
Chapter 10

The Errors of (1989)

[Software creation involves much more than the writing of programs.
The present chapter describes the milieu of literate programming, by
tracing the history of all changes made to T@ as that system evolved.
Knuth was asked by the editors of Software-Practice & Experience to
prepare an article discussing the development of m; his response is
reprinted here from the July 1989 issue of that journal.]

Introduction
I make mistakes. I always have, and I probably always will. But I like
to think that I learn something, every time I go astray. In fact, one of
my favorite poems consists of the following lines by Piet Hein [7]:

The road to wisdom? Well, it's plain
and simple to express:

Err
and err
and err again
but less
and less
and less.

The date today, as I begin to write this paper, is May 5, 1987, exactly
ten years since I began to work intensively on software systems for type-
setting. I have certainly learned a lot during those ten years, judging
from the number of mistakes I made; and I would like to share what
I've learned with other people who are developing software. The best
way to do this, as far as I know, is to present a list of all the errors that
were corrected in 9&X while it was being developed, and to attempt to
analyze those errors.

244 Literate Programming

When I mentioned my plan for this paper to Paul M. B. Vitányi, he
told me about a best-selling book that his grand-uncle had written for
civil engineers, devoted entirely to descriptions of foundation work that
had proved to be defective. The preface to that book [25] says

It is natural that engineers should not wish to draw attention to
their mistakes, but failures are sometimes due to causes of which
there has been no previous experience or of which no information
is available. An engineer cannot be blamed for not foreseeing the
unknown, and in such cases his reputation would not be harmed if
full details of the design and of the phenomena that caused the fail-
ure were published for the guidance of others. . . . To be forewarned
is to be forearmed.

In my own case I cannot claim that "unknown" factors lay behind my
blunders, since I was totally in control of my programming environment.
I can justly be blamed for every mistake I made, and I'm certainly not
proud of the record. But I see no harm in admitting the horrible truth
about my tendency to err, when such details might shed light on the
problem of writing large programs. (Besides, I'm lucky enough to have
a secure job.)

Empirical studies of programming errors, conducted by Endres [5] and
by Basili and Perricone [1], havealready led to interesting results and to
the conclusion that "more data must be collected on different projects."
I can't claim that the data presented below will be as generally appli-
cable as theirs, because all of the programming I shall discuss was done
by one person (me). Insightful models of truly large-scale software de-
velopment and program evolution have been introduced by Belady and
Lehman [3]. However, I do have one advantage that the authors of
previous studies did not have; namely, the entire program for has
been published [23]. Hence I can give fairly precise information about
the type and location of each error. The concept of scale cannot easily
be communicated by means of numeric data alone; I believe that a de-
tailed list gives important insights that cannot be gained from statistical
summaries.

Types of Error
Some people undoubtedly think that everything I did on 'Qx was an
error, from start to finish. But I shall consider only a limited class
of errors here, based on the log books I kept while I was developing
the .program. Whenever I made a change, I noted it down for future
reference, and it is these changes that I shall discuss in detail. Edited
forms of my log books are appended below [Chapter 11].

The Errors of (1989) 245

I guess I could say that this paper is about 'changes', not 'errors', be-
cause many of the changes were made in order to introduce new features
rather than to correct malfunctions. However, new features are neces-
sary only when a design is deficient (or at least non-optimal). Hence,
I'll continue to say that each change represents an error, even though
I know that no complex system will ever be error-free in this extended
sense.

The errors in my log books have each been assigned to one of fifteen
general categories for purposes of analysis:

A, an algorithm awry. Here my original method proved to be incor-
rect or inadequate, so I needed to change the procedure. For example,
error #212 fixed a problem in which footnotes appeared on a page back-
wards: The last footnote came out first.

B, a blunder or botch. Here I knew what I ought to do, but I wrote
something else that was syntactically correct-sort of a mental typo.
For example, in error #26 I wrote 'before' when I meant 'after' and
vice versa. I was thinking so much of the Big Picture that I didn't have
enough brainpower left to get the small details right.

0 C, a cleanup for consistency or clarity. Here I changed the rules
of the language to make things easier to remember and/or more logical.
Sometimes this was just a surface change to m ' s "syntactic sugar,"
as in #16 where I decided that \input would be a better name than
\require.

D, a data-structure debacle. Here I didn't properly update the
representation of information to preserve the appropriate invariants. For
example, in error #105 I failed to return nodes to available memory when
they were no longer accessible.

E, an efficiency enhancement. Here I changed the program so that it
would run faster; the existing code was correct but slow. For example, in
error #287 I decided to give the ability to preload font information,
since it took awhile to read thirty short files at the beginning of every run.

F, a forgotten function. Here I didn't remember to do everything
I had intended, when I actually got around to writing a particular part
of the code. It was a simple error of omission, rather than commission.
For example, in error #11 and again in #172 I had a loop of the form
'while p # null do', and I forgot to advance the pointer p inside the
loop! This seems to be one of my favorite mistakes: I often forget the
most obvious things.

246 Literate Programming

0 G , a generalization or growth of ability. Here I realized that

some extension of the existing specifications was desirable. For ex-

ample, error #303 generalized my original primitive command '\ifT
{char)', which tested if a given character was 'T' or not, to the prim-
itive ' \ i f (char)(char)', which tested if two given characters were equal.
Eventually, in #666, I decided to generalize further and allow '\if
(token) (token)'.

0 I, an interactive improvement. Here I made rn respond better to
the user's needs. Sometimes I saw how to help 'I'EX identify and recover
from errors in the documents it was processing. I also kept searching for
better ways to communicate the reasons underlying r n ' s behavior, by
making diagnostic information available in symbolic form. For example,
error #54 introduced ' . . .' into the display of context lines so that users
could easily tell when information was truncated.

L, a language liability. Here I misused or misunderstood the pro-
gramming language or system hardware I was working with. For ex-
ample, in error #24 I wanted to reduce a counter modulo 8, so I wrote
't := (t - 1) mod 8'; this unfortunately made t negative because of the
way 'mod' was defined. Sometimes I forgot the precedence of operators,
etc.

M, a mismatch between modules. Here I forgot the conventions
I had built into a subroutine when I actually got around to using that
subroutine. For example, in error #64 I had a macro with four parame-
t e n (xo, yo, X I , yI) that define a rectangle; but when I used it, I gave the
parameters in different order, (xo, XI , yo, yl). Such "interface errors" in-
cluded cases when a procedure had unwanted side effects (like clobbering
a global variable) that I failed to take into account. Some mismatches
(like incorrect data types) were caught by the compiler and not entered
in my log.

0 P, a promotion of portability. Here I changed the organization or
documentation of the program; this affected only a person who would
try to read or modify the code, not a person who tried to run it. For
example, in error 1159, one of my comments about how to set the size of
memory had '2' where I meant to say '5'. (Most changes of this kind
were not recorded in my log; I noted only the noteworthy ones.)

Q, a quest for quality. Here 1 changed the specifications of what
the program should output from given input, when I learned how
to improve the typographic appearance of the output. For example,

The Errors of 'QX (1989) 247
error #I87 changed m ' s behavior when typesetting formulas that have
an unusually complex superscript; as a result, m now produces

$7
J instead of e& ,

R, a reinforcement of robustness. Whenever I realized that 'QX
could loop or crash in the presence of certain erroneous input, I tried to
make the code bulletproof. For example, error'#2OO made sure that a
user-supplied character number was between 0 and 127; otherwise parts
of 'QX's memory could be wiped out.

S, a surprising scenario. Errors of type S were particularly bad bugs
that forced me to change my original ideas, because of unforeseen inter-
actions between various parts of the program. For example, error #25
was logged when I first discovered a consequence of 'QX's convention
about blank lines denoting the end of a paragraph: There's often a blank
space in 'QX's internal data structure just before a paragraph ends, be-
cause a space is usually supplied at the end of the line just preceding a
blank line. Thus I had to write new code to delete the unwanted space.
Whenever such unexpected phenomena showed up, I had to go back to
the drawing board and fix the design.

T, a trivial typo. Sometimes I didn't type the right thing when
I entered the program into the computer, although my original pencil
draft was correct. For example, in error #48 I had typed '-' instead
of '+'. If atyping mistake was detected by the compiler as a syntax
error, I didn't log it, because bad syntax can easily be corrected.

Nine of these categories (A, B, D, F, L, M, R, S, T) represent "bugs";
such errors absolutely had to be corrected. The other six categories (C,
E, G, I, P, Q) represent "enhancements"; I could have refused to consider
the existing situation erroneous. As remarked earlier, I'm considering
all items in the log to be indications of error. But there is a significant
difference between errors of these two kinds: I felt guilty when fixing the

I
bugs, but I felt virtuous when making the enhancements.

My classification of errors into fifteen categories is ad hoc, but at ' the moment it's the best way I can think of to make sense out of my
F

experiences. Some of the bug categories refer to simple flaws in the 1 basic mechanics of programming: Writing the right thing but typing it

i wrong (T); thinking the right thing but writing it wrong (B); knowing
the right thing but forgetting to think it (F); imperfectly knowing the
tools (L) or the specifications (M). Such bugs are easy to fix once they've

248 Literate Programming

been identified. Categories A and D represent the next level of difficulty,
as we get into technical aspects of what programming is all about. (As
Niklaus Wirth has said, Algorithms + Data Structures = Programs.)
Category R covers the special situation in which we want a program to
survive even when its input is incorrect. Finally, category S accounts for
higher-level surprises; these are the subtle bugs that result from com-
plex interactions between different parts of a system. Thus the nine
types of bugs have a somewhat logical structure. The remaining six
categories-cleanliness (C) , efficiency (E) , generalization (G) , interac-
tion (I), portability (P), and quality (Q)-seem to provide a reasonable
way to classify the various kinds of enhancements that were made to

during its development.
My classification scheme relies more on essential functionality than

on the external form of the program. Thus it isn't easy to use my

statistics about the number of errors per category to answer questions
like "How many bugs were due to improper use of goto statements?"
Such questions are interesting to teachers of programming, but I no
longer think that they are extremely important. If I had indexed my
errors by syntactic categories, I would have found that errors #45, #91,
#119, #155, #231, #352, #354, 8419, #523, #581, and #801 could be
ascribed to my use or abuse of goto; also #512 could be added to this list,
since r e tu rn and goto are analogous. Thus we can conclude from my
experience with T@ that goto statements can indeed be harmful. On
the other hand we must balance this fact with the realization that bad
gotos account for only 1.4% of my errors; we must identify other culprits
if we're going to do away with the other 98.6%. Sure enough, several
other errors were caused by lapses in my use of other control structures:
A case statement got me in trouble in 821; a while confused me in #29;
if-then-else led me astray in #467, #471, #680, and 8843. (See also

#796 and #845, where efficiency of control was important.) I conclude
that every feature of a programming language can be harmful, if it is
misused.

Some of the errors noted in my log book were much more devastating
than others. In certain cases the changes were far-reaching, affecting
dozens of different parts of the program; several days of "hacking" were
necessary before such changes had been made and verified. For example,
change #llO required major surgery to the program, because my original
ideas were incapable of handling aligned tables inside of aligned tables.
On the other hand, some of my errors were only venial sins, and some
of the changes were merely twiddles; for example, #87 simply improved
the wording of a diagnostic message. Although the log doesn't give an
explicit weighting to the errors, the 'heavy" errors tend to cancel with

, - - -
the "light" ones, so we can still get a reasonable insight into the stability
of the program if we calculate, say, the number of errors logged per year.

The development of QX has taken place over a period of ten years, and
the lessons I learned can best be understood when they're put into the
context of the other things I was doing during that time. Typography
has many facets, hence QX itself was only one of the projects I decided
to work on. The two most significant companion systems were META-
FONT (a system for typeface design) and Computer Modern (a family
of typefaces defined in terms of the METRFONT language); these pro-
grams had to b e debugged just as l&X did, and their debugging logs
show a similar development history. I also needed a dozen or so util-
ity routines to support QX and METAFONT; the most notable of these
are TANGLE and WEAVE, which constitute the WEB system of structured
documentation [20,18].

Beginnings

The genesis of QX probably took place on February 1, 1977, when
I first chanced to see the output of a high-resolution typesetting ma-
chine. I was told that this fine typography (the galley proofs of a book
by Winston 1261, which our faculty was considering for inclusion on an
exam syllabus) was produced by entirely digital methods; yet I could
see no difference between the digital type and "real" type. Therefore I
realized that a central aspect of printing had been reduced to bit ma-
nipulation. As a computer scientist, I couldn't resist the challenge of
improving print quality by manipulating those bits better. Therefore
my diary entry for February 8 says that, already at that time, I be-
gan discussing the possibility of new typesetting software with people at
Stanford's Artificial Intelligence Lab. By February 13 I had changed my
plan to spend a forthcoming sabbatical year in South America; instead
of traveling to an exotic place and working on Volume 4 of The Art of
Computer Programming, I had decided to stay at Stanford and work on
digital typography.

- - -
I mentioned earlier that the design of QX was begun on May 5, 1977.

A week later, I wrote a draft report containing what I thought was a
pretty complete design, and I stayed up until 5 a.m. typing it into the
computer. The problem of typesetting seemed quite straightforward, so
I soon started thinking about fonts instead; I spent the next 45 days writ-
ing a program that was destined to evolve into METRFONT. By June 28,
I had 25 lowercase letters in various styles that looked reasonably good

250 Literate Programming

to me at the time; and three days later I figured out how to handle the
26th letter, which required some new ideas [15].

I went back to thinking about TEX on July 3. Several people had
made thoughtful comments on my earlier draft, and I prepared a thor-
oughly revised language definition after two weeks of further study. (This
included two days of working with dictionaries in order to develop an al-
gorithm for hyphenation of English.) The resulting document, I thought,
was a reasonably complete specification of a language for typesetting,
and I left it in the capable hands of two graduate students who were
my research assistants that summer (Frank Liang and Michael Plass).
Their job was to implement while I flew off for a visit to China.
I returned on August 25 and had just one day to meet with them before
leaving on another three-week trip. On September 14 I returned and
they presented me with a sheet of paper that had been typeset by their
proto-IIjEX program! They had implemented only about 15% of the lan-
guage, and they had used data structures that were not general enough
or efficient enough to support the remaining 85%; but they had chosen
their subset wisely so that a small test program could run from start
to finish. Hence it was easy for me to imagine what a complete system
would entail. '

Now it was time for Liang and Plass to go back to school, and time for
my sabbatical year to begin. I started coding the "final version of
(or so I thought) on September 16, and immediately I discovered that
their summer work represented a truly heroic achievement. Although
I had thought that my specification of was quite complete, I en-
countered loose ends every 15 minutes or so when I was actually faced
with writing the code. I soon realized that if I had been in my stu-
dents' shoes-having to implement this language when the author was
completely unreachable-I would have thrown up my hands in despair;
important policy decisions had to be made at every turn.

That was the first big lesson I learned during my work with m: The
designer of a new kind of system must participate fully in the implemen-
tation. Even if I had been available for consultation with my students,
they would have had to come to me so often with questions that the
work would have dragged on forever. I can imagine them having to
spend a half hour or so explaining each particular problem to me, and
we would have needed literilly hundreds of those meetings. Now I knew
why other projects I'd heard about, in which the language designer had
decided not be the compiler writer, had failed.

By October 14 I had coded all of except for the parts that type-

set mathematics, and except for the routines that convert from WS
internal representation into codes for an output device. At this point I

The Errors of rn (1989) 251

Europe. This European trip had had to leave for three weeks of travel in
been planned long before, so it was mostly unrelated to typesetting; but
1 did have some interesting discussions about curve-drawing with math-
ematicians I met in Oberwolfach, Germany, and in Oslo, Norway. I also
was able to arrange a visit to the headquarters of Monotype Corporation
in Redhill, England.

After returning I spent November finishing the numerals, uppercase
letters, and punctuation marks of the first-draft Computer Modern
types. I needed to have a complete, font because I had been invited to
give a lecture about this work to the American Mathematical Society,
and I didn't want to have only lowercase examples to show. I prepared
the AMS lecture (121 during December and presented it in January, so
I didn't have a chance to resume the coding of QX until January 14.
But finally I was able to write the following in my diary on February 10,
1978:

Finished the TEX programs including all loose ends and got them
all compiled without syntax errors (4 a.m.).

'QX was the first fairly large program I had written since 1970; so
it was my first nontrivial "structured program," in the sense that I
wrote it while consciously applying the methodology I had learned in the
early 70s from Dijkstra, Hoare, Dahl, and others. I found that structured
programming greatly increased my confidence in the correctness of the
code, while the code still existed only on paper. Therefore I could wait
until the whole program was written, before trying to debug any of it.
This saved lots of time, because I didn't have to prepare "dummy"
versions of nonexistent modules while testing modules that were already
written; I could test everything in its final environment. Of course I had
a few qualms in January about whether my code from September would
really work; but that gave me more of an incentive to finish the whole
thing sooner.

Even on February 10, when rn had been compiled and was ready to
be tested, I didn't feel any compelling need to try it immediately. I knew
that the program was fairly readable and "informally proved correct," so
I spent the next month making italic, greek, script, symbols, and large
delimiter fonts. My test program for required those fonts, so I
didn't want to start testing until everything was in place. Again, I knew
I was saving time by not having to prepare prototypes that would merely
simulate the real thing; structured programming gave me the courage to
wait until the whole system was ready. I finished the large symbols on
March 8, and I happily penned the following in my diary on March 9:

252 Literate Programming The Errors of rn (1989) 253

Entered all accumulated corrections to TEX program and compiled
it-tomorrow the debugging begins!

My log book for errors in began that next day, March 10; the
debugging process will be discussed below. By March 29 I had decided
that 'T)jX was essentially working,

. . . (except perhaps for error recovery)-it's time to celebrate!

I began tuning up the fonts and drafting ideas for a user manual; then
I spent a few days at Alphatype Corporation in Illinois, from whom
Stanford had decided to purchase a phototypesetter. From April 11 to
May 11, I took time off from typography to work on dozens of updates to
Seminumerical Algorithms, which is Volume 2 of The Art of Computer
Programming [lo]; I wanted to incorporate new research results into
that text, which was to be 'T)jX's first big application. Then on May 14.
I began to get rn running again; proof copies of pages iv through 8 of
Volume 2 came out of our Xerox Graphics Printer on May 15.

My work was cut out for me during the next weeks: I became a pro-
duction user of m, typing the manuscript of Volume 2. This proved
to be an invaluable experience, as explained below. By the time my
sabbatical year ended, on September 24, I had finished the typing up
to page 441 of that 700-page book. Improvements to rn kept occur-
ring to me all during that time, of course-except during a month-long
vacation trip with my family. (Even on vacation I kept seeing fonts ev-
erywhere and thinking about how to draw such letterforms by computer.
I spent one morning sitting by one of the trails in the Grand Canyon de-
signing the algebraic notation for METAFONT; my fonts had previously
been written in a primitive macro language and compiled directly into
machine code, not interpreted.) I also spent three weeks that summer
writing the first manual for m.

Although my sabbatical year was over, I kept working on typography
in odd moments between classes in the fall; the text of Volume 2 was
completed on the morning of November 15. On November 17 I began
writing METAFONT, and my diary entry for December 31, 1978 was this:

Finished the METAFONT interpreter, just in time to celebrate New
Year's eve (11:59 p.m.).

Other people had begun to use rn in August of 1978, and I was sur-
prised to see how fast the system was propagating. I spent my spare time
during the first three months of 1979 thinking about how to make 7&X
available in Pascal form. (The original program was written in SAIL,

a language that was available on only a few computers.) During this

period I began to experiment with the typesetting of Pascal programs;
I wrote a program called BLAISE that converted Pascal source code into
a QX file for pretty-printing. BLAISE soon developed into a system
called DOC for structured documentation, completed on March 31, 1979;
programs in DOC format could be converted either to Pascal or to 7&X.
Luis Trabb Pardo and Ignacio Zabala subsequently used DOC to prepare
a highly portable version of 'T)jX in Pascal, completed in April of 1980.

About this time I learned another big lesson: Writing software is much
harder than writing books. I couldn't simultaneously teach classes well
and finish what needed to be done on typography. So I asked to be
excused from teaching in the spring of 1979; my diary for March 22
said,

Now my obligations are fairly well cleared away and it's back to the
stalled research on m.

(It turned out that I was able to teach during only 13 of the 21 academic
quarters between my sabbatical years in that period. I continued to
supervise graduate students, but I gave no classroom lectures during
1983 when the work on QX and METAFONT was at its peak; I also
missed three months in 82, 84, and 85. I really enjoy teaching, but I
couldn't see any way to finish the rn project without relinquishing
almost all of my other duties.)

On April 1, 1979, I returned to METAFONT, which had been written
but not debugged. METAFONT began to work on April 28. Then I
began to design software for the Alphatype machine; that took about
three months. During the summer I wrote the METAFONT manual,
which gave me further experience with 'T)jX. And rn also received
an important stimulus from the American Mathematical Society that
summer, when several people (including Barbara Beeton and Michael
Spivak) were given the opportunity to spend some time at Stanford
developing T@ macros. The AMS people introduced me to several
important applications, such as the indexes to Mathematical Reviews,
which stretched T)jX to its limits and led to substantial improvements.

Endings

By August 14, 1979, I felt that '&X was essentially complete and fairly
stable. I lectured that evening to about 100 participants of the Western
Institute for Computer Science in Santa Cruz, telling about my expe-
riences developing and debugging the program. At that time my log
book of errors had accumulated 420 items; little did I know that the
final total would be more than twice that! But already I knew that I

254 Literate Programming

had learned a lot by keeping the log, and I must have been enthusiastic
because I lectured from 7:30 to 9:30 p.m. (The audience was equally
enthusiastic-they kept asking me questions until 11:30 p.m. So I re-
solved to write a paper about the errors of m, and at last I am able
to do so.)

I devoted the last months of 1979 and the first months of 1980 to
Computer Modern, which needed to be rewritten in terms of the new
METRFONT. Then I needed to update Volume 2 again-computer sci-
ence marches inexorably forward-until I finally had finished producing
camera-ready copy on our Alphatype. This was the goal I had hoped to
achieve during my sabbatical year; I reached it at 2 a.m. on July 29, 1980,
about two years late. During the rest of 1980 I wrote papers about what
1 thought were the most novel ideas in TFJ [I61 and in METRFONT [17].

But my research on T)$i was by no means finished. About 50 people
from all over the USA met at Stanford on February 22, 1980, and estab-
lished the rn Users Group (TUG). I asked them if they would mind
my cleaning up the language in several upward-incompatible ways, even
though this would make the user manual and their existing computer
files obsolete; and nobody objected to such changes! Soon TUG grew
dramatically, under the able chairmanship of Richard Palais, and it be-
came international. I realized that I could not disappoint all these people
by leaving 'I)$ in its current state and returning immediately to work
on subsequent volumes of The Art of Computer Programming.

I needed to work out a better "endgame strategy," and it soon be-
came clear what ought to be done: The original versions of TFJ and
METAFONT should be scrapped, once they had served their purpose of
accumulating enough user experience to indicate what such languages
ought to be. New versions of TEX and METRFONT should be written,
designed to last a long time and to be highly portable between comput-
ers and typesetting devices of all kinds. Moreover, these new programs
should be published, because T)$i was making it possible to improve the
state of the art of program documentation. I decided to do my best to
produce a stable system and to explain all I knew about it, so that other
people could take it over and maintain it if it proved to be important.
This way I could return to other pursuits in good conscience, knowing
that if my typographic research had any merit it would be carried on by
others in whatever ways would prove to be necessary.

So that was my new goal; I thought I could achieve it in one or two
more years. The original TEX program was renamed TFJ78, and the
new one was to be called =$2.

The Errors of 'l&X (1989)

Classes and miscellaneous chores kept me too busy to do much
during the first half of 1981, but I began to write QX82 on August 22.
By September 9 I realized that the DOC system needed to be completely
revised, so I spent two months replacing it by a much better system
called WEB [18]. Since then my programming language of choice has
been WEB (which, unlike DOC, was written in its own language). After a
month in Europe, I was able to resume writing m 8 2 on December 1,
1981. The draft of 'l&X82 was completed on June 29, 1982; as before,
I wrote the entire program before trying to run any of it.

Meanwhile I had other problems to worry about. When my new copy
of Seminumerical Algorithms arrived in January of 1981, I had expected
to be filled with joy at the consummation of so much hard work. Instead,
I burned with disappointment, as I realized that I still had a great deal
to learn about fonts. The early Computer Modern typefaces were not
at all what I had hoped to achieve, when I first saw them in print. They
had looked reasonably good at low resolution, so I had blithely assumed
that high resolution would be much better. Not so. My education in
typefaces was barely beginning. I met Richard Southall later in 1981,
a professor of type design who had exactly the expertise I was lacking;
so I invited him to visit Stanford. We spent the entire month of April,
1982, working about 16 hours a day, revising Computer Modern from A
to z.

I debugged m 8 2 in the summer of '82, then began to write the new
manual-called The W b o o k [21]-in October. The first manual had
been written hastily and finished in 21 days, but I wanted The QXbook
to meet much higher standards. Therefore I wasn't able to finish it until
a full year later.

It was during this period, October '82 to October '83, that be-
came a mature system. I had to rethink every aspect of its design as
I rewrote the manual. Fortunately I was aided by a wonderful group
of knowledgeable volunteers, who would meet with me for two or three
hours every Friday noon and we would discuss the tradeoffs of every im-
portant decision. The diverse backgrounds of these people provided an
important counterweight to my one-sided views. Finally, on December 9,
1983, I decided that the first phase of my endgame strategy was com-
plete; I gratefully hosted a coming-of-age party for m, with 36 guests
of honor, at the Fuki-Sushi restaurant in Palo Alto.

The rest is history. I wrote METAFONT in WEB between December,
1983 and July, 1984; I wrote The METRFONT~OO~ between August,
1984, and October, 1985, taking off five months (February through July)

255

else

256 Literate Programming

to rewrite Computer Modern in terms of the new METAFONT. I began
another sabbatical year in October, 1985, just after the m project
disbanded. Finally, after adding a few more finishing touches, I was
able to celebrate the long-planned completion of my "endgame" on
May 21, 1986, when my publishers sponsored a reception at the Com-
puter Museum in Boston; that was the day I first saw the five hardcover
volumes of Computers & Typesetting, the books that summarized my
nine years of work on m, METAFONT, and Computer Modern.

Another year has gone by and I would like to report that rn has
proved to be 100% correct. But I cannot, not yet. For I stumbled
across a hidden TEX anomaly last January. And I've just been, teaching
a course about software development based on the internal structure
of m ; students in the class have noticed a few things that should be
improved. So I suppose there is still a t least one bug lurking there.
I plan to hold off publishing this paper until another year or so has gone
by, so that I'll have more reason to believe that my log book of errors is
complete.

Contents of the Log Books
As I said, an appkndix to this paper [Chapter 111 reproduces the entire
list of errors that I kept as W was changing. The best way to compre-
hend how evolved is to peruse this list. The first 519 items refer to
the original program m 7 8 , which was written in SAIL, from the time I
began to debug it to the time I stopped maintaining it. The remaining
items, numbered 520-849 (as of May 1987), refer to the "real" program
W 8 2 , which was written in WEB. I didn't keep any record of errors re-
moved during the hectic period when m 8 2 was being debugged,l but
items 520 and following include every change that was made to w 8 2
after it passed its first test. The differences between m 7 8 and W 8 2 ,
seen from a user's standpoint, have been listed elsewhere [2].

I've tried to edit the log entries so that they can be understood in
terms of the published listing [23] of m 8 2 . For example,

15 Add the forgotten case 'set-font:' to eq-destroy. $275 F

(Footnote added July 1991) When I wrote the above I had forgotten about
another log book that I had in fact kept during those hectic days. A com-
plete list of the changes made while I debugged my first large-scale "literate
program" has just turned up in the Stanford University Archives. I am
inserting those entries into Chapter 11, so that the record is now complete.
The newly discovered entries are numbered XI-X343.

The Errors of 7&X (1989) 257
is entry #15. My original log entry actually referred to case ' Cf ont] '
in 'eqdestroy' using SAIL syntax, but I've changed to Pascal syntax
in the edited log. Similarly, the 1978 identifier font eventually became
set-font, so I've adopted the published equivalent. W 8 2 contains a
procedure called eq-destroy in $275 of the program, and this procedure
is quite similar to the eqdestroy of m 7 8 ; so I've supplied $275 as
a program reference. (It turns out that eq-destroy no longer needs a
'set-font:' subcase, but it did in 1978.) The 'F' after $275 means that
this was a bug of type F, a forgotten function.

Changes to a program often spawn other changes later. I've tried to
indicate that phenomenon in the appendix by prefixing the number of a
prior error when it was an important part of the reason for a subsequent
error. Thus #67 is

25 H 67 Replace the space at paragraph end by fillglue, not by
zero. $816 B

Error #25 was logged when I had been surprised to find a space at the
end of W ' s internal representation of a paragraph. I had "cured" the
problem by converting the space from a normal interword space to a
space of width zero. But that wasn't good enough, since it was possible
for W to try breaking a line at the zero-width space. A better solution
was to replace the space by the glue that is always added to fill out the
end of a paragraph.

Figure 1 shows a time chart of the first 519 log entries-the errors
of W 7 8 . There's a burst of activity right near the beginning, since I
logged the first 237 errors during the three weeks of initial debugging.
Thus the main line in Figure 1, which shows the cumulative number of
errors as a function of time, is nearly horizontal at the beginning. But
it's nearly vertical at the end, since only 13 changes were made during
the last year of m 7 8 ' s activity.

Another line also appears in Figure 1: It represents the total number
of different pages I typeset with 'QX78 as I was experimenting with
the first version. The dotted line in July 1978 stands for the 200 pages
of the first T)$X manual, and the dotted line in June 1979 stands for
the 100 pages of the first METAFONT manual; the remaining solid lines
stand for the 700 pages of Volume 2 and some experiments with DOC.

Figure 1 shows that four different phases can be distinguished in the
development of m 7 8 . First came the debugging phase (Phase 0), al-
ready mentioned. Then came a longer period of time (Phase l) when
I typeset several hundred pages of Volume 2 and the first user man-
ual; this experience suggested many amendments to my original design.

258 Literate Programming The Errors of TEX (1989) 259

4 , PHASE 0: DEBUGGING I
Mar 78

I
I I

Msy 78
pp. 1-270

Jul 78 Manual 0

Aug 78
Serninumcricol Algorithms.

pp. 271-700
Sep 78
Oct 78 Manual 2

Nov 78 I AMS math demo
Dee 78 I 1 I I I I

Jan 79 1 - (Paes so fa3 /2

Feb 79 I
Paaurl typesetting

Mar 79 I I
-

Apr 79
May 79 I

METAFONT
Jun 79 i
Jul 79 AMS index demo

Aug 79

Sep 79
Oet 79
Nov 79 Manual 4
Dee 79

Jan 80 I \
Feb 80
Mar 80

'lpJ in Pascal

Apr 80 PHASE 3: GLOBAL USERS
May 80 New linebreaking algorithm
Jun 80
Jul 80

Aug 80

Sep 80
Oet 80
Nov 80
Dec 80

Jan 81

Feb 81
Mar 81
Apr 81

May 81
Jun 81
Jul 81

Aug 81

Ssp 81
Oct 81

NOW 81
Dec 81

Jan 82

B b 82
Mar 82

Apr 82
May 82

Figure 1. The rise and fall of QX78.

errors began to show up. New users find new bugs. This coming-

out phase (Phase 2) included small bursts of changes when I faced
new applications-a suite of difficult test cases posed by the American
Mathematical Society, then the application to Pascal formatting, then
the complex index to Math Reviews. Finally there was Phase 3, when
changes were made in anticipation of a future m 8 2 ; I wanted several
new ideas to be well tested before I programmed the "ultimate" 'QX.

10 Mar 78
11 Mar 78
12 Mar 78
13 Mar 78

14 Mar 78
15 Mar 78
16 Mar 78

17 Mar 78

19 Mar 78

20 Mar 78

21 Mar 78

22 Mar 78
23 Mar 78

Data structures, memory management
Syntax, error recovery

Output
Psragraphing

Page breaking

Math typeselting

\I
29 Mar 78 \

May 78
PHASE 1: FIRST APPLICATIONS

Pp. 1-270

Jun 78

Jul 78 . User manual-.
Aug 78
Sep 78
Nov 78

PHASE 2; LOCAL USERS

1979

'lpJ in ~ & c a l
1980 PHASE 3: GLOBAL USERS New linebkeaking algorithm I

PHASE 0: DEBUGGING

-

- Manual 0

Manual 1
Manual 2

60 far)/2

. . . Manual 3

- Manual 4 -
ao far

1981 I
'ICX inatallsrs' workshop \

1982 Begin coding
100 200 300 400 500

Figure 2. The errors of QX78.

The Initial Debugging Stage

Let's roll the clock back now and look more closely at the earliest days
of QX78. In some ways this was the most interesting time, because the
whole concept of QX was just beginning to take shape. Figure 2 is a
modified version of Figure 1, redrawn with a time warp. There's now
exactly one error per time unit, so the 18-day debugging phase has been
slowed down to almost half of the total development time; on the other
hand, the years 1981-1982 at the bottom go by so fast as to be barely
visible.

I mentioned that 'QX78 was entirely coded before I first tried to run
it on March 10. My debugging strategy was to walk through the pro-
gram using the BAIL debugger, a system program by John Reiser that
allowed me to execute the statements of my program one at a time; BAIL
would also interpret additional SAIL statements that I entered online.
Whenever I came to a section of program that I'd seen before, I could set
a breakpoint and continue at high speed until coming to new material.
Watching the program execute itself in this "dynamic order" has always

260 Literate Programming The Errors of l&X (1989) 261

been insightful for me, after I've desk-checked it in the "static order" of
my original code.

Figure 2 shows that I got through the program initialization the first
day; then I was gradually able to check out the routines for basic data
management, parsing, and error reporting. On the fourth day 7&X be-
gan to combine boxes and glue, and there was visible output on the
fifth day. During the following three days I tested the algorithms for
breaking paragraphs into lines and breaking lines into pages. All this
went rather smoothly; I logged 101 errors during this first week, but all
of the problems were comparatively minor oversights, to be expected in
any program of this size.

On the ninth day I tackled alignment of tables, and got a big shock:
My original algorithms were quite wrong. I had greatly misunderstood
this aspect of l&X, because I'd greatly underestimated the complications
of nested alignments. (The log mentions some of the puzzlement and
frustration I felt at the time.) I wrestled with alignment for two days
before finding a solution.

Then I looked at the last remaining part of TEX, the code for type-
setting mathematics; this took another four days. (Well, the "days"
were nights actually; I worked during the night to avoid delays due to
time-sharing.) Finally I had seen essentially all of in operation, and
I could let it run at full speed instead of relying on single-step mode.
I spent six more days helping TF$ get through its first test data; finally
the test was passed. Whew! The debugging phase was over, 18 days
and 237 log-book entries after it began.

I kept track of how long this process took, so that I'd be better able
to estimate the duration of future programming projects. Here are the
figures:

Day Time (hburs)

10 Mar 1978 6
11 Mar 1978 7
12 Mar 1978 8
13 Mar 1978 7
14 Mar 1978 8
15 Mar 1978 8
16 Mar 1978 7
17 Mar 1978 7
18 Mar 1978 8

Day Time (hours)

19 Mar 1978 7.5
20 Mar 1978 10
21 Mar 1978 8
22 Mar 1978 6
23 Mar 1978 7.5
25 Mar 1978 7
26 Mar 1978 6
27 Mar 1978 8
29 Mar 1978 6

The total debugging time, 132 hours, was extremely encouraging to me,
because it was much less than the 41 days it had taken me to write
the program. Previously I had needed to devote about 70% of program

development time to debugging, but now the figure had dropped to
about 30%. I considered this to be a tremendous victory for structured
programming, since my programming time had also decreased from what
it had been with old habits. Later, with the WEB system, I noticed even
further gains in productivity.

How big was l&X at the time? I estimated this by counting the
number of semicolons (4857) and the number of occurrences of the SAIL

reserved words comment (480) and else (223). Since I always put
semicolons before end, the total number of statements in the program
could be computed as

; - comment + else = 4857 - 480 + 223 = 4600.

Thus the debugging strategy I used allowed me to verify about 35 state-
ments per hour.

The fact that I made 237 log entries in 132 hours means that I was
logging things only about once every 33 minutes; thus the total time
needed to keep the log was negligible. I can definitely recommend the
practice to everybody. During most of the debugging time I was clicking
away at the keys of my terminal, getting to know.exactly what TEX was
doing; I needed only a few extra minutes to make the log entries, which
helped me get to know myself.

Early Typesetting Experience

Now that was able to typeset its test program, I could proceed to
my main goal, the typesetting of Volume 2. This was a somewhat tedious
task-the keyboarding of a 700-page book is not one of life's greatest
pleasures-but the regular appearance of nice-looking pages kept me
happy. The jagged line in Figure 2 shows my progress in terms of pages
typeset versus errors in the 'QX log; a similar (even more jagged) line
appears in Figure 1, showing pages typeset as a function of time.

The most striking thing about the jagged line in Figure 2 is that it's
almost straight. Ideas about how to improve kept occurring to me
quite regularly as I typed the manuscript. Between May 13 and June 22
I processed about 250 pages, and added 69 new entries to the log. Those
69 entries included 29 "bugs" and 40 "enhancements"; thus, I thought of
a new way to improve at a regular rate of about one enhancement
for every six pages typed.

I mentioned earlier my firm conviction that I could not have correctly
delegated the coding of l&X to another person; I had to be doing it my-
self, because writing a new sort of program implies continually revising
the specifications. Similarly, I could not have correctly delegated these
initial typing experiments to another person. I had to put myself in the

262 Literate Programming

r81e of a regular user; there's no substitute for such experience, when a
new system is being designed.

But at the time I wasn't thinking about creating a system that would
be used widely; I was designing rn primarily for my own use. The idea
that TfjX could or should be generalized to other applications besides
The Art of Computer Programming dawned on me only gradually, as
people kept noticing what I was doing and expressing an interest in it.

John McCarthy observed during this period that T)$ was doing a
reasonable job with respect to traditional mathematical copy, but he
suspected that I'd have a tough time typesetting a book about TEX
itself. "That will be the real test," he said, "because you'll have to shut
off many of m ' s automatic features in order to handle problems of
self-reference."

In July I succumbed to John's challenge and prepared a user manual
for T@. Sure enough, this experience helped me identify quite a few
weaknesses in the existing design, things that I probably wouldn't have
noticed if I had confined my attention to The Art of Computer Program-
ming alone. Again I thought of enhancements at the rate of about one
for every six or seven pages, as I wrote the manual; but these weren't re-
ally occasioned by defects in 7&X1s ability to be self-referential, as John
had predicted. The new enhancements came about because the process
of manual-writing forced me to think about TEX as a whole, in a new
way. The perspective of a teacher/expositor helped me to notice several
inconsistencies and shortcomings.

Thus, 1 came to the conclusion that the designer of a new system must
not only be the implementor and the first large-scale user; the designer
should also write the first user manual. The separation of any of these
four components would have hurt T@ significantly. If I had not par-
ticipated fully in all these activities, literally hundreds of improvements
would never have been made, because I would never have thought of
them or perceived why they were important.

Phases 2 and 3: Users

But a system cannot be successful if it is too strongly influenced by a
single person. Once the initial design is complete and fairly robust, the
real test begins as people with many different viewpoints undertake their
own experiments. At the beginning of August, I distributed 45 copies of
the draft manual to people who had expressed interest in using T@ and
who had promised to give me feedback before the "real" user manual
would be issued in September. So T)jX had a multitude of users for the

The Errors of rn (1989) 263
first time, and I began to learn about a wide variety of new applications
and perceptions.

I continued to typeset the remaining 450 pages of Volume 2, and
my personal experiences with those pages continued to suggest regular
improvements to 'QX until I got up to about page 500. But the final
200 pages were just drudgework, not really inspirational to me in any
way as far as 'QX was concerned. Nor did I learn much more, except
about page layout, when I typed the METAFONT manual some months
later. The really important influences on 'QX after the first manual
was published were the users, first because they made different kinds of
mistakes than I had anticipated, and later because they had important
suggestions about how to improve W ' s capabilities.

Guy Steele was visiting Stanford that summer; he took a copy of
rn back to MIT with him, and I began to get feedback from two
coasts. One of Guy's suggestions, which I staunchly resisted at the
time, was to include some sort of mini-programming language in Q X so
that users could do numerical calculations. Slowly but surely I began
to understand the need for such features, which eventually became a
basic part of m 8 2 . Another early user was Terry Winograd, who
pushed W ' s early macro capabilities to their limits. He and Michael
Spivak, who began to work with W in the summer of 1979, taught me
a lot about the peculiar properties of macro expansion. Researchers at
Xerox PARC also had a significant influence on at this time; Lyle
Ramshaw modified the program to work with Xerox's new fonts and new
output devices, while Leo Guibas and Doug Wyatt undertook to rewrite
TEX in the MESA language.

Figures 1 and 2 indicate that the first 7&X user manual was issued
in five versions. "Manual 0" was the preliminary draft, handed out
to 45 guinea pigs who agreed to help me test the very first system.
"Manual 1" was a Stanford technical report issued a month later; it
was reprinted as "Manual 2" in November, using the higher-resolution
printing devices at Xerox PARC. The American Mathematical Society
published a paperback version [13] of Manual 2 in the summer of 1979;
that was "Manual 3." Then Digital Press published "Manual 4," which
included the METAFONT manual and some background information, in
December of 1979 [14].

The publishers of manuals 3 and 4 asked readers to mail a reply card
if they were interested in forming a 'QX Users Group, and more than
100 people answered Yes. So the first TUG meeting, in February 1980,
marked the beginning of yet another phase in the life of the SAIL program
m 7 8 . A great influx of new users and new applications made me strive

264 Literate Programming

for a more complete language. Hence there was a flurry of activity at
the end of March, 1980, when I decided to extend in more than a
dozen ways. These extensions represented only a fraction of the ideas
that had been suggested, but they seemed to provide all the requested
functionality in a clean way. The time was ripe to make the extensions
now or never, because the first versions of T)$ in Pascal were due to be
released in April.

The last significant batch of changes to W 7 8 were made in the sum-
mer of 1980, when lQX acquired the ability to typeset paragraphs with
arbitrary shapes. Still, the error log shows that I kept adding enhance-
ments regularly as the worldwide use of TEX continued to grow. It
turned out that the final bugs corrected in m 7 8 were all introduced
by recent enhancements; they were not present in the program of 1978.

The most significant pattern to be found among the enhancements
made to w 7 8 after its earliest days is the "unbundling" of things that
used to be frozen inside the code. At first I had fairly rigid ideas about
how much space to put in certain places, about how much penalty to
charge for certain line breaks, about how to interpret various characters
in the input, and even about where to find certain characters in fonts.
One by one', starting already at change #104, these things became pa-
rameters that could be changed by users who had different requirements
and/or different preferences.

The Real
I had vastly underestimated the complexities and subtleties of typeset-
ting when I'd na'ively expected to work out a complete system during a
single sabbatical year. But once I began, it became clear by 1980 that
I had acquired almost a moral obligation to advance the art and science
of typography in a more substantial way. I realized that I could never
be happy with the monster I had created unless I started over and built
an entirely new system, using the experience I had gained from w 7 8 .

I began writing the new system in the summer of 1981, and I decided
to call it m 8 2 because I knew it would take a year to complete. Once
again I couldn't delegate the job to an associate; I wanted to rethink
every detail of w, and I wanted to have a thorough taste of "literate
programming" before I dared to inflict such ideas on others [20]. I wanted
to produce truly portable software that would have a chance to serve for
many years as a reliable component of larger systems. I wanted QX82
to justify the confidence that people were placing in lQX78, which was
getting more praise than it deserved.

r

The Errors of (1989) 265

PHASE 1: MANUAL REV
Oct 82

Nov 82
Dec 82

Jan 83

Feb 83
Mar 83

Apr 83

i May 83 Arithmetic primitives

k
i
I Jun 83

Jul83

Aug 83
Sep 83

1984 PHASE 2: GLOBAL USERS

1985

PHASE 3: CqNVERGENCE

100 200 3(

Figure 3. The errors of QX82.

ION

-

%

iix D
- - Version 1.0

- Version 1.3

t Version 2.0

Figure 3 shows the development of m 8 2 , starting at the moment
I decided that it was essentially bug-free; this illustration uses the same
time-warp strategy as Figure 2. From the beginning there were hundreds
of users, so W 8 2 ' s Phase 1 was analogous to W 7 8 ' s Phase 2. But
now there was yet a new dimension: Several dozen people were also read-
ing the code and making well-informed comments on how to improve it.
Furthermore I had regular meetings with volunteer helpers who repre-
sented many different points of view. So I had a golden opportunity to
hone the ideas to a new state of perfection.

Two major changes were installed very early in m 8 2 ' s history. One
was to the way fonts are selected in a document (change #545), and
the other was to the treatment of conditional parts of macros (change
#564). Both of these changes impinged on many of the fundamental
assumptions I had made when writing the code; these were definitely
the most traumatic moments in m's medical history. I was glad to see
that WEB'S documentation facilities helped greatly to make such drastic
revisions possible.

266 Literate Programming The Errors of T@ (1989) 267

Phase 1 of m 8 2 ended about a year after it began, when I completed
writing The m b o o k . The log reveals that most of the changes made
to Tj$ during 1983 relate to the chapters of the manual that I was
writing at the time. This was the period when m really grew up.
As I said above, manual writing provides an ideal incentive for system
improvements, because you discover and remove glitches that you can't
justify in print. When you're writing a user manual, you also have
your last chance to make any enhancements that you've thought about
before; if certain enhancements aren't made then, you know that you
will forever wish you'd taken time to add them.

As with W 7 8 , the error log of enhancements to m 8 2 shows a
significant trend toward greater user control. More and more things
that were originally hardwired in the system became parametric instead
of automatic.

Phase 2 of m 8 2 began with the paperback publication of The
m b o o k and ended with the publication of the hardcover edition. Dur-
ing this phase (which lasted from October 1983 to May 1986) I was
mostly working on METAFONT and Computer Modern, so TFJ changed
primarily in ways that would blend better with those systems. The log
entries of Phase 2, #790 to #840, also show that a number of ever-more
subtle bugs were detected by ever-more sophisticated users during this
time. There was also a completely unsubtle bug, #808, which somehow
had snuck through all my tests and caused no apparent harm for an
amazingly long time.

Now m 8 2 is in its third and final phase. It has grown from the
original 4600 statements in SAIL to 1376 modules in WEB, representing
about 14,000 statements in Pascal. Five volumes describing the com-
plete systems for m, METAFONT, and Computer Modern have been
published. No more changes will be made except to correct any bugs
that still might lurk in the code (or perhaps to improve the efficiency or
portability, when it's easy to do so while correcting a real bug). I hope
m 8 2 will remain stable at least until I finish Volume 7 of The Art of
Computer Programming.

Test Programs

Since 1960 I have had extremely good luck with a method of testing
that may deserve to be better known: Instead of using a normal, large
application to test a software system, I generally get best results by
writing a test program that no sane user would ever think of writing.
My test programs are intended to break the system, to push it to its

extreme limits, to pile complication on complication, in ways that the
system programmer never consciously anticipated. To prepare such test
data, I get into the meanest, nastiest frame of mind that I can manage,
and I write the cruelest code I can think of; then I turn around and
embed that in even nastier constructions that are almost obscene. The
resulting test program is so crazy that I couldn't possibly explain to
anybody else what it is supposed to do; nobody else would care! But
such a program proves to be an admirable way to flush the bugs out of
software.

In one of my early experiments, I wrote a small compiler for Burroughs
Corporation, using an interpretive language specially devised for the
occasion. I rigged the interpreter so that it would count how often each
instruction was interpreted; then I tested the new system by compiling a
large user application. To my surprise, this big test case didn't really test
much; it left more than half of the frequency counts sitting at zero! Most
of my code could have been completely messed up, yet this application
would have worked fine. So I wrote a nasty, artificially contrived program
as described above, and of course I detected numerous new bugs while
doing so. Still, I discovered that 10% of the code had not been exercised
by the new test. I looked at the remaining zeros and said, Shucks,
my source code wasn't nasty enough, it overlooked some special cases I
had forgotten about. It was easy to add a few more statements, until
eventually I had constructed a test routine that invoked all but one
of the instructions in the compiler. (And I proved that the remaining
instruction would never be executed in any circumstances, so I took it
out .)

I used such "torture tests" to debug three compilers during the 60s.
In each case very few bugs were ever discovered after the tests had been
passed, so the methodology was quite effective. But when I debugged
m 7 8 , my test program was quite tame by comparison-except when
I was first testing the mathematics routines (March 20-23). I guess
I wasn't trying as hard as usual to make m a bulletproof system,
because I was still thinking of myself as m ' s main user. My original
test program for m 7 8 was written with an "I hope it works" attitude,
rather than "I bet I can make it fail." I suppose I would have found
several dozen of the bugs that showed up later (like #240 and #263) if
I had stuck to the torture-test methodology. Still, considering my mood
at the time, I suppose it was a good idea to have a test program that
would look like real typography; I didn't know what should do until
I could judge the aesthetic quality of its output.

268 Literate Programming

At any rate, my first test program was based on a sampling of material
from Volume 2. I went through that book and boiled it down to five
pages that illustrated just about every kind of typographic difficulty to
be found in the entire volume. (The output of this test program can be
seen in another paper [6], where David Fuchs and I used the same test
data to study some algorithms for font management.)

Years later, when m 8 2 was ready to be debugged, I understood
pretty clearly what the program was supposed to do, so I could then
apply the superior torture-test methodology. My test program was called
TRIP; I spent about five days preparing the first draft of TRIP in July,
1982. Here, for example, is a relatively mild portion of the original TRIP
code:

\def\gobble#l{) \f loatingpenalty 100
\everypar<A\insert20O<\baselineskip400pt\splittopskip .

\counti5pt\hbox<\vadjust{\penalty999))\hbox to-lOpt<))%
\ s h o w t h e \ p a g e t o t a l \ s h o w t h e \ p a g e g o a l \ a d v ~ t l 5 b y i
\mark{\the\countl5)\splitmaxdepth-lpt
\paR\gobble) % abort every paragraph abruptly

\def\weird#i{\csname\expandafter\gobble\string#l
\string\csname\endcsname)

\messageC\the\output\weird\one)

(Please don't ask me what it means.) Since then I've probably spent
at least 200 hours, modifying and maintaining TRIP, but I consider that
time well spent, and I think TRIP is one of the most significant products
of the TEX project [19]. The reason is that the TRIP test has detected
extremely subtle bugs in hundreds of implementations of QX, bugs
that would have been almost impossible to track down in any other way.
W 8 2 , with its TRIP test, has proved to be much more reliable than any
of the Pascal compilers it has been compiled with. In fact, I believe it's
fair to say that QX82 has helped to flush out at least one previously
unknown compiler bug whenever it has been ported to a new machine or
tried on a compiler that has not seen QX before! These compiler errors
were detectable because of the TRIP test. Later I developed a similar
test program for METAFONT, called TRAP [22], and it too has helped to
exorcise dozens of compiler bugs.

A single test program cannot detect all possible mistakes. For ex-
ample, TEX might terminate with a "fatal error" in several ways, only
one of which can happen on any particular run. Furthermore, TRIP
runs almost automatically, so it does not test all of 'I'EX'S capability for

The Errors of 'QjX (1989) 269
online interaction. But TRIP does exercise almost all of W ' s code, and
it does so in tricky combinations that tend to fail if any part of T&X is
damaged. Therefore it has proved to be a great time-saver: Whenever
I modify W, I simply check that the results of the TRIP test have
changed appropriately.

The only difficulty with the TRIP methodology is that I must check the
output myself to see if it's correct. Sometimes I need to spend several
hours before I've determined the appropriate output; and I'm fallible.
So W might give the wrong answer without my being aware of it. This
happened in bugs #543 and #722, when I learned to my surprise that
'QX had never before done the correct thing with TRIP. A system utility
for comparing files suffices now to convince me that incremental changes
to 'QjX or TRIP cause the correct incremental changes to the TRIP test
output; but when I began debugging, I needed to verify by hand that
thousands of lines of output were accurate.

I should mention that I also believe in the merit of formal and infor-
mal correctness proofs. I generally try to prove my programs correct,
informally, by stating appropriate invariants in my documentation and
checking at my desk that those relations are preserved. But I can make
mistakes in proofs and in specifying the conditions for correctness, just
as I make mistakes in programming; therefore I don't rely entirely on cor-
rectness proofs, nor do I rely entirely on empirical test routines like TRIP.

Location and Type of Errors
Let me review again the fifteen classes of errors that are listed in my

error log:

A - Algorithm F - Forgotten P - Portability
B - Blunder G - Generalization Q - Quality
C - Cleanup I - Interaction R - Robustness
D - Data L - Language S - Surprise
E - Efficiency M - Mismatch T - Typo

I mentioned before that each of the errors listed in the appendix refers
where possible to its approximate location in the program listing of
W 8 2 . It's natural to wonder whether the errors are uniformly inter-
spersed throughout the code, or if certain parts were particularly vul-
nerable. Figure 4 shows the actual distribution. No part of the program
has come through unscathed-or, shall we rather say, unimproved-but
some parts have seen significantly more action. The boxes to the left of

270 Literate Programming

m 7 8 m 8 2
Input/output, strings
Error handling
Data structures for semantics
Basic operations on data
The hash table
Data structures for syntax
Low-level parsing
Macro expansion
Medium-level parsing
Conditionals
File name scanning
Font data
Binary output
Data structures for math
Math typesetting
Alignment
Line breaking
Line breaking, continued
Hyphenation
Page breaking
The chief executive
Building boxes
Building lists
Building math formulas
Assigning to user registers
Miscellaneous
Initialization
Extensions

Figure 4. Distribution of [bugs I enhancements] by program location.

the vertical lines in Figure 4 represent "bugs" (A, B, D, F, L, M, R, S,
T), while the boxes to the right represent "enhancements" (C, E, G, I,
P, Q). The most unstable parts of T~ijX78 were the parts I understood
least when I began to write the code, namely mathematical formatting
and alignment. The most unstable parts of m 8 2 were the parts that
differed most from m 7 8 (the conditional instructions and other as-
pects of macro expansion; also the increased user access to registers and
internal quantities used in m ' s decision-making).

The Errors of !QX (1989) 271

I should mention why hyphenation is almost never mentioned in the
log of m 7 8 . Although I said earlier that m 7 8 was entirely written
before any of it was tested, that's not quite true. The hyphenation algo-
rithm was quite independent of everything else and easily isolated from
the code, so I had written and debugged it separately during three days
in October, 1977. (There's obviously no advantage to testing indepen-
dent programs simultaneously; that leads only to confusion. But the rest
of QjX was highly interdependent, and it could not easily be run when
any of the parts were absent, except for the routines that produced the
final output.) The hyphenation algorithm of mi '8 was English-specific;
Frank Liang, who had helped me with this part of m 7 8 , developed a
much better approach in his thesis (111, and I ultimately incorporated
his algorithm in m 8 2 [see Chapter 81.

Figure 5 shows the accumulated number of errors of each type in
m 7 8 , with bugs at the bottom and enhancements at the top. Initially
the log entries are mostly bugs, with occasional enhancements of type I ;
at the end, however, enhancements C, G, and Q predominate. Figure 6
is a similar diagram for 1]EX82. The pattern is much the same; evidently
an additional four years of experience did not teach me to make fewer
mistakes.

Some Noteworthy Bugs

The gestalt of m ' s evolution can best be perceived by scanning through
the log book, item by item. But I would like to single out several errors
that were particularly instructive or otherwise memorable.

A, Algorithmic Anomalies.

I decided from the beginning that the algorithms of would be in the
public domain. But if I were to change my mind and charge a fee for my
services in inventing them, I would probably request the highest price
for a comparatively innocuous-looking group of statements now found
in $851 and $854 of the program. This precise sequence of logical tests,
used to control when a line break is being forced because there is no
"feasible" alternative, has the essential form

if a1 V a2 then
if a 3 A a q A a 5 / \a6 then u1

else if a 7 then a2 else a3

else a4
and most of the appropriate boolean conditions ai were discovered only

272 Literate Programming

Figure 5. Accumulated errors of %X78, divided into 15 categories.

with great difficulty. The program now warns any readers who seek to
improve 'I'@ to "think thrice before daring to make any changes here."
Some indications of my struggles with this particular logic appear in
errors #75, #93, and #506.

m ' s line-breaking algorithm determines the optimum sequence of
breaks for each paragraph, in the sense that the total "demerits" are
minimized over all feasible sequences of breaks. The original algorithm
was fairly simple, but it continued to evolve as I fiddled with the formula
used to calculate demerits. Demerits are based on the "badness" b of
the line (which measures how loose or tight the spacing is) and the
"penalty" p for the break (which may be at a hyphen or within a math
formula). A penalty might be negative to indicate a good break. The
original formula for demerits in m 7 8 was

The Errors of (1989) 273

---- -- . ---- B ---- --
i
---. A

'C

Figure 6. Accumulated errors of QX82.

D = max(b + p, o) ~ ;

error #76 replaced this by

The extra constant 1 was used to encourage paragraphs with fewer lines;
the subtraction of p2 when p < 0 gave fewer demerits to good breaks.
This improved formula was published on page 1128 of the article on
line-breaking by Knuth and Plass [16]. The first draft of m 8 2 added
an obvious generalization to the improved formula by introducing a

274 Literate Programming -

\linepenalty parameter, 1, to replace the constant 1. A further im-
provement was made in change #554, when I realized that better results
would be obtained by computing demerits as follows:

(l+b)2 '+p2, i f p > O ;
(l+b)2 - p2, i f p < 0.

Otherwise, a line with, say, (b,p) = (50, loo), followed by a line with
(b,p) = (0, O), would be considered inferior to a pair of lines with (b,p) =
(0,100) and (100, O), although the second pair of lines would actually
look much worse.

R. Blunders. -,

A typical blunder, among the 50 or so errors of class B in the appendix, is
illustrated by errors #7 and 1192. I had declared two symbolic constants
in my program, new-line (for one of the three states of W s lexical scan-
ner) and next-line (for the sequence of ASCII codes carriage-return and
line-feed, needed in SAIL output conventions). Although the meanings
were quite dissimilar, the names were quite similar; therefore I confused
them in my mind. The compiler didn't detect any syntax error, because
both were legal in an output statement, so 1 had to detect and correct
the bugs myself. I could have avoided these errors by using a name
like cr-lf instead of next-line; but that sounds too jargony. A better
alternative would have been new-line-state instead of new-line.

D, D a t a disasters.

My most striking error in data-structure updating was #630, which crept
in when I made change #625. The error needs a bit of background in-
formation before I can explain it: Using an idea of Luis Trabb Pardo,
1 was able to save one bit in each node of m ' s main data structures by
putting the nodes in which the bit would be 0-the so-called charnodes-
into the upper part of the mem array, all other nodes into the lower part.
(It was very important to save this bit, because I needed at least 32 ad-
ditional bits in every charnode.) One of the aspects of change #625 was
to optimize my data structure for representing mathematical subformu-
las that consist of a single letter. I could recognize and simplify such a
subformula by looking for a list that consisted of precisely two elements,
namely a charnode followed by a "kern node" (for an *italic correction").
A kern node is identified by (a) not being a charnode, i.e., not having a
high memory address, and (b) having the subfield type = 11.

The Errors of 'QX (1989) 275 - "
1 torgot to test condition (a). But my program still worked in almost

every case, because unsuitable lists of length 2 are rare as subformulas,
and because the type subfield of a charnode records a font number.
Amazingly, however, within one week of my installing change X625, some
user happened to create a math list of length 2 in which the second
element was a character from font number ll! -. . -. l 'his example demonstrates that I was lucky to have a wide variety
of users. Still, such a bug might survive for years before it would cause
trouble for anybody.

F, Forgetfulness.

As I'm writing this paper, I'm trying to remember all the points I wanted
to explain about m ' s evolution. Probably I'll forget something, as I did
when I was writing the program for TkX.

-- - Usually a bug of class F was easily noticed when I first looked at
the corresponding part of the code, with my walk-through-in-execution-
order method of debugging. But I'd like to mention two of the F errors
that were among the most difficult to find. Both of them occurred in
routines that had worked correctly the first few times they were exer-
cised; indeed, these routines had been called hundreds of times, with
perfect results, so I no longer suspected that they could be the source
of any trouble.

Error X91 occurred in the memory allocation subroutine, the first time
I ran out of memory. That subroutine had the general form

begin (Get ready to search);
repea t (Look at an available slot);

if (big enough) t h e n goto found;
(Move to next slot);

until (back at the beginning);
found: (Allocate and re turn , unless the available list

becomes exhausted);
ovfi: (Give an overflow message);
e n d

The bug is obvious: I forgot to say 'goto ovj?' just before the label
'found:'. And it's also obvious why this bug was hard to find: I had
lost my suspicions that this subroutine could fail, but when it did fail
it allocated one node right in the middle of another. My linked data
structure was therefore destroyed, but its defective fields did not cause
trouble until several hundred additional operations had been performed
by the parts of the program where I was still looking for bugs.

276 Literate Programming

'Error #203 was even more difficult to find; it lurked in m ' s get-next
routine, the subroutine that is executed far more than any other. When-
ever 'TEX is ready to see another token of input, get-next comes into
action. Therefore, by the time I had corrected 200 errors, get-next had
probably gotten the correct next token more than 100,000 times; I con-
sidered it rock-solid reliable.

Since get-next is part of m ' s "inner loop," I had wanted it to be ef-
ficient. Indeed, I learned later that the very first statement of get-next,
'cur-cs c O', is performed more often than any other single statement of
m 8 2 . (Empirical tests covering a period of more than a year show that
'cur-cs t 0' was performed more than 1.4 billion times on Stanford's
SUAI computer. The get-avail routine, which is next in importance,
was invoked only about 438 million times.) Knowing that get-next was
critical, I had tried to avoid performing 'cur-cs c O' in my first imple-
mentations, in cases where I knew that the value of cur-cs would not
be examined by the consumers of get-next's tokens. In fact, I knew that
cur-cs would be irrelevant in the vast majority of cases. (But I also
knew, and forgot, Hoare's dictum that premature optimization is the
root of all evil in programming.)

Well, you can almost guess the rest. When I corrected my serious
misunderstanding of alignments, errors #I08 and #110, I introduced a
new case in get-next, and that new case filled my thoughts so much
that I forgot to worry about the 'cur-cs + 0' operation. Still, no harm
was done unless cur-cs was actually being looked at; m wouldn't fail
unless \cr occurred in an alignment having a special sort of template
that required backup in the parser. As before, the effect of this error
was buried in a data structure, where it remained hidden until much
later. I found the bug only by temporarily inserting new code that
continually monitored the integrity of the data structures. (Such code
later became a standard diagnostic feature of m 8 2 ; it can be seen for
example in s167.)

L, Language lossage.

Some of my errors (X98, 1295, X296, 1480) were due to the fact that
algorithms involving floating-point numbers sometimes fail because of
roundoff errors. (I have assigned these errors to class L instead of class A,
although it was a close call.) m 8 2 was designed to be portable so that
it gives essentially identical results on all computers; therefore I avoided
floating-point calculations in critical parts of the new program.

Two other errors in my log belong unambiguously to class L: In #63
and #827, I failed to insert parentheses into a macro definition. As a

The Errors of T)$ (1989) 277
result, when I used the macro with text replacement, any frequent user
of macros can guess what happened. (Namely, in #827, I had declared
the macro

hi-mem-stat-min = mem-top - 13
and used it in the statement

dyn-used + mem-top + 1 - hi-mem-stat-min;
this gave a minus where I wanted a plus.)

M, Mismatches.

When I write a program I tend to forget the exact specifications of its
subroutines. One of my frequent flubs is to blur the distinction between
an object and a pointer to that object. In m 7 8 , for example, I noticed
when I got to error X79 that I had called vpackage(p, . . .) where p pointed
to the first node of a vlist, while in the declaration of upackage I had
assumed parameters of the form (h, . . .) where h points to a list header;
thus, link(h), not h itself, was assumed to point to the first list item.
The compiler didn't catch the error because both h and link(h) were of
type pointer.

While fixing this bug it occurred to me that vpackage was an oft-used
subroutine and that I might have made the same mistake more than
once. So I looked closely at each of the 26 places I had called vpackage,
and the results proved that I was remarkably inconsistent: I had specified
a list head 14 times, and a direct pointer 12 times! (Fortunately there
wasn't a 13-13 split; that would have been unlucky.)

This error reminded me that I should always check the entire program
whenever I notice a mistake; failures tend to recur. In fact, several
errors of QX82 (#803, #813, #815, #837) were first noticed when I was
debugging similar portions of METAFONT.

R, Robustness.

Most of the changes of type R were introduced to keep T)$ from crashing
when users supply input that doesn't obey the rules. But some of the R's
in the log are intended to keep T)$ alive even when other parts of
are failing, because of my programming errors or because somebody else
is trying to produce a new modification of m.

Thus, for example, in #99 and #123, I redesigned two of my procedures
so that they would produce a symbolic printout of given data structures
in memory even when those data structures were malformed. I made
it possible to get meaningful output from arbitrary bit configurations

278 Literate Programming The Errors of 'l&X (1989) 279

in memory, so that while debugging I could look interactively at

garbage and guess how it might have arisen.
One of the most recent changes to w, #846, has the same flavor:

The parameter to show-node-list was redeclared to be of type integer
instead of type pointer, because buggy calls on show-node-list might not
supply a valid pointer.

S, Surprises.

The most serious errors were those due to my global misunderstandings
of how the system fits together. The final error in m 7 8 was of type S,
and I suppose the final error of m 8 2 will be yet another surprise.

Let me mention just two of these. The first is extremely embarrassing,
but it makes a good story. TEX produces D V I files as output, where D V I
stands for Device Independent. The D V I language is like a machine
language, consisting of 8-bit instruction codes followed in certain cases
by arguments to the instructions. Two of the simplest instructions of
D V I language are push (code 141) and pop (code 142). It turns out
that might output push followed immediately by pop in various
circumstances, and this needlessly clutters up the D V I file; so I decided
to optimize things a bit by checking to see whether the final byte in my
output buffer was push before would output a pop. If so, I could
cancel both instructions. This technique even made it possible to detect
and cancel long redundant sequences like push push pop push push pop
pop pop. Naturally, I checked to see that the buffer hadn't been entirely
cancelled out when I tested for such an optimization. (I wasn't 100%
stupid.) But I failed to realize that the byte just preceding pop might
just happen to be 141 (the binary code for push) when it was the final
operand byte of some other instruction. Ouch!

The other S bug I want to discuss is truly an example of global mis-
understanding, because it arose in connection with my misperceptions
about \global definitions in TEX documents. Users can define control
sequences like \abc inside a w "group," which is essentially a "block"
in the sense of Algol scope rules. At the end of a group, local definitions
are rescinded and control sequences revert to the meanings they had at
the beginning of the group. In my first implementation of w 7 8 I went
even further: If \abc was defined inside a group but not before the group
had begun, I actually removed \abc from the hash table when the group
ended.

There is one exception, however, to m ' s local scope rules (and it's
usually the exceptions that lead to surprises). Users can state that a
definition is \global; this means that the new definition will survive at

the end of the current group, unless it has been globally redefined again.
Therefore my implementation removed control sequences from the hash
table at group endings only when they had not been globally defined.

That caused bug #422, which was identical to one of the first serious
bugs I had ever encountered when learning to program in the 50s: Dele-
tions from an "open" hash table might make other keys inaccessible,
unless the deletions occur in FIFO order, or unless the deletion algo-
rithm takes special precautions to relocate keys in the table. (See my
book Sorting and Searching [l l] , pages 526-527, where I say-in italics-
iiThe obvious way to delete records from a scatter table doesn't work.")
Alas, I had deleted the control-sequence records in the "obvious way" in
m 7 8 , not realizing that global definitions destroyed the FIFO order.

To fix bug #422, I couldn't patch the definition procedure by using
Algorithm 6.4R from my book [l l] , because the organization of 'l&X
did not allow for relocation of keys. So I needed to change the hash
table algorithm from linear probing to chaining, which supports arbi-
trary deletions. This change was not as painful as it might have been
at this late date (August 1979), because I had needed an excuse anyway
to overcome my initial hash table design. In order to keep the original
implementation simple, I had decided to require that control sequence
names be essentially unique when restricted to their first six letters.
Such a restriction was quite reasonable when I was to be the only user
of TEX; but it was becoming intolerable when the number of users began
to grow into the thousands. Therefore change #422 not only altered the
hash discipline, it also changed the entire representation mechanism so
that identifiers of arbitrary length could be accommodated.

And that wasn't the end of the story. Another year and a half went
by before I realized (in #493) that m allows declarations like

within a group. In such cases I could not eliminate \abc from the hash
table at the end of the group, because a reference to \abc still survived
within \xyz. I finally decided not to delete anything from the hash
table (although I did provide a mechanism to prevent unwanted keys
from ever getting in; see #294 and #769).

How did such serious bugs remain undetected for so long? They lay
dormant because normal usage of T)$i does not require complicated
interactions between local and global definitions in groups. Most for-
matting is simpler than this; even complex books such as The Art of
Computer Programming and the 7QX manual itself do not need such

280 Literate Programming

generality. But if I had used the TRIP test methodology in the early
days, 1 would have found and corrected the local/global problems right
at the start. This experience suggests that all software systems be sub-
jected to the meanest, nastiest torture tests imaginable; otherwise they
will almost certainly continue to exhibit bugs for years after they have
begun to produce satisfactory results in large applications.

T, Typographic trivia.

The typographic errors of rn weren't especially significant, but I'll
mention two of them (#69 and #86), where my original SAIL code looked
like this:

glueshrink(q) +glueshrink(q) + g l u e s h r i n k ;
x+x+width(q) .

SAIL was written for the extended ASCII character set that once was
widely used at Stanford, MIT, CMU and a few other places; one of the
important characters was '+', for Algol's ':='. The language allowed
multiple assignment, hence both of these statements were syntactically
correct (although rather silly).

A language designer straddles a narrow line between restrictiveness
and permissiveness. If almost every sequence of characters is syntac-
tically correct, the inevitable typographic errors will almost never be
detected. But if almost no sequences of characters are syntactically
correct, typing becomes a real pain.

In m 7 8 I made a terrible decision (#402) to allow users to type a
letter like LA' whenever T@l was expecting to see a number; the meaning
was to use the ASCII code of A (97) as the number. This extended the
language for certain hacker-type applications; but it caused all sorts of
grief to ordinary users, because their typographical errors were being
treated as perfectly meaningful T@ input, and they couldn't figure out
what was going wrong. (1 compounded the error in #507; see also #511.
This is a sorry part of the record.) TEX82 resolved the problem by using
a special character to introduce ASCII constants.

Some Noteworthy Enhancements

Let's turn now to the other six kinds of errors in the log.

C, Cleanups.

The stickiest issue in 'TEX has always been the treatment of blank spaces.
Users tend to insert spaces in their computer files so that the files look
nice, but document processors must also treat spaces as objects that

The Errors of rn (1989) 281
appear in the final output. Therefore, when you see documents nowadays
that have been prepared by systems other than TEX, you often find cases
where double spaces appear incorrectly between words; and when you
see documents prepared with m, you run into cases where a necessary
space between words has disappeared. I kept searching for rules that
would be simple enough to be easily learned, yet natural enough that
they could be applied almost unconsciously. I finally concluded that no
such rules existed, and I opted for the best compromise I could find.

Several of the log entries refer to the question of optional spaces after a
macro definition. In #133, I decided to ignore a space that appears there;
this was prompted by experiences recorded in my comments following
#I15 and #119. But #I33 caused a timing problem in #560, because
the macro definition hadn't been fully processed when 'I).$ wanted to
check for the optional space; if the user invoked the macro immediately,
instead of putting a space there, '@X wasn't ready to respond. Finally
in #606 I came to the conclusion that m users will best be able to
keep their sanity if I do not ignore spaces after definitions; then dozens
of similar-appearing cases all have consistent rules.

(See also #220, for space after '$$'; #361, #708, #720, and #723, for
space after constants; #440, for space after active characters; and #632,
for space after '\\'.)

G, Generalizations.

W continued to grow new capabilities as people would present me with
new applications. When I couldn't handle the new problem nicely with
the existing QjX, I usually would end up changing the system. (But
I kept the changes minimal, because I always wanted to finish and get
on with other things. More about that later.)

Such generalizations were often built incrementally on the shoulders
of their predecessors. For example, the original QX78 had \output
and \mark and macro definitions, which scanned and remembered lists
of tokens, but there was no good way to assign a list of tokens to a
"token list variable" without causing macro expansion. Then w 8 2
added a feature called \everypar, which Arthur Keller had long been
lobbying for. One day I noticed that I could solve a user's problem
in a tricky way by temporarily using \everypar to store a list of to-
kens. This was quite different from the intended use of \everypar,
of course; so I introduced a new primitive operation called \tokens
for such purposes (#559). Later, \everypar spawned several descen-
dants called \everymath and \everydisplay (#568), \everyhbox and
\everyvbox (#649), \every job (#657), \everycr (#688). I eventually

282 Literate Programming

found applications where \tokens wasn't enough by itself and I needed
to borrow one of the \every features temporarily to do some nonstan-
dard hackery. So I finally replaced \tokens by an array of 256 registers
called \toks (#713), analogous to TE)['s existing arrays of registers for
integers, dimensions, boxes, and glue. m 8 2 also acquired the abil-
ity to make assignments between different kinds of token-list variables
(#746). In such ways I tried to keep the design "orthogonal" as the
language grew.

Of course every language designer likes to keep a language simple
by applying Occam's razor. I was pleased to discover early in 1977
that simple primitive operations involving boxes, glue, and penalties
could account for many of the fundamental operations of typesetting.
This was a real unification of basic principles, and it turned out to be
even better when I realized that the concepts of ordinary line-breaking
applied also to tasks that seemed much harder [16]. But I also fooled
myself into thinking that T&X had fewer primitives than it really did, by
 loverl loading^' operations that were essentially independent and calling
them single features.

For example, my original design of m 7 8 would break paragraphs
into lines by ignoring all lines whose badness exceeded 200.

Later

(#104) I made this threshold value user-settable by introducing a new
primitive called \ jpar . Setting \jpar=2 was something like setting
\tolerance=200 in m 8 2 ; but I also included a peculiar new conven-
tion: If \ jpar was odd, the paragraphs would be set with ragged right
margins, otherwise they would be justified to the full width!

Thus, in my attempt to minimize primitives, I had loaded two inde-
pendent ideas onto a single parameter. I also had packed a half-dozen
different kinds of diagnostic output into a single number called \ t rac ing
(see #199), whose binary digits were examined individually when TEX
was deciding whether to trace parts of its operations.

Then I began to see the need for more user-settable numbers, and
I shuddered to think at the resultant multiplicity of new primitives. So
I replaced both \ jpar and \ t rac ing by a single primitive called \chpar
(#244); one could now say, for example, \chparl=2 instead of \jpar=2.
This change gave me the courage to add new parameters for hyphen
penalties, etc., and 1 even added a new parameter to control the ragged-
ness of right margins (~334). Now the parity of \ jpar was irrelevant;
henceforth, the right margins could be either straight or ragged, or they
could be produced using some smoothly varying compromise between
those extremes-'one third of the way to full raggedness."

My decision to introduce \chpar in m 7 8 wasn't too bad, because
is a macro language and I immediately could define \ jpar and

The Errors of TEX (1989) 283
\ t racing as abbreviations for \chparl and \chpar2. But still, those
arbitrary numeric codes were inelegant. m 8 2 now has fifty differ-
ent primitive operations that denote integer-valued parameters, each
with standard (but user-changeable) names. The old \ jpar has become
\tolerance and \pretolerance. The old \ t rac ing has been unbun-
dled into \tracingparagraphs, \tracingpages, \tracingmacros, and
a half-dozen more, with separate parameters like \showboxdepth to gov-
ern the amount of display.

I, Interactions.

About 15% of the errors in the 7Q$ log have been classified type I.
The main issue in such cases is to help users identify and recover from
errors in their source programs, and this is always problematical because
there are so many ways to make mistakes. "When your error is due to
misunderstanding rather than mistyping, . . . QX can only explain what
looks wrong from its own viewpoint; such an explanation is bound to be
mysterious unless you understand the machine's attitude." [21] Which
you don't.

Still, I kept trying to make QX respond more productively, and every
such change was logged as an "error" in my original design. The most
memorable error of this type was probably #213, when I first realized
how nice it would be if I could insert a token or two that m could read
immediately, instead of aborting a run and starting from scratch. IThis
was soon followed by #242, when deletion of tokens was also allowed
in response to an error message.) I would never have thought of these
improvements if I hadn't participated in the implementation and testing
of m, and I have often wished for similar features in other software
I've used since. This one feature must have saved me hundreds of hours
as a TEX user during recent years.

Another improvement in interaction didn't occur to me until several
months and several hundred pages of output later. Error #338 records
the blessed day when I gave the ability to track "runaways," parts
of the program that were being processed in the wrong mode because
of missing right delimiters. (Further refinements to that change were
logged as entries 11344, X426, and ~793.) Without such provisions, errors
that QX could not have detected until long after their appearance would
have been much harder to track down.

There was another significant improvement in interaction that never
made it into my error log, because I included it in the original QX82
without ever putting it into QX78. This is the short.dzsplay procedure,

284 Literate Programming

for showing the contents of "overfull boxes" and such things in an abbre-
viated form easily understood by novice users. The short-display idea
was invented by Ralph Stromquist, who installed it in his early version
of at the University of Wisconsin.

P, Portability.

The first changes of type P were simply enhancements to the comments
in my SAIL program, but the advent of WEB made it possible for TEX to
become truly independent of the machine and operating system it was
being run on.

Change #633 is perhaps the most instructive class-P modification:
I decided to guarantee compatibility between DEC-like systems (which
break the source file into lines according to the appearance of ASCII
carriage-return characters) and IBM-like systems (which have fixed-
length source lines reminiscent of 80-column card^),^ in the following
way: Whenever rn reads a line of input, on any system, it automati-
cally removes all blank spaces that appear at the right end. The presence
or absence of such blanks therefore cannot influence the behavior of
in any way: An ASCII file whose lines are at most 80 characters long
(as defined by carriage returns, with or without blanks in front of those
carriage returns) can be converted to a file of 80-character records that
will produce identical results with W, simply by padding each line
with blanks.

Change 8791 carried #633 to its logical conclusion.

Q, Quality.

From the beginning, I wanted TEX to produce documents of the high-
est possible typographic quality. The time had come when computer-
produced output no longer needed to settle for being only "pretty good";
I wanted to equal or exceed the quality of the best books ever printed
by photographic methods.

As Kernighan and Cherry have said, "The main difficulty is in finding
the right numbers to use for esthetically pleasing positioning. . . .Much
of this time has gone into two things-fine-tuning (what is the most
esthetically pleasing space to use between the numerator and denomi-
nator of a fraction?), and changing things found deficient by our users
(shouldn't a tilde be a delimiter?) ." [8]

Paradoxically, DEC has also introduced the VMS operating system, which
has fixed-length lines that can include troublesome carriage-returns. But
that's ailother story.

The Errors of rn (1989) 285
I too had trouble with numerators and denominators: Change #229

increased the amount of space surrounding the bar line in displayed
fractions, and I should have made a similar change to fractions in text.
(Page 68 of the new Volume 2 turned out to be extremely ugly because
of badly spaced fractions.) m 8 2 was able to improve the situation
because of my experiences with m 7 8 , but even today I must take
special precautions in my documents to get certain fractions and
square roots to look right.

The Evolution Process as a Whole
Looking now at the entire log of errors, I'm struck by the fact that my
attitude during those years was clearly far from ideal: My overriding
goal was always to finish, to finish, to get this long-overdue project done
so that I could resume work on other long-overdue projects. I never
wanted to spend extra time studying alternatives for the best possible
typesetting language; only rarely was I in a mood to consider any changes
to m whatsoever. I wanted T)$ to produce the highest quality, sure,
but I wanted to achieve that with the minimum amount of work on
my part.

At the end of almost every day between March 29, 1978, and March
29, 1980, I felt that W 7 8 was a complete system, containing no bugs

' and needing no further enhancements. At the end of almost every day
since September 9, 1982,I have felt that m 8 2 was a complete system,
containing no bugs and needing no further enhancements. Each of the
subsequent steps in the evolution of rn has been viewed not as an
evolutionary step towards a vague distant goal, but rather as the final
evolutionary step towards the finally reached goal! Yet, over time, Q X
has changed dramatically as a result of many such "final steps."

Was this horizon-limiting attitude harmful, or was it somehow a bless-
ing in disguise? I'm pleased to see that actually kept getting simpler
as it kept growing, because the new features blended with the old ones.
I was constantly bombarded by ideas for extensions, and I was con-

)

stantly turning a deaf ear to everything that didn't fit well with TE?C as
I conceived it at the time. Thus rn converged, rather than diverged,
to its final form. By acting as an extremely conservative filter, and by
believing that the system was always complete, I was perhaps able to
save T)jX from the "creeping featurism" [24] that destroys systems whose
users are allowed to introduce a patchwork of loosely connected ideas.

If I had time to spend another ten years developing a system with the
same aims as m - i f I were to start all over again from scratch, without
any considerations of compatibility with existing systems-I could no

286 Literate Programming

doubt come up with something
moment I can't think of any big

that is marginally better. But at the
improvements. The best such system I

can envision today would still look very much like m 8 2 ; so I think this
particular case study in program evolution has proved to be successful.

Of course I don't mean to imply that all problems of computational
typography have been solved. Far from it! There still are countless
important issues to be studied, relating especially to the many classes
of documents that go far beyond what I ever intended m to handle.

Conclusions

My purpose in this paper has been to describe what I think are the
most significant aspects of the experiences I had while developing m,
basing this on a study of more than 800 errors that I noted down in
log books over the years. I've tried to interpret many specific facts and
observations in a sufficiently general way that readers may understand
how to apply similar concepts to other software developments.

In Volume 1 of The Art of Computer Programming [9], I wrote:

Debugging is an art that needs much further study . . .The most
effective debugging techniques seem to be those which are designed
and built into the program itself . . . Another good debugging prac-
tice is to keep a record of every mistake that is made. Even though
this will probably be quite embarrassing, such information is invalu-
able to anyone doing research on the debugging problem, and it will
also help you learn how to reduce the number of future errors.

Well, I hope that my error log in the appendix below, especially the
first 237 items (which relate specifically to debugging), will be useful
somehow to people who study the debugging process.

But if you ask whether keeping such a log has helped me learn how
to reduce the number of future errors, my answer has to be No. I kept
a similar log for errors in METAFONT, and there was no perceivable
reduction. I continue to make the same kinds of mistakes.

What have I really learned, then? I think I've learned, primarily, to
have a better sense of balance and proportion. I now understand the
complexities of a medium-size software system, and the ways in which
it can be expected to evolve. I now understand that there are so many
kinds of errors, we cannot stamp them out by systematically eliminat-
ing everything that might be "considered harmful." I now understand
enough about my propensity to err that I can accept it as an act of life;
I now can be convinced more easily of my fallacy when I have made a
mistake. Indeed, I now strive energetically to find faults in my own work,

The Errors of TEX (1989) 287
even though it would be much easier to look for assurances that every-
thing is OK. I now look forward to making (and correcting) hundreds of
future errors as I write Volume 4 of The Art of Computer Programming.

Addendum: Fifteen Months More
As mentioned above, I began to write this paper in May of 1987, but I
decided to wait before publication until more time had gone by. Then I
could present a "complete" and "final" record of QX's errors.

Now it's September, 1988, and I've decided to bring this paper to a
possibly premature conclusion, because I'm scheduled to present it at
a conference [4]. still hasn't shown encouraging signs of becoming
quiescent; indeed, sixteen more entries have entered the error log since
May, 1987, including three as recent as June, 1988. Therefore it still
isn't the right moment to manufacture T)$ on a chip!

All errors known to me as of September 1, 1988, are now included in
the appendix to this paper; the total has now reached 865.3

I plan to publish a brief note ten years from now, bringing the list to
its absolutely final form.

I have been paying a reward to everyone who discovers new bugs in
Q X , and doubling the amount every year. Last December I made two
payments of $40.96 each, and my checkbook has been hit for five $81.92
payments in recent months. I'm desperately hoping that this incentive
to discover the final bugs will produce them before I am unable to Dav . "
the promised amount. (Surely in 1998 I won't be writing checks for
$83,886.08?)

As I expected, half of the most recent errors have fallen into the sur-
prise (S) category-even though surprises, by definition, are unexpected.
But one of the others (error #854) was perhaps the most surprising of
all, because it was the result of a terrible algorithm by a person who
certainly should have known better (me). I wanted to multiply the
two's-complement fixed-point number

A = -16 + a1 . 2-4 + a:! . 2-l2 + a3 2-20, 0 5 ai < 256,

by the positive quantity t/216, where z is an integer, 226 5 z < 227,
obtaining an answer of the form P/216 where P is an integer, I PI < 231;

(Footnote added September 1991) In fact we are now up to 916, primarily
because of major changes in 1989 that can be said to have inaugurated
"Phase 4" of W 8 2 .

288 Literate Programming The Errors of QX (1989) 289

all intermediate quantities in the calculation were required to be less
than 231 in absolute value. My program did this by computing

C t 1 6 * Z ;
Z c Zdiv 16;
P t ((a3 1; Z) div 256 + a2 * Z) div 256 + a1 * Z - C ;

I should rather have computed
Z t Z div 16;
P c ((as * Z) div 256 + a2 * Z) div 256 + (a1 - 256) * Z .

\ - -

(Consider, for example, the case Z = 226 + 15 and a1 = a2 = a3 = 255,
so that A = -2-20. The first method gives P = -304; the second
method gives the correct answer, P = -64.)

Let me close by discussing one more recent error, #864. This change
yields only a slight gain in efficiency, so I needn't have made it; but it
was easy to correct one more statement while I was k i n g #863. It's an
instructive example of how a design methodology based on invariants
might not lead to the best algorithm unless we think a bit harder about
what is going on.

Here's the idea: Each run of QjX determines a threshold value 8
above which.the (one-word) charnodes will reside, below which all other
(variable-size) nodes will be stored. Actually there are two values, Bo and
81; memory positions between 190 and el are unused. (In the program,
80 is actually called lo-mem-max, and 81 is called hi-mem-min.) QjX
changes 80 and 81 conservatively as it runs, so that they will converge
to values appropriate to particular applications. The boundary value 13
was originally fixed at compile time; this transition to LLlate binding''
was change #819.

When m needs more space for charnodes, it usually sets O1 c 81 - 1;
when needs more space for variable-size nodes, it usually sets 80 +

80 + 1000. But we need to have 80 < 81. Therefore, instead of setting
80 c 80 + 1000, my original code said

if - 80 > 1000 then O0 t 80 + 1000
else if - 80 > 2 then 80 t (80 + 81 + 2) div 2
else (Report memory overflow).

(The variable do had to increase by at least 2.) Chris Thompson of
Cambridge University pointed out that this strategy, while preserving
the necessary invariants, is discontinuous. If 81 - 80 = 1001, the algo-
rithm gobbles up all the discretionary space that's left. Therefore change
#864 substituted better logic:

if 81 - 80 2 1998 then 80 + 80 + 1000
else if 81 - 132 > 2 then 80 t 80 + 1 + (81 - 80) div 2
else (Report memory overflow).

The new version also avoids problems on certain computers when 130
and 81 are negative; that was error #863. (Of course, when 'QX is this
close to running out of memory, it probably won't survive much longer
anyway. I'm grasping at straws. But I might as well grasp intelligently.)

Acknowledgments
I've already mentioned that the 'QX project has had hundreds of vol-
unteers who helped to guide me through all these developments. Their
names can be found in the rosters of the 'JJiJC Users Group; I couldn't
possibly list them all here. Luis Trabb Pardo and David R. Fuchs were
my "right-hand men" for m 7 8 and m 8 2 , respectively. The project
received generous financial backing from several independent sources, no-
tably the System Development Foundation, the National Science Foun-
dation, and the Office of Naval Research. The materi&l on which this
report has been based is now housed in the Stanford University Archives;
I wish to thank the archivist, Roxanne L. Nilan, for her friendly coop-
eration. Thanks are due to the referee who helped me to remove errors
not from m but from this paper. And above all, I want to thank my
wife, Jill, for ten years of exceptional tolerance; software development
is much more demanding than the other things I usually do. Jill also
helped me to design the format for the appendix that follows.

References
[l] Victor R. Basili and Barry T. Perricone, "Software errors and com-

plexity: An empirical investigation," Communications of the ACM
27 (1984), 42-52.

[2] Beeton, Barbara [Ed.], and METRFONT: Errata and Changes,
09 September 1983, distributed with TUGboat 4 (1983).

[3] L. A. Belady and M. M. Lehman, "A model of large program de-
velopment," IBM Systems Journal 15 (1976), 225-252.

[4] Reinhard Budde, Christiane Floyd, Reinhard Keil-Slawik, and
Heinz Ziillighoven [Eds.], Software Development a n d Reality Con-
struction (Berlin: Springer, 1991), in press.

[5] A. Endres, "An analysis of errors and their causes in system pro-
grams," Proceedings of an International Conference on Software
Engineering (1975), 327-336.

[6] David R. Fuchs and Donald E. Knuth, "Optimal prepaging and
font caching," ACM Tkansactions on Programming Languages and
Systems 7 (1985), 62-79.

[7] Piet Hein, Grooks (Cambridge, Massachusetts: MIT Press, 1966).

290 Literate Programming

[8] Brian W. Kernighan and Lorinda L. Cherry, "A system for typeset-
ting mathematics," Communications of the ACM 18 (1975), 151-
157.

[9] Donald E. Knuth, Fundamental algorithms: The Art of Computer
Programming 1 (Reading, Massachusetts: Addison-Wesley, 1968),
xxii + 634 pp. Second edition, 1973.

[lo] Donald E. Knuth, Seminumerical Algorithms: The Art of Computer
Programming 2 (Reading, Massachusetts: Addison-Wesley, 1969),
xii + 624 pp. Second edition, 1981, xiv + 689 pp.

[ll] Donald E. Knuth, Sorting and Searching: The Art of Computer
Programming 3 (Reading, Massachusetts: Addison-Wesley, 1973),
xii + 722 pp.

[12] Donald E. Knuth, "Mathematical typography," Bulletin of the
American Mathematical Society (new series) 1 (1979), 337-372.

[13] Donald E. Knuth, T&X, a System for Technical Text (Providence,
Rhode Island: American Mathematical Society, 1979), 198 pp.

[14] Donald E. Knuth, and -METF)FONT: New Directions in Type-
setting (Bedford, Massachusetts, Digital Press, 1979), xi + 45 +
201 + 105 pp.

[15] Donald E. Knuth, "The letter S," The Mathematical Intelligencer
2 (1980), 114-122.

[16] Donald E. Knuth and Michael F. Plass, "Breaking paragraphs into
lines," Software-Practice & Experience 11 (1981), 1119-1184.

[17] Donald E. Knuth, "The concept of a meta-font," Visible Lan-
guage 16 (1982), 3-27.

[18] Donald E. Knuth, The WEB System of Structured Documentation,
Computer Science Department Report STAN-CS-83-980, Stanford
University, Stanford, CA (September 1983), 206 pp.

[19] Donald E. Knuth, A torture test for T&X, Computer Science De-
partment Report STAN-CS-84-1027, Stanford University, Stanford,
CA (November 1984), 142 pp.

[20] Donald E. Knuth, "Literate programming," The Computer Jour-
nal 27 (1984), 97-111.

[21] Donald E. Knuth, The m b o o k (Reading, Massachusetts: Addi-
son-Wesley, 1984), 483 pp.

[22] Donald E. Knuth, A torture test for METRFONT, Computer Science
Department Report STAN-CS-86-1095, Stanford University, Stan-
ford, CA (January 1986), 78 pp.

The Errors of T)$ (1989) 291

[23] Donald E. Knuth, m: The Program: Computers & Typesetting
B (Reading, Massachusetts: Addison-Wesley, 1986) xvi + 594 pp.

[24] Guy L. Steele Jr., Donald R. Woods, Raphael A. Finkel, Mark R.
Crispin, Richard M. Stallman, and Geoffrey S. Goodfellow, Hacker's
Dictionary: A Guide to the World of Wizards (New York: Harper
and Row, 1983).

[25] C. SzBchy, Foundation Failures (London: Concrete Publications,
1961).

[26] Patrick Winston, Artificial Intelligence: An MIT Perspective (Cam-
bridge, Massachusetts: MIT Press, 1979).

