or strategies—was to blame for most novice software

errors when learning Pascal [17]. The classifications listed in Table 1 illustrate many

examples of bad rules. Not knowing the language syntax—in other words, not encoding

or inaccurately encoding properties of the language—can lead to simple syntax errors,

malformed Boolean logic, scoping problems, the omission of required constructs, and so

on. An inadequate understanding of a sorting algorithm may cause a programmer to

unintentionally sort a list in the wrong order. Von Mayrhauser and Vans illustrated that

programmers who focused only on comprehending surface level features of a program

(variable and method names, for example), and thus had an insufficient model of the
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program’s runtime behavior, did far worse in a corrective maintenance task than those

who focused on the program’s runtime behavior [25].

In knowledge-based activities, the focus of attention is on forming plans and making

high-level decisions based on one’s knowledge of the problem space. In programming,

knowledge-based activities include forming a hypothesis about what caused a runtime

failure, or comprehending the runtime behavior of an algorithm. Knowledge-based

activities rely heavily on the interpretation and evaluation of models of the world (in

programming, models of a program’s semantics) and are therefore considerably taxing on

the limited resources of working memory. This results in the use of a number of cognitive

“shortcuts” or biases, which can lead to cognitive breakdowns.

Table 5 describes these biases, and how they cause breakdowns in the strategies and

plans that people form. One important limitation on human cognition is bounded

rationality [26]: the idea that the problem spaces of complex problems are often too large

to permit an exhaustive exploration, and thus problem solvers “satisfice” or explore

“enough” of the problem space. Human cognition uses a number of heuristics to choose

which information to consider: (1) evaluate information that is easily accessible in the

world or in the head (the availability heuristic); (2) evaluate information that is easy to

evaluate (selectivity); and (3) only evaluate as much as is necessary to form a plan of

action (biased reviewing).

Because of the complexity of programming activity, bounded rationality shows up in

many programming tasks. For example, Vessey argues that debugging is difficult because

the range of possible errors causing a runtime failure is highly unconstrained and further

complicated by that fact that multiple independent or interacting errors may be to blame
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[27]. Gilmore points out that, because of their limited cognitive resources, programmers

generally only consider a few hypotheses of what software error caused the failure, and

usually choose an incorrect hypothesis. This not only leads to difficulty in debugging, but

often the introduction of further software errors due to incorrect hypotheses [28]. For

example, in response to a program displaying an unsorted list because the sort procedure

was not called, a programmer might instead decide the error was an incorrect swap

algorithm, and attempt to modify the already correct swap code.

Table 5. Types of knowledge breakdowns, adapted from Reason [20].

Bounded
Rationality

Type Events resulting in breakdown

Selectivity
Psychologically salient, rather than logically important task information is
attended to ➞ biased knowledge

Biased reviewing
Tendency to believe that all possible courses of action have been considered,
when in fact very few have been considered ➞ suboptimal strategy

Problem space is
too large to
explore because
working memory
is limited and
costly.

Availability heuristic
Undue weight is given to facts that come readily to mind ➞ facts that are not
present are easily ignored ➞ biased knowledge

Faulty Models of
Problem Space

Type Events resulting in breakdown

Simplified causality
Judged by perceived similarity between cause and effect ➞ knowledge of
outcome increases perceived likelihood ➞ invalid knowledge of causation

Illusory correlation
Tendency to assume events are correlated and develop rationalizations to
support the belief ➞ invalid model of causality

Overconfidence
False belief in correctness and completeness of knowledge, especially after
completion of elaborate, difficult tasks ➞ invalid, inadequate knowledge

Formation and
evaluation of
knowledge leads
to incomplete or
inaccurate models
of problem space.

Confirmation bias
Preliminary hypotheses based on impoverished data interfere with later
interpretation of more abundant data ➞ invalid, inadequate hypotheses

Another source of knowledge breakdowns is faulty models of the problem space. For

example, human cognition tends to sees illusory correlations between events (illusory

correlation), and even develops rationalizations to defend the belief, even in the face of

more accurate observations (confirmation bias). These reasoning problems lead to

oversimplified models of the problem space. Human cognition also evaluates knowledge

in biased ways. For example, individuals display overconfidence, giving undue faith to

the correctness and completeness of their knowledge. This results in strategies that are

based on incomplete analyses. In programming activity, there are a number of sources of
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overconfidence. For example, spreadsheet programmers exhibit overconfidence in the

correctness of their spreadsheet’s formulas [29]. Corritore and Wiedenbeck’s studied

corrective maintenance activity, finding that programmers’ overconfidence in the

correctness of their mental models of a program’s semantics was often the cause of

programmer’s modification errors [30].

2 A Framework for Studying the Causes of Software Errors

One reasonable outcome of our review of past research could be a list of heuristics for

preventing software errors in programming systems. If the causes of software errors were

due entirely to programmers’ inadequacies, this might not be so difficult to produce: as

we saw in the previous section, there are a limited number of reasons that human

cognition fails. Unfortunately, we have also seen that the causes of software errors are

due to somewhat subtle issues: for example, hidden or ambiguous signs in programming

environments, unfortunately-timed interruptions, or slight misunderstandings about a

language construct’s runtime behavior. Without knowledge of these details, it is difficult

to suggest how programming systems might be redesigned to prevent breakdowns.

 Therefore, rather than provide guidelines for preventing cognitive breakdowns, we

propose a framework for describing cognitive breakdowns and the mechanisms by which

they are related.

2.1 A Framework for Describing the Causes of Software Errors

Our framework integrates four aspects of previous research:

1. Section 1.2. Programmers perform three types of programming activities:

specification activities (involving design and requirements specification),
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implementation activities (involving the creation of code), and runtime

activities (involving testing and debugging).

2. Section 1.2. Programmers perform six types of actions while interacting with

a programming system’s interfaces: design, creation, reuse, modification,

understanding, and exploration.

3. Section 1.3.1. Chains of failure in specification, programmer’s cognition, and

programming systems can cause software errors.

4. Section 1.3.2. Programmers are prone to skill, rule, and knowledge

breakdowns both because of inherent, internal cognitive limitations and

external properties of the world.

We combine these aspects into two central ideas:

1. A cognitive breakdown consists of four components: the type of breakdown,

the action being performed when the breakdown occurs, the interface on

which the action is performed, and the information that is being acted upon.

2. Chains of cognitive breakdowns are formed over the course of programming

activity, often introducing software errors into code.

These ideas map directly to elements in our framework, which is portrayed in Figure 4.

The three grey regions, stacked vertically, denote specification, implementation, and

runtime activities. The four columns contain the possible components of a breakdown

within an activity. For example, in specification activities, a breakdown may involve of

one of three types of breakdowns, one of three types of actions, one of three types of

interfaces, and one of two types of information (therefore, the framework can describe 3

x 3 x 3 x 2 = 54 types of specification breakdowns). The available actions, interfaces, and
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information are determined by the nature of the activity. For example, in runtime activity,

programmers explore and understand machine and program behavior, but they do not

create or design it.

Chains of breakdowns are created by following the arrows in Figure 4, which denote

“can cause” relationships. For example, by following the arrow from specification

activities to implementation activities, we can say, “a knowledge breakdown in

understanding specifications using a diagram can cause a knowledge breakdown in

implementing code.” The framework allows all relationships between and within each

activity. During specification, for example, problems in creating specifications can cause

problems modifying them. Or, between specification and implementation activities,

specification breakdowns can cause implementation breakdowns; but implementation

breakdowns can also cause specification breakdowns, since in understanding code,

programmers may change their mental models of specifications.

In addition to allowing “can cause” relationships within and between activities, the

framework also allows relationships between software errors, runtime faults, runtime

failures, and other breakdowns. For example, software errors can cause implementation

breakdowns before causing a runtime faults when a programmer makes a variable of

Boolean instead of integer type and tries to increment it. Also, a runtime fault or failure

can cause debugging breakdowns once a programmer notices them.

While our framework suggests many links between breakdowns, it makes no

assumptions about their ordering. High-level models of software development, such as

the waterfall or extreme programming models, assume a particular sequence of

specification, implementation, and debugging activities. Low-level models of
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programming, program comprehension, testing, and debugging assume a particular

sequence of programming actions. Our model hopes to describe software errors

introduced in any of these processes.
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Figure 4. A framework for describing the causes of software errors based on chains of cognitive

breakdowns. Breakdowns may occur in specification, implementation, and runtime activities. A

single breakdown consists of one component from each column, within an activity. The cause of a

single software error can be thought of as a trace through these various types of breakdowns, by

following the “can cause” arrows between and within the activities.
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2.2 An Example Chain of Cognitive Breakdowns

To illustrate how these chains of breakdowns occur, consider the true scenario

illustrated in Figure 5. A programmer had little sleep the night before, which causes a

skill breakdown in implementing the swap algorithm for a recursive sorting algorithm;

this causes a repeated variable reference. At the same time, an inadequate knowledge

breakdown in understanding the algorithm’s specifications causes a knowledge

breakdown in implementing a statement in the recursive call; this causes an erroneous

variable reference. When he tests his algorithm, the sort fails. When observing the failure,

the programmer has a rule breakdown in observing the program’s output because it is

displayed amongst other irrelevant debugging output, and he perceives a “10” instead of

the “100” that is on-screen. This causes the programmer to have a knowledge breakdown

in understanding the runtime failure: he forms an incorrect hypothesis about the cause of

the failure, and neglects to consider other hypotheses. This causes a knowledge

breakdown in understanding the cause of the runtime fault, leading him to focus on the

wrong code. This invalid hypothesis causes a knowledge breakdown in modifying the

recursive call, and the programmer causes the algorithm to infinitely recurse.
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Figure 5. An example of a chain of cognitive breakdowns, where a programmer has difficulty

implementing a recursive sorting algorithm.
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3 An Empirical Methodology for Studying the Causes of

Software Errors in Programming Systems

Our framework for describing the causes of software errors could certainly be used as a

conversational tool, to support subjective discussion about the possible causes of software

errors in a particular programming system. For example, “Interface A in the code editor

might make programmers prone to skill-based breakdowns in cutting and pasting code,

since it obscures part of the text that’s being pasted.”

In addition, the framework can also be used for more objective, empirical analyses of a

programming system’s error-proneness. The underlying assumption of the methodology

is that a programming system is prone to a subset of all possible chains of breakdowns

described by the framework. Therefore, the empirical goal in using our framework is to

sample a large number of chains of cognitive breakdowns, and perform statistical

analyses on the chains in order to find the most common causes and interfaces involved.

By performing these analyses, researchers can get a more objective model of the error-

prone aspects of the system, highlighting interfaces and actions that are involved in

causing cognitive breakdowns. This allows designers of programming systems to set

design priorities and provides detailed design knowledge for designing programming

interfaces to prevent cognitive breakdowns.

In this section, we discuss a number of methodological issues in performing such

empirical studies. To get a general sense for the methodology, here is the overall

procedure:
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1. Design a programming task that requires the use of the programming

interfaces under study.

2. Observe and record programmers working on the task, using think-aloud

methodology to capture their decisions and reasoning.

3. Using the recorded actions and verbal data, reconstruct chains of cognitive

breakdowns starting from software errors or runtime failures.

4. Analyze the chains of cognitive breakdowns for patterns and relationships.

3.1 Sampling Chains of Cognitive Breakdowns

Four components of a breakdown must be sampled: the type of breakdown, the action

performed, the interface used to perform the action, and the information acted upon. The

latter three components are directly observable. For example, by watching a programmer

use a UNIX environment to code a C program, one can observe the programming

interfaces she uses (emacs, vi, etc.), the actions she performs using these interfaces

(editing code, shell commands, etc.), and the information that she is acting upon (code,

makefiles, executables, etc.). The most reliable ways to record observable actions are to

videotape programmers working with a system and record the contents of the screen

using video capture software. While it is also useful to instrument a programming system

to record programmers’ actions, this often constrains the level of abstraction at which

actions are recorded. For example, an environment instrumented to record programmers’

modifications to code would not capture the interface used or the interactive problems

encountered along the way.
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The only unobservable component of a breakdown is its type. Obviously, we cannot

determine programmers’ decisions and reasoning simply by watching them work.

Instead, we use think-aloud methodology to elicit programmers’ self-reports of their

decision-making. Programmers’ verbal utterances are then used to ask deductive

questions about some event. For example, if a programmer types the wrong variable

name in a method call, our deductive question would be, “Why did the programmer use

variable X instead of variable Y?” We answer this question by considering the

programmer’s past actions and verbal utterances. For example, if the programmer said,

“What do we have to send to this method? Um, I think X.” we would deduce that he had

a knowledge breakdown due to biased reviewing. This is because he was in knowledge-

based cognitive activity, and only considered one course of action.

To help answer deductive questions about breakdowns, we summarize the types of

skill, rule, and knowledge breakdowns in Table 6 and the cognitive activities in which

they occur. This table can be used to find an appropriate answer for each deductive

question. If it is unclear which type of breakdown was to blame, the observations are

probably insufficient for objectively deducing the cause of the cognitive breakdown.

Nevertheless, recording all of the possible causes can be useful and informative as well.
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Table 6. A summary of common types of skill, rule, and knowledge breakdowns, which can be used

to answer deductive questions from observations.

Detecting Skill Breakdowns

Skill-based
activity is
when...

The programmer...

• Is actively executing routine, practiced actions in a familiar context
• Is focused internally on problem solving, rather than executing the routine actions

Skill
breakdowns
happen
when...

The programmer...

• Is interrupted by an external event (interruption)
• Has a delay between an intention and a corresponding routine action (delayed action)

• Is performing routine actions in exceptional circumstances (strong habit intrusion)
• Is performing multiple, similar plans of routine action (interleaving)

• Misses an important change in the environment while performing routine actions (exceptional stimuli)

• Attends to routine actions and makes a false assumption about their progress (omission, repetition)

Detecting Rule Breakdowns

Rule-based
activity is
when...

The programmer...

• Detects a deviation from the planned-for conditions
• Is seeking signs in the environment to determine what to do next

Rule
breakdowns
happen
when...

The programmer...

• Takes the wrong action
• Misses an important sign (favored signs)

• Is inundated with signs (information overload)
• Is acting in an exceptional circumstance (favored rules, rigidity)

• Misses ambiguous or hidden signs in the environment (problematic signs)

• Acts on incomplete knowledge (incomplete knowledge)
• Acts on inaccurate knowledge (inaccurate knowledge)

• Uses an exceptional, albeit successful rule from past experience as the rule (exception proves rule)

Detecting Knowledge Breakdowns

Knowledge-
based activity
is when...

The programmer...

• Is executing unpracticed or novel actions
• Is comprehending, hypothesizing or otherwise reasoning about a problem using knowledge of the

problem space

Knowledge
breakdowns
happen
when...

The programmer...

• Makes a decision without considering all courses of action or all hypotheses (biased reviewing)

• Has a false hypothesis about something (confirmation bias)
• Sees a non-existent relationship between events (simplified causality)

• Notices illusory correlation, or does not notice real correlation between events (illusory correlation)
• Does not attend to logically important information when making decision (selectivity)

• Does not consider logically important information that is unavailable, or difficult to recall (availability)

• Is overconfident about the correctness and completeness of their knowledge (overconfidence)

In addition to recording a breakdown’s type, action, interface, and information, it is also

helpful to record details about these four components. For example, if the programmer

exhibited overconfidence, what were they overconfident about? Or, if the programmer is
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inundated with signs and does not attend to the right one, what other signs were present

in the programming environment and why was the important sign not attended to?

3.2 Reconstructing Chains of Cognitive Breakdowns

We also use a deductive approach to reconstructing chains of cognitive breakdowns. To

reconstruct a chain, one asks deductive questions starting from a runtime failure, and

continuing until no other cause can be found.

This process is portrayed in Figure 6, which reconstructs the chain presented in Figure

5 using hypothetical observations from videotape. From the failure, we ask the deductive

question, “What caused the stack overflow?” and proceed to deduce to the cause of the

software error. Deducing the chain of causality from the failure to the software error is

essentially debugging—to analyze the situation, one must understand the programmer’s

code well enough to be able to determine all of the software errors that contributed to the

program’s failure. This deduction can be done objectively, given enough knowledge of

the program’s code and runtime behavior.
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Figure 6. Deductively reconstructing the causal chain of breakdowns represented in Figure 5, using

observations of the programmer’s actions from videotape.

Once the software errors leading to failure have been deduced, once must deduce the

cognitive breakdowns causing the error using the techniques described in the previous

section. For example, in Figure 6 we ask, “What caused the invalid recursive call?” We

rely on the fact that the programmer said “Oh, I bet its because that recursive call was
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supposed to go first” and then proceeded to move the recursive call in his code (had the

programmer said nothing about his actions, there would have been many possible

cognitive breakdowns to blame, but none with supporting evidence). We then proceed to

ask deductive questions about each successive breakdown, until no cause can be deduced

from the evidence.

In some circumstances, there can be multiple events responsible for a single

breakdown, at which point the chain is split in two. For example, in Figure 6, there are

multiple reasons why the sort failed (two runtime faults, two corresponding software

errors, and thus at least two cognitive breakdowns). In general, chains can branch at

failures (due to multiple runtime faults), at errors (due to multiple cognitive breakdowns),

and at breakdowns (due to multiple external events, such as interface problems or

interruptions).

Because software errors are defined relative to design specifications, it is only possible

to start reconstruction from software errors when the experimenter knows the program’s

design specifications. Without this knowledge, it is difficult to tell what constitutes an

error. In end-user programming contexts, errors are particularly difficult to detect:

because the design specifications are exclusively in the programmer’s head, the roles and

relationships between code may change at any time. The only reliable way to identify an

error in such cases is when the programmers explicitly identify their approaches to

designing a program (thereby defining their design specifications).
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3.3 Task Selection and Participants

A critical choice in designing an empirical study using our framework is the

programming task. Clearly, some programming tasks involve more code creation than

debugging, and more uses of some interfaces in a programming environment than others.

Therefore, the decision must be based on the intents of the study. In addition to

considering the purpose of the study, the complexity of the task should be considered as

well. If the program used in the task is very complex, it may be difficult to determine

what code is erroneous, as defined by the specifications.

Participants should be recruited based on the difficulty of the task. Furthermore,

participants should have similar programming experience in order to ensure they have

similar breakdowns. Because our methodology analyzes the causes of errors, and not

participant variables such as performance or learning, experiments need only recruit as

many programmers as is necessary for a sufficient number of errors to analyze.

3.4 Think-Aloud Guidelines

There are a number of caveats in using think-aloud methodology to study the causes of

software errors. The original rationale for think-aloud methodology from Ericsson and

Simon’s “Protocol Analysis: Verbal Reports as Data” [31] was that the only verbal data

that can be collected reliably, without interfering with task performance, is that which

does not require additional attentional resources to verbalize. Ericsson and Simon, and

others, have demonstrated that problem-solving tasks that are describable in terms of

verbalizable rules and generally without external, time-critical factors, fall in to this
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category. Most programming situations seem to satisfy these constraints, although we are

unaware of any research verifying this.

There are a number of important guidelines to follow when collecting think-aloud data

from programmers. We base our guidelines on Boren and Ramey’s recent assessment of

think-alouds for usability testing [32]:

• The experimenter should set the stage. Participants should understand that

they are not under study, but rather, the programming system is. Furthermore,

participants should understand that they are the domain experts because they

can approach tasks in ways the experimenter cannot. Therefore, while thinking

aloud, they are the primary speaker, while the experimenter is an “interested

learner.” These roles should be defined explicitly and maintained throughout

the experiment.

• The experimenter should take a proactive role in keeping participants verbal

reports undirected, undisturbed, and constant. Boren and Ramey recommend

using the phrases “Mm hmm” to acknowledge the participant’s reports, and

“Please continue” or “And now?” as reminders to continue thinking aloud. The

experimenter should not ask programmers why they have done something,

because in asking, they may bias participants’ explanations, or elicit fabricated

explanations.

By following these guidelines, participants’ verbal utterances should be a valuable and

reliable indicator of the type of breakdowns programmers have—but only as long as

verbal data is analyzed in a reliable way. Because verbal utterances must be interpreted,

errors or disagreements in these interpretations are inevitable. We recommend testing the
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reliability of interpretations by having multiple individuals reconstruct chains

independently, and then checking for agreement in the types and sequence of cognitive

breakdowns.

3.5 Analyzing Chains of Cognitive Breakdowns

Once a set of reliable chains of cognitive breakdowns has been reconstructed from

observations, there are a wide variety of questions that can be asked about cognitive

breakdowns.

• What activities are most prone to cognitive breakdowns?

• What aspects of the language and environment are involved in breakdowns?

• What types of actions are most prone to breakdowns?

• How do novice and expert programmers’ types of breakdowns compare?

• What breakdowns tend to instigate chains of further breakdowns?

With knowledge about the cognitive breakdowns that occur in a system, it is also

important to consider how these chains of breakdowns are related to the software errors

they cause:

• What types of cognitive breakdowns are most prone to software errors?

• What properties of interfaces are responsible for software errors?

• How long are the chains of breakdowns that cause software errors?

• Which software errors tend to cause further errors?

• What are the root causes of breakdowns, for which no other causes can be found?
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4 Causes of Software Errors in the Alice Programming

System

In this section, we present a case study of the causes of software errors in the Alice

programming system. We describe our experiences in the hopes that other researchers

can apply our methodology to new programming systems and interfaces.

4.1 The Alice Programming System

The Alice programming system [10] (www.alice.org) is an event- and object-based,

concurrent, 3D programming system. Alice is designed to support the development of

interactive worlds of 3D objects, and provides many primitive animations such as

“move”, “rotate” and “move away from.” Alice does not support typical object-oriented

features such as inheritance and polymorphism. Because it is event-based, Alice provides

explicit support for handling keyboard and mouse events, in addition to conditional

events such as “when the world starts” and “while this condition is true.”

The Alice programming environment, seen in Figure 7, consists of 5 main views. In the

upper left (1) is a list of all of the objects that are in the Alice world and in the upper

middle (2) is a 3D worldview based on a movable camera. The upper right (3) shows a

list of global events that the programmer wants to respond to and the lower left (4) shows

the currently selected object’s properties, methods, and questions (functions). Lastly, the

bottom right (5) is the code view, which shows the method currently being edited. Alice

provides a drag-and-drop, structured editing environment in which object’s properties

and methods are created, modified, and reused by dragging and dropping objects on-

screen. This interaction style prevents all syntax and type errors.
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Figure 7. Alice v2.0, showing: (1) objects in the world, (2) the 3D worldview, (3) events, (4) properties,

methods, and questions (functions) for the selected object, and (5) the code for the method being

edited.

4.2 The Experiments

We had two goals in performing our studies of Alice:

1. Identify common cognitive breakdowns that were due mostly to the

programmer’s limitations, and what types of interfaces might help prevent

these breakdowns.

2. Identify common cognitive breakdowns that were due mostly to the

programming environment’s interfaces, and how they might be redesigned

to help prevent these breakdowns.
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To answer these questions, we performed two studies of Alice in widely different

contexts. First, we studied 3 Alice programmers who had been using Alice for six weeks

in the “Building Virtual Worlds” course offered at Carnegie Mellon. These programmers

were using Alice to prototype complex interactive worlds designed to be entertaining,

and thus their requirements were constantly changing.

The second study was of 4 novice Alice programmers, and was performed in a lab

setting. Programmers were asked to create a simple Pac-Man game with one ghost, four

small dots, and one big dot (as seen in Figure 7). After a 15-minute tutorial on how to

create code, methods, and events, programmers were given the requirements in Table 7.

Table 7 also lists the language expertise of the seven participants from both studies.

Both observational studies used the methodology described in Section 3: programmers

were asked to think aloud about their programming decisions and were videotaped while

they worked. The experimenter used the phrases “And now?” and “Please continue”

thirty seconds after silence, to remind the programmers to think aloud.
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Table 7. For both experiments, programmers’ self-rated language expertise and the tasks that they

performed during our observations.

Experiment ID
Language
Expertise

Programming Tasks

B1 Average C++,
Visual Basic, Java

• Parameterize a rabbit’s hop animation with speed and height variables
• Write code to make tractor beam catch rabbit when in line of sight
• Programmatically animate camera moving down stairs
• Prevent goat from penetrating ground after falling
• Play sound in parallel with character swinging bat.

B2 Above average
C++, Java, Perl

• Randomly resize and move 20 handlebars in a subway train

“Building
Virtual

Worlds”
study

B3 Above average C,
Java

• Import, arrange, and programmatically animate objects involved in camera
animation.

P1 Above average
Java, C

P2 Below average
C++, Java

P3 Above average
Java, C++

Pac-Man
study

P4 Above average
Visual Basic

• Pac must always move. His direction should change in response to arrow keys.
• Ghost must move in randomly half of the time and towards Pac the other half.
• If Ghost is chasing and touches Pac, Pac must flatten and stop moving forever.
• If Pac eats big dot, ghost must run away for 5 seconds, then return to chasing.
• If Pac touches running ghost, Ghost must flatten and stop for 5 seconds, then

chase again.

4.3 Analyses and Results

Because the programmers in each of the studies were responsible for their own design

specifications (the actual implementation of their requirements), we only reconstructed

chains based on software errors that caused runtime failures. We did not study errors that

did not cause runtime failures, because we could not identify them: as discussed in the

previous section, when design specifications exist only in a programmer’s head, the

programmer is the only person who can deem that program behavior violates a

specification.

Each of the videotapes was analyzed for runtime failures and all of the programmers’

verbal utterances were transcribed, along with timestamps for each. For each failure

identified, we reconstructed the chain of cognitive breakdowns leading to it using the

techniques in Section 3. One of the chains is depicted in Figure 8. In the figure, the
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instigating breakdown in creating the specifications for the Boolean logic led to a

knowledge breakdown implementing the logic, which led to two errors. These errors led

to a fault and failure, and further breakdowns.
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Figure 8. A segment of one of P2’s cognitive breakdown chains. The last breakdown shown here did

not cause further breakdowns until 20 minutes later, after the camera position made it apparent

that Pac was jumping.

4.3.1 Overall Statistics
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Over 895 minutes of observations, there were 69 root breakdowns (breakdowns with no

identifiable cause) and 159 total breakdowns. These caused 102 errors, 33 of which led to

one or more new errors. The average chain had 2.3 breakdowns (standard deviation 2.3)

and caused 1.5 errors (standard deviation 1.1). Table 8 shows the proportions of time

programmers spent programming and debugging. On average, 46% of programmers’ time

was spent debugging (and thus a little more than half was spent implementing code).

Looking at the students in the “Building Virtual Worlds” class, whose code was more

complex, we see that the length of their chains of cognitive breakdowns were longer than

those programmers implementing the Pac-Man game, suggesting that the causes of their

errors were more complex.

Table 8. Programming and debugging time, and errors, breakdowns, chains, and chain length by

programmer.

Programming
Time

Debugging Time
Number of

Errors
Number of

Breakdowns
Number of

Chains
Average Chain

LengthID
minutes minutes % of time Mean (SD)

B1 245 142 58.0% 23 41 10 4.1 (3.5)
B2 110 35 32.8% 16 32 7 4.6 (3.3)
B3 50 11 22.0% 3   5 4 1.2 (0.5)
P1 95 23 36.8% 14 23 11 2.1 (1.7)
P2 90 30 33.3% 7   7 7 1.0 (0.0)
P3 215 165 76.7% 34 44 25 1.8 (1.2)
P4 90 27 30.0% 5   7 5 1.4 (0.5)

Total 895 554 46.4% 102 159 69 2.3 (2.2)

The total proportions of knowledge, rule, and skill breakdowns were similar, but

proportions of activities were not: 77% of breakdowns were in implementation activity,

and tended to be skill and rule breakdowns in implementing and modifying artifacts and

knowledge breakdowns in understanding and implementing artifacts; 18% of breakdowns

were in runtime activity, and tended to be knowledge or skill problems in understanding

failures and faults. The root breakdowns of most chains were knowledge breakdowns

understanding runtime failures and runtime faults and skill and rule breakdowns
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implementing code. Table 9 shows which aspects of the programming system were most

often involved in cognitive breakdowns. Most breakdowns involved the construction of

algorithms and the use of language constructs and animations. This is to be expected,

since the majority of the observations were of programmers completely new to the Alice

programming system.

Table 9. Frequency and percent of breakdowns and errors by type of information and the average

debugging time for errors in each type of information.

Breakdowns Errors Debugging Time
Type of Information

Frequency
% of all

breakdowns
Frequency % of all errors

Mean (SD) in
minutes

Algorithms 37 23.3% 34 33.3% 4.8 (6.2)
Language constructs 35 22.0% 31 30.4% 4.6 (5.5)
Animations 21 13.2% 19 18.6% 7.1 (6.9)
Runtime Failures 20 12.6% - - -
Style-specific 18 11.3% 10 9.8% 3.6 (4.2)
Runtime Faults 9 5.7% - - -
Data Structures 8 5.0% 7 6.9% 3.3 (4.1)
Run-Time Specification 5 3.1% - - -
Environment 4 2.5% 1 1.0% 1.0 (  -  )
Requirements 2 1.3% - - -
Software Failures 0 0% - - -

Table 10 shows the number of software errors and time spent debugging by problem

and action. Most errors were caused by rule breakdowns in implementing, modifying,

and reusing program elements (rather than understanding or observing program

elements). The variance in debugging times was high, and the longest debugging times

were on strategic problems reusing and knowledge problems understanding artifacts.
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Table 10. Software errors and debugging time by cognitive breakdown type and action. Only actions

causing errors are shown.

Errors Debugging TimeBreakdown Action
Frequency % of errors Mean (SD) in minutes

Implementing 15 14.7% 5.2 (4.3)
Modifying 14 13.7% 4.6 (7.1)Skill
Reusing 4 3.9% 1.2 (1.2)
Total 23 22.5% 4.0 (5.1)
Implementing 15 14.7% 4.2 (4.8)
Modifying 5 4.9% 5.4 (4.0)
Reusing 1 1.0% 5.0 (  -  )

Knowledge

Understand 6 5.9% 6.8 (5.7)
Total 27 26.5% 5.3 (4.2)
Implementing 23 22.5% 4.2 (3.4)
Modifying 16 15.7% 4.7 (5.1)Rule
Reusing 3 2.9% 6.6 (9.3)
Total 52 51% 5.1 (5.4)

4.3.2 Significant Causes of Software Errors in Alice

There were four major causes of software errors in the studies. In each case, the Alice

programming environment shared a considerable portion of the blame.

The most common cognitive breakdowns that led to software errors were breakdowns

in implementing Alice numerical and Boolean expressions (33% of all breakdowns). In

particular, there were two types of breakdowns. Most cases were rule breakdowns

implementing complex Boolean expressions, because of bad rules. For example, when

programmers in the Pac-Man study wanted to test if all of the dots were eaten, their

expressions were “if not (dot1.isEaten and dot2.isEaten...)” This confirms earlier studies

by Pane showing that creating Boolean expressions is of considerable difficulty [33]. In

other cases, whether or not they had created a correct expression, programmers suffered

from rule breakdowns in implementing the expressions because of problematic signs in

the Alice environment. When dropping and and or operators onto code, they were not

sure which part of the expression they were affecting, often because it was off-screen or

ambiguous.
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With so many software errors introduced because of the implementation breakdowns,

the 18% of debugging breakdowns only complicated matters. These debugging

breakdowns were due to knowledge breakdowns in understanding runtime faults and

failures. In particular, programmers often generated only a single, incorrect hypothesis

about the cause of a failure they observed (biased reviewing), and then because of their

limited knowledge of causality in the Alice runtime system (simplified causality),

generated an incorrect hypothesis about the code that caused the runtime fault. Because

Alice provides very limited access to runtime data, there were few ways for programmers

to test their hypotheses, except through further modification of their code.

The 18% of knowledge breakdowns in debugging, in turn, were ultimately responsible

for nearly all of the 24% of rule and skill breakdowns in modifying code, leading directly

to software errors. This was because their hypotheses about the cause of the runtime

failure had led them to the wrong code, or led them to make the wrong modification.

However, these modification breakdowns were also due to interactive difficulties in

modifying expressions. When programmers tried to remove intermediate Boolean

operators, they often removed code unintentionally, and because the structure of the code

was not clear, did not realize they had introduced software errors during modification.

A final source of software errors, largely independent of the cycles of breakdowns

described above, were the 7% of reuse breakdowns. These were rule breakdowns in

reusing code via copy and paste, because of problematic signs in the copied code. In

particular, after pasting copied code into a similar context, programmers began the task of

coercing references from the old context to the new context. Oftentimes, the property to

coerce was off-screen, causing the programmer to not change the reference, and thus
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introducing a software error. These errors were very difficult to debug, because of

knowledge breakdowns in understanding their code due to overconfidence in the copied

code’s correctness. Thus, when programmers attempted to determine the cause of their

program’s failure, their hypotheses were instead centered on recent changes (knowledge

breakdowns due to the availability heuristic). Furthermore, these errors caused complex,

unpredictable runtime interactions. Because these reuse errors were so difficult to debug,

few programmers ever found their error.

We summarize these trends in the causes of software errors in the model shown in

Figure 9. By counting the frequency of specific segments in chains of breakdowns, we

highlight the common links between particular types of breakdowns, and how they are

related to the introduction of software errors.



51

Figure 9. A model of most of the causes of software errors in Alice during programmers’ tasks, based

on analyses of the chains of breakdowns from the two observational studies.

4.4 Experiment Discussion

Our model of the software errors in Alice is of significant value in understanding the

errors that programmers made in their tasks. We learned that most of the root causes of

software errors were from inexperience in creating Boolean expressions and forgetting to

fully adapt copied code to a new context. However, the impact of these early errors was

compounded by difficulties with debugging and modifying code. In particular, only 18%

of the breakdowns that occurred (while forming hypotheses about the causes of runtime

faults and failures) were the cause of nearly all of the software errors introduced because

of modification breakdowns. Therefore, even in small tasks and simple environments,
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there are complex relationships between software errors, the programming environment’s

interfaces, and the programmer’s cognition and experience.

With a better understanding of the causes of software errors in Alice, there is significant

opportunity to prevent these common breakdowns. We have since focused on preventing

the knowledge breakdowns in understanding runtime faults and failures, with a

debugging tool called the Whyline [34]. The argument behind the Whyline is that

debugging tools should directly support programmer’s formation of a hypothesis about

the causes of a runtime failure. If they do not, programmers will have a weak hypothesis

about the cause of a failure due to biased reviewing, and any implicit assumptions about

what did or did not happen at runtime will go unchecked, as they did in these studies.

Therefore, the Whyline allows programmers to ask questions explicitly about their

program’s failure, preventing programmers from hypotheses about their program’s

runtime behavior altogether. By analyzing the programmers’ explicit questions in these

two studies, we found that programmers’ questions at the time of failure were one of two

types: why did questions, which assume the occurrence of an unexpected runtime action,

and why didn’t questions, which assume the absence of an expected runtime action. There

were three possible answers:

1. False propositions. The programmer’s assumption is false. The answer to

“Why didn’t this button’s action happen?” may be that it did, but had no

visible effect.

2. Invariants. The runtime action always happens (why did), or can never

happen (why didn’t). The answer to our button question may be that an event

handler was not attached to an event, so it could never happen.
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3. Data and control flow. A chain of runtime actions led to the program’s

output. For example, a conditional expression, which was supposed to fire the

button’s action, evaluated to false instead of true.

Based on these observations, we designed the Whyline to allow why did and why didn’t

questions about program’s behavior. For example, had the Whyline been available when

the programmer in Figure 8 noticed that Pac was jumping, she could have pressed the

“Why” button and asked, “Why did Pac move up?” The Whyline would have shown of

the runtime actions directly relevant to her question: the execution of the Boolean

expression, the animation moving Pac-Man up, and so on. This way, any implicit

assumptions about what did or did not happen at runtime could have been explicitly

addressed in the answer.

We have since performed user studies of the Whyline’s usability [34]. By comparing

six identical debugging scenarios from user tests with and without the Whyline, we found

that the Whyline reduced debugging time by nearly a factor of 8, enabling programmers

to complete 40% more tasks than without the Whyline. These improvements are the

direct result of preventing the biased reviewing breakdowns identified in our studies.

5 Discussion

We believe our framework and methodology can support reasoning about software

errors, the study of software errors, and the design of error-robust programming systems.

5.1 Supporting Reasoning About Software Errors

As we have seen, prior research on software errors is somewhat fragmented and

inconsistent. Classifications have not clearly separated software errors from their causes
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or their manifestations in program behavior. Our framework provides a consistent and

defined vocabulary for talking about software errors and their causes. In this way, it can

be used as a companion to similar frameworks, such as Green’s Cognitive Dimensions of

Notations Framework [6]. Cognitive Dimensions have been used to analyze the usability

of many visual and professional programming languages [7, 8], but none have addressed

the causes of errors. Future studies could identify relationships between dimensions of

notations and the causes of programming errors. For example, consider viscosity, or,

resistance to local changes. What types of cognitive breakdowns is a viscous interface

prone to? Another dimension is premature commitment, or the requirement that a user

makes some decision before important information is available. In design activities, what

types of breakdowns is an interface requiring premature commitment properties prone to?

Answering such questions may create a valuable link between salient interactive

dimensions of programming systems and their error-proneness.

Another way in which our framework supports reasoning about software errors is in

clearly identifying approaches to preventing software errors. For example, software

engineering can focus on preventing breakdowns when understanding, creating and

modifying specifications. Computer science education can focus on helping programmers

prevent knowledge and rule breakdowns, by exposing students to many types of

programming, testing, and debugging activities. Programming systems can focus on

preventing the rest of the breakdowns that software engineering and education cannot

prevent, through less error-prone languages, better support for testing and debugging, and

with improved program comprehension and visualization tools.
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5.2 Supporting the Study of Software Errors

In addition to helping reason about software errors, our framework has a number of

implications for the study of software errors and programming activity in general. For

example, while von Mayrhauser and Vans’ Integrated Comprehension Model [25]

provides a sophisticated understanding of programmer’s various types of mental models,

it lacks any mention of problems in forming mental models of specifications or

program’s static or dynamic semantics. Identifying areas where specification breakdowns

can occur may help future studies of program comprehension explicitly link aspects of

the comprehension process to specific types of breakdowns. Our model also informs

models of debugging, such as Gilmore’s [28]. He argues that programmers compare

mental representations of the problem and program, but does not account for breakdowns

in knowledge formation or mismatch correction, which likely affects debugging in

predictable ways.

As demonstrated in our studies of Alice, our methodology for studying software errors

has the potential to uncover patterns of software error production in programming

systems. Because the framework is descriptive, it supports the objective comparison of

software errors within and between programming environments, programs, languages,

tasks, expertise, and other important variables. Future studies can perform summative

comparisons of different programming systems’ abilities to prevent breakdowns, which

would allow statements such as “language A is more prone to knowledge breakdowns in

reusing standard libraries than language B.” This is in contrast to existing methodologies,

such as Cognitive Dimensions, Cognitive Walkthroughs, and Heuristic Evaluation, which

all produce fairly subjective and incomparable results.
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Although we have no experience using the framework and methodology for studying

“programming in the large,” we suspect that our techniques could be easily applied to

methods that have such already proven useful in less-controlled settings, such as

Contextual Inquiry [35]. In fact, our study of students in “Building Virtual Worlds” was

very similar to industry settings: programmers were constantly interrupted, specifications

were constantly changing, and programmer’s attention was continuously divided among

programming and numerous non-programming tasks. Despite these circumstances, there

was little difficulty in collecting data. This is in stark contrast to empirical studies of

programming that have been performed in the past, which require significantly more

intervention to obtain reliable results.

5.3 Supporting the Design of Programming Systems

Our framework and methodology also has considerable potential to support the

formative design of programming systems. By focusing on the limited number of failures

in human cognition discussed in Section 1.3 and summarized in Table 6, a simple set of

heuristics for designing error-preventing programming systems can be generated. We list

ten such heuristics in Table 11.
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Table 11. Ten heuristics for designing error-preventing programming systems.

Heuristics for Preventing Cognitive Breakdowns in Programming

1. Help programmers recover from interruptions or delays by reminding them of their previous actions

2. Highlight exceptional circumstances to help programmers adapt their routine strategies

3. Help programmers manage multiple tasks and detect interleaved actions

4. Design task-relevant information to be visible and unambiguous

5. Avoid inundating programmers with information

6. Help programmers consider all relevant hypotheses, to avoid the formation of invalid hypotheses

7. Help programmers identify and understand causal relationships, to avoid invalid knowledge

8. Help programmers identify correlation and recognize illusory correlation

9. Highlight logically important information to combat availability and selectivity heuristics

10. Prevent programmer’s overconfidence in their knowledge by testing their assumptions

These heuristics can provide simple guidance for designers of programming languages

and systems. For example, consider applying heuristic 2 to a number of design situations.

When designing documentation standards, software architects should highlight

exceptions in software’s behavior to prevent programmers from making assumptions

about other aspects of the system’s behavior. Language designers should consider

heuristic 2 when considering operator overloading, since programmers unfamiliar with

the particular semantics of an overloaded operator may make erroneous assumptions

about the program’s runtime semantics. Designers of future versions of UML notation

should consider notations for identifying exceptional behaviors that software engineers

would otherwise assume they understood. Designers of testing and debugging tools might

consider identifying uncommon runtime circumstances and bringing them to

programmer’s attention.

The framework and methodology can also be used directly as a formative design tool

on paper and Wizard of Oz prototypes. There is no requirement that chains of

breakdowns are reconstructed from interactions with a functional prototype. In fact, we

performed such analyses on paper and Wizard of Oz prototypes of the Whyline, in order
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to determine if the Whyline would help keep programmer’s assumptions in check. The

only requirement for using our methodology for non-functional prototypes such as these

is that the system behavior is specified, and that the experimenter reliably follows these

specifications. These types of formative studies can be quite valuable in making design

decisions before actually implementing a system.

6 Conclusions

This paper presents a framework and methodology for studying the causes of software

errors in programming systems. The framework is derived from past classifications of

errors, prior studies of programming, and general research on the mechanisms of human

error. Our framework is based on the idea of three types of cognitive breakdowns, and the

formation of chains of cognitive breakdowns during programming activity. Our

methodology is focused on sampling chains of cognitive breakdowns by observing

programmers work and then reconstructing chains of breakdowns from programmers’

actions for later analysis.

Our experiences with studying the causes of software errors in the Alice programming

system suggest that our framework and methodology are straightforward and helpful in

revealing the sources of errors and in helping design new tools. Because our framework

provides a common vocabulary for reasoning about software errors, while supporting

their description, prediction, and explanation, we encourage other researchers to apply

our framework and methodology to their research.
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