
Improved software processes
lead to improved product

quality. The Personal
Software Process is a

framework of techniques to
help engineers improve their
performance - and that of

their organizations -
through a step-by-step,
disciplined approach to

measuring and analyzing
their work. This article

explains how the PSP is
taught and how it applies to

different software-
engineering tasks. The author
reports some promising early

results.

WATTS S. HUMPHREY
Software Engineering Institute

IEEE SOFTWARE

F
ewer code defects, better estimating and planning, enhanced produ&-
ity - software engineers can enjoy these benefits by learning and using
the disciplines of the Personal Software Process. As a learning vehicle
for introducing process concepts, the PSP framework gives engineers
measurement and analysis tools to help them understand their own
skills and improve personal performance. Moreover, the PSP gives
engineers the process understanding they need to help improve organi-
zational performance. Up to a point, process improvement can be dri-

ven by senior management and process staffs. Beyond Level 3 of the Software Engineering
Institute’s Capability iMaturity Model, however, improvcrnent requires that engineers apply
process principles on an individual basis.’

In fact, it was because of the difficulties small engineering groups had in applying CMM
principles that I developed the PSP. Large and small organizations alike can benefit from
CIMM practices, and I focused the original PSP research on demonstrating how individuals
and small teams could apply process-improvement methods.

In this article, I describe the PSP and experiences with teaching it to date. Thus far, the
PSP is introduced in a one-semester graduate-level course where engineers develop 10

Program
NumberBrief Description

IA

2A
3A

4A

5A
6A

7A

8A
9A

1OA

1B
2B
3B
4B
SB
6B

7B

8B
9B

Reports

Rl

R2
R3
R4
KS

Using a linked list, write a program to caIculate the mean and
standard deviation of a set of data.
Write a program to count program LOC.
Enhance program 2A to count tot-al program LOC and LOC of
functions or objects.
Using a linked list, write a program to calculate the linear regression
parameters (straight line fit).
Write a program to perform a numerical integation.
Enhance program 4A to calculate the linear regression parameters
and the prediction interval.
Using a linked list, write a program to calculate the correlation of
two sets of data.
Write a program to sort a linked list.
Using a linked list, write a program to do a chi-squared test for a
normal distribution.
Using a linked list, write a program to calculate the three-parameter
multiple regression parameters and the prediction interval.

Write a program to store and retrieve numbers in a file.
Enhance program 1B to modify records in a file.
Enhance program 2B to handle common user errors.
Enhance program 3B to handle further user error types.
Enhance program 4B to handle arrays of real numbers.
Enhance program 5B to calculate the linear regression parameters
from a file.
Enhance program 6B to calculate the linear regression parameters
and the prediction interval.
Enhance program SB to sort a file.
Write a program to do a chi-squared test for a normal distribution
from data stored in a file.

LOC counting standard: Count logical LOC in the lanpage you use
to develop the PSP exercises.
Coding standard: Provide one logical LOC per physical LOC.
Defect analysis report: Analyze the defects for programs 1X through 3X.
Midterm analysis report of process improvement.
Final report of process and quality improvement and lessons learned.

module-sized programs and write five You can apply PSP principles to
analysis reports. Early results are
encouraging - while individual perfor-

almost any software-engineering task
because its structure is simple and inde-

mancc varies widely, data on 104 stt- pendent of technology - it prescribes
dents and engineers show reductions of no specific languages, tools, or design
58 percent in the average number of methods.
defects injected (and found in develop-
ment) per 1,000 lines of code (KLOC),
and reductions of 71.9 percent in the PSP OVERVIEW
average number of defects per KLOC
found in test. Estimating and planning
accuracy are also improved, as is pro-
ductivity - the average improvement in
LOC developed per hour is 20.8 per-
cent.

A software process is a sequence of
steps required to develop or maintain
software. The PSP is supported with a
textbook and an introductory course.2 It
uses a family of seven steps tailored to

develop module-sized programs of 50 to
5,000 LOC. Each step has a set of asso-
ciated scripts, forms, and templates.
During the course, engineers use the
processes to complete the programming
and report exercises shown in Table 1.
As engineers learn to measure their
work, analyze these measures, and set
and meet improvement goals, they see
the benefits of using defined methods
and are motivated to consistently use
them. The 10 PSP exercise programs
are small: the first eight average 100
LOC and the last two average 200 and
300 LOC, respectively. Completing
these programs, however, takes a good
deal of work. While a knowledgeable
instructor can substantially assist the
students, the principal learning vehicle is
the experience the students gain in
doing the exercises.

When properly taught, the PSP
+ demonstrates personal process

principles,
+ assists engineers in making accu-

rate plans,
+ determines the steps engineers can

take to improve product quality,
+ establishes benchmarks to measure

personal process improvement, and
+ determines the impact of process

changes on an engineer’s performance.
The PSP introduces process coil-

cepts in a series of steps. Each PSP step,
shown in Figure 1, includes all the ele-
ments of prior steps together with one
or two additions. Introducing these con-
cepts one by one helps the engineers
learn disciplined personal methods.

Pei-sonal Measzwement (PSPO) is
where the PSP starts. In this first step,
engineers learn how to apply the PSP
forms and scripts to their personal work.
They do this by measuring development
time and defects (both injected and
removed). This lets engineers gather
real, practical data and gives them
benchmarks against which they measure
progress while learning and practicing
the PSP. PSPO has three phases: plan-

MAY 1996

ning, development (which includes
design, code, compile, and test), and
postmortem. PSPO. 1 adds a coding stan-
dard, size measurement, and the Process
Improvement Proposal form. The PIP
form lets engineers record problems,
issues, and ideas to use later in improv-
ing their processes. They also see how
forms help them to gather and use
process data.

Personal
measurement

l’elsonal I’Laaniug (PSPl) introduces F&w-e 1. PSP p1~oce.m evolution.
the PROBE method. Engineers use
PROBE to estimate the sizes and devel-
opment times for new programs based
on their personal data.’ PROBE uses
linear regression to calculate estimating
parameters, and it generates prediction
intervals to indicate size and time esti-
mate quality. Schedule and task plan-
ning are added in PSPl.l. By introduc-
ing- planning early, the engineers gather
enough data from the 10 PSP exercises
to experience the benefits of the PSP
statistical estimating and planning meth-
ods.

PeTFsonnl Qunlity (PSPZ) introduces
defect management. With defect data
from the PSI’ exercises, engineers con-
struct and use checklists for design and
code review. They learn why it’s impor-
tant to focus on quality from the start
and how to cfiiciently review their pro-
grams. From their own data, they see
how checklists can help them effectively
review design and code as well as how to
develop and modify these checklists as

Specifications
I

Product

their personal skills and practices evolve. Figme 2. PSP? process.
PSPZ. 1 introduces design specification
and analysis techniques, along with
defect prevention, process analyses, and
process benchmarks. By measuring the
time tasks take and the number of
defects they inject and remove in each
process phase, engineers learn to evalu-
ate and improve their personal perfor-
mance.

Scahg Up (PSP3) is the final PSI’
step. Figure 2 illustrates how engineers
can couple multiple PSPZ. 1 processes in
a cyclic fashion to scale up to developing

modules with as many as several thou-
sand LOC. At this PSP level, engineers
also explore design-verification methods
as well as process-definition principles
and methods.

PSP/CMM relationship. The Ch’H\l is an
organization-focused process-improve-
ment framework.1,3 While the CMM
enables and facilitates good work, it
does not guarantee it. The engineers

must also use effective personal prac-
tices.

This is where the PSP comes in, with
its bottom-up approach to process
improvement. PSP demonstrates
process improvement principles for indi-
vid?Lal ezgizens so they see how to effi-
ciently produce quality products. To be
fully effective, engineers need the sup-
port of a disciplined and efficient envi-
ronment, which means that the PSP will

IEEE SOFTWARE

Levei 5-Optimizing
Pracess change management

Technology change management !
Dekct prevention I

-,, i , -j,8(1 ii’

he most effective in software organiza-
tions near or above C M M Level 2.

The PSP and the CIMM are mutual11
supportive. The C M M provides the
orderly support environment engineers
need to do superior work, and the PSP
equips engineers to do high-quality
work and participate in organizational
process improvement. As Figure 3
shows, the PSP demonstrates the goals
of 12 of the 18 GMNI key process areas.
The PSP demonstrates only those that
can be accommodated with individual,
classroom-sized exercises.

PSP development. In the initial PSP
experiments, I wrote 61 Pascal and C++
programs using 2 personal process as

near to meeting the goals of C1z/I,M
Level 5 as I could devise. I also applied
these Same principles to personal fiiian-
cial work, technical writing, and process
development. This work showed me
that a defined and measured personal
process could help me do better work
and that programming development is a
compell ing vehicle for introducing per-
sonal process inanagernent. A more
complex process than other personal
activities, software development poten-

tially includes man\- useful measures
that can provide engineers an objective
evaluation of their work and the quality
of their products.

:tier the initial experiments. I need-
ed to demonstrate that the PSP meth-
ods could be effecti\-el!- applied by other
so’&are engineers, so I had hvo -gradu-
ate students or-rite several programs
using an earl\ PSP I-ersion. Because this
early PSP v-as introduced all at once in
one step, the students had difficulty.
They tried some parts of the PSP and
ignored others, n-hi& meant they did
not understand the o\-era11 process and
could not measure its effect on their
personal performance. This experiment
convinced me that process introduction
was important; thus, the seven-step
strategy evolved.

Early industrial PSP experiments
corroborated the importance of process
introduction. Various groups were will-
ing to experiment \I-ith the PSP but
until these methods were introduced in
an orderly phased way no engineer coil-
sistently used the PSP. In one group, for
example, project engineers defined per-
sonal and team processes and commit-
ted to use them. Although a few gath-

ered some process data and tried several
methods, no one consistently used the
full process. The problem appeared to
he the pressure the engineers felt to
complete their projects. Management
had told them that using the PSP was
more important than meeting the pro-
ject schedules, hut they still felt pres-

sured and were unwilling to use unfa-
miliar methods.

Learning new software methods
involves trial and error, hut when faced
with deadlines engineers are reluctant to
experiment. While they might intellec-
tually agree that a new practice is an
improvement, they are reluctant to take
a chance and generally fall hack on
familiar practices.

I was thus faced with a catch-22.
Without data, I couldn’t convince engi-
neers to use the PSP. And unless engi-
neers used the PSP, I couldn’t get data.
Clearly, to obtain industrial experience,
I needed to first convince engineers that
the PSP methods would help them do
better work, so I decided to introduce
the PSP with a graduate university
course. By introducing PSP methods
one at a time and with one or two exer-
cises for each, this course would give
engineers the data to demonstrate how
well the PSI’ worked, without the pres-
sure of project schedules.

PSP METHODS

Among the software-engineering
methods PSP introduces are data
gathering, size and resource estimat-
ing, defect management, yield man-
agement, cost of quality, and produc-
tivity analysis. I discuss these meth-
ods here with some examples that
merge data for several PSP classes
and for multiple programming lan-
guages. As you can see from the sta-
tistical analysis box on page 81, it
makes sense to pool the PSP data in
this manner.

MAY 1996

STATISTICAL ANALYSIS OF PSP DATA

The analysis of variance
test was applied to data for

the null hypothesis could not Only data on C, C++, and total defects found per
be rejected. In this case, Ada were tested. As Table A KLOC, defects per KLOC

88 engin& from eight PSP F(52,4) at 5 percent is 5.63. shows, the variances among found in compiling, and
classes. Program sizes, devel- Again, for this article, data individuals were substantial- defects per KLOC found in
opment times, and numbers from all the PSP classes are ly greater than those among testing. The 7‘ values
of defects found were all sep- thus pooled for the analyses. languages, so the null obtained in these cases were
arately tested. The results The analysis of variance hypothesis cannot be reject- 5, 1, and 0 respectively. For
are shown in Table A. Since test also examined potential ed and the data for all lan- N=13 and 0.005 significance
F(80, 7) at 5 percent is 3.29, performance differences guages are pooled. Here, in the one tailed test, T
the null hypothesis cannot caused by six different pro- F(72, 2) at 5 percent is 19.5. should be less than 9. In all
be rejected in any of the pro-
gram 1 cases. For the analy-
ses in this article, the various
class data are thus treated as
a single set.

Data for program 10, the
last PSP exercise, was simi-
larly examined. Here, the

gramming languages used in The Wilcoxon matched-
the PSP classes to date. pairs signed-rank test exam-
Only three had substantial ined the significance of the
use, however: C was used by changes in the engineers’
46 engineers, C++ by 2 1, performance between pro-
and Ada by 8. The other grams 1 and 10. The com-
languages were Fortran, parison was made for one
Visual Basic, and Pascal. class of 14 engineers for

cases, these improvements
thus had a significance of
better than 0.005. A repeat-
ed measures test has also
been run on these same
parameters and all the
changes were found to be
significant.

population examined was 57
engineers from five courses.
The smaller population was
used because two of the
eight courses only completed
nine of the exercises and one
course had not completed at
the time of the analysis. As
Table A shows, the analysis
of variance test showed that

Program 10
2.37

were defined with the Goal-Question-
Gathering data. The PSP measures

Metric paradigm. ’ These are the time
the engineer spends in each process
phase, the defects introduced and found
in each phase, and the developed prod-
uct sizes in LOC. These data, gathered
in every process phase and summarized
at project completion, provide the engi-
necrs a fidmily of process quality mea-
sures:

or reports - are also possible.
function points, book chapters, screens,

+ size and time estimating error,
+ cost-performance index,
+ defects injected and removed

per hour,
+ process yield,
l appraisal and failure cost of

quality, and

The PSP estimating strategy has
engineers make detailed size and
resource estimates. Although individual
estimates generally have considerable
error, the objective is to learn to make
unbiased estimjtes. By coupling a
defined estimating process with histori-
cal data, engineers make more consis-
tent, unbiased estimates. When engi-
neers estimate a new development in
multiple parts, and when they make
about as many overestimates as underes-
timates, their total project estimates are
more accurate. The estimating measure
is the percentage by which the final size
or development time differs from the
original estimates.

In general, individual estimating
errors varied widely. Some engineers
master estimating skill more quickly

percent did for program IO.

than others, so it was no surprise that
some engineers improved considerably
while others did not. Even though 10
exercises can help engineers understand
estimating methods, they generally need
more experience both to build an ade-
quate personal estimating database and
to gain estimating proficiency. These
data suggest, however, that by using
PROBE most engineers can improve
their ability to estimate both program
size and development time.

l the appraisal to failure ratio.

Estimating and planning. PROBE is a
proxy-based estimating method I devel-
oped for the PSP that lets engineers use
their personal data to judge a new pro-
gram’s size and required development
time. Size proxies, which in the PSP are
objects and functions, help engineers
visualize the probable size of new pro-
gram components. Other proxies -

Overall, engineers’ estimating ability
improved moderately during the PSP
course. At the beginning, only 30.8
percent of 104 engineers estimated
within 20 percent of the corl-cct pro-
gram size. For program 10, 42.3 per-
cent did. For time estimates, 32.7 per-
cent of these 104 engineers estimated
within 20 percent of the correct devel-
opment time for program 1 and 49.0

Planning accuracy is measured by the
cost-per$x-mance index, the ratio of
planned to actual development cost. For
the PSP course, engineers track the
cumulative value of their personal CPI
through the last six exercises.

Managing defects. In the PSP, all
defects are counted, including those
found in compiling, testing, and desk
checking. When engineers do inspec-
tions, the defects they find arc also
counted. The reason to count all defects

IEEE SOFTWARE

Documentation

structure, content

is best understood by analogy with filter JZ eqineers learn to track and XX- either incomplete or obviously incorrect
design in electrical engineering. If you I!-ze defects in the PSP exercises, the>- results.) Of the 104 engineers, 80 took
examine only the noise output, you can- gather data on the phn~rs n-hen the the PSP in university courses and 24 in
not obtain the information needed to defects 73.ere injected and remored, the industrial courses. Of the 80 university
design a better filter. Finding software deject type.r, the j?.~ tir’J1e.r. and defect students, 16 were working engineers
defects is like filtering noise from elec- dm7$hm-. Phases are planniq de$gn, taking a night course and 28 were work-
trical signals - the removal process design rel-ien-, code, code reliew, con- ing engineers earning a graduate degree
must be designed to find each defect pile. and test. The defect types: shonn by returning to school full-time. Thus
type. Logically, therefore, engineers in Table 2, are based on Ram more than half of the engineers in this
should understand the defects they Chillarege’s n-ork at IB\I Research.’ sample had worked in software organi-
inject before they can adjust their The fix time is the total time from initial rations.
processes to find them. defect detection until the defect is fixed The top line in Figure 4 shows the

A key PSP tenet is that defect man- and the fix verified. average of the total number of defects
agement is a software engineer’s person- Defect trends for 104 engineers are found for each of the exercises. With
al responsibility. If you introduce a shown in Fi-gure 4. These are the eng- program 1, the average is 116.4 defects
defect, it is your responsibility to find neers in the PSP classes for w-horn I per KLOC with a standard deviation of
and fix it. If the defects are not managed have data and u-ho hare completed the 76.9. By program IO, the average num-
like this, they are more expensive to find 10 programming exercises. (Other engi- ber of defects had declined to 48.9, and
and fix later on.’ neers met these criteria but reported the standard deviation narrowed to 35.5.

Key:

Total

1 2 3 4 5 6 7 8 9 10
Program number

.
.

.

0 5 10 15 20

Years of experience

.
-A

n .

2.5 30

Figzwe 4. Defects pw KLOC trend, Figure S. Defects vem~s expedence, propam 1.

MAY 1996

I

flfl~“cI I’ n 1 n =I . .
. .

‘J
0 5 10 15 20

Xsars of experience

.
I . I

25 30

Figure 6. Defects vewm experience, proqam 10. Figure 7. Yield vermspropam, number.

The middle line in Figure 4 shows
fewer defects found in compiling, from
an average of 75.5 to 12.7 per KLOC,
which is an improvement of about six
times. The standard deviation narrowed
from 58.7 to 12.7. For defects found in
testing, the bottom line in Figure 4
shows reduced average defect levels,
from 33.8 to 9.5 per KLOC, and
reduced standard deviation, from 33.8
to 12.0.

Almost half (41) of these 104 engi-
neers completed questionnaires, and the
demographic data shows a modest rela-
tionship between defects per KLOC
and years of engineering experience.
While there is considcrahle variation in
the defect rates for program 1, Figure 5
shows that the engineers with more
than 20 years experience had somewhat
lower defect rates than many less-expe-
rienced engineers, some of whom had
low rates while many did not. As shown
in Figure 6, the relations#hip between
defect rates and experience does not
hold for program 10. In fact, it appears
that the less-experienced engineers
learned the PSP methods better than
their more experienced peers. Plots of
defect levels versus both total LOC
written and LOC written in the previ-
ous 12 months show no significant rela-
tionships.

Managing yield. Yield is the principal
PSP quality measure. Total process
yield is the percentage of defects found
and fixed before the engineer starts to
compile and test the program.
Although software qua.lity involves
more than defects, the PSP focuses on
defect detection and prevention
because finding and fixing defects

--
10

0
1 2 3 4 5 6 7 8 910

absorbs most of the development time
and expense. When they start PSP
training, engineers spend about 30 per-
cent of their time compiling and testing
programs, which probably mirrors their
actual work practice. When engineers
release actual modules for integration
and system test, software organizations
devote another 30 to 50 percent of
development time in those phases,’
almost exclusively to find and fix
defects. Thus, despite other important
quality issues, defect management will
receive priority, at least until defect
detection and repair costs are reduced.

If engineers want to find fewer
defects in test, they must find them in
code reviews. If they’re going to review
the code anyway, why not review it
before compiling? This saves time they
would have spent in compiling, and the
compiler will act as a quality check on
the code reviews. With few exceptions,
however, engineers must first be con-
vinced by their own data before they
will do thorough design and code
reviews prior to compiling.

In PSP, engineers must review their
code before the first compile. Engineers
often think the compiler’s efficiency at
finding syntax errors means they need-
n’t bother finding them in reviews.
However, some syntax defects will not
be detected, not because the compilers
are defective, but because some percent-
age of erroneous keystrokes will pro-
duce “valid” syntax that is not what the
engineer intended. These defects can-
not be found by the compiler and can
be difficult to find in test. PSP data
indicates that 9.4 percent of C++ syntax
defects escape the compiler. If these
defects are not found before compiling,

they can take 10 or more times as long
to find in unit test and, if not found in
unit test, can take many hours to find in
integration test, system test, or system
operation.

The satisfaction that comes from
doing a quality job is another reason to
review code before compiling.
Engineers like finding defects in code
review, and they get great satisfaction
from a clean first compile. Conversely,
when they find few defects in code
review, they feel they wasted their time.
My personal experience also suggests
that projects whose products have many
defects in compile tend to have many
defects in test. These projects also tend
to be late and over budget.

Evidence shows that the more
defects you find in compile, the more
you are likely to find in test. Data on
844 PSP programs from 88 engineers
show a correlation of 0.711 with a sig-
nificance of better than 0.005 between
the numbers of defects found in com-
pile and those found in test. Thus, the
fewer defects you find in compile, the
fewer you are likely to have in test.

Reduced numbers of test defects
imply a higher quality-shipped product.
While it could be argued that finding
few defects in test indicates poor testing,
limited data show high correlation
between the numbers of defects found
in test and the numbers of defects later
found by users. Martin Marietta, for
example, has found a correlation of
0.911.'

Figure 7 shows the yield trends for
our 104 engineers. Here, the sharp
jump in yield with program 7 results
from the introduction of design and
code reviews at that point.

IEEE SOFTWARE

4.5

4 r-Key:-] r

1 2345678 9 10

Program number

100 200 300 400
Total defects/KLOC, program 1

500

gzwe 10. LOCpeFF hour vewz~s total defects pe?, BLOC. Fl

600- -

u 500:
,o
y 400'
j 300:
4 2ooi
$ 100

0 -- I

0 5 10 15

A/FR

0 20 40 60 80 100

LOG/hour on program 1

process quality, the PSP uses three cost-
Controlling cost of quality. To manage

of-quality measures:
+ appraisal costs: development time

spent in design and code reviews,
+ failure costs: time spent in compile

and test, and
+ prevention costs: time spent pre-

venting defects before they occur.
Prevention costs include prototyping
and formal specification, methods not
explicitly practiced with the PSP
processes.

Another cost-of-quality measure is
the ratio of the appraisal COQ to the
failurc COQ, known as the appraisal-to-
failure-ratio. The A’FR is calculated by

dividing the appraisal COQ by the fail-
ure COQ, or the ratio of design and
code review time to compile and test
time. The A&‘R measures the relative
effort spent in early defect removal.
While the yield objective is to reduce
the number of defects found in compile
and test, the A/FR objective is to
improve yield.

A/FR for the same 101 engineers.
Notably, MFR increases with exercise

Figure 8 shows the improvement in

7 when design and code revielvs are
first introduced. F@re 9 shows data on
MFR and test defects for the 1,82 1
programs for I!-hich I have data. Here,
A’FR values above 3 are associated u-ith
relatively few test defects while MFRs
below 2 are associated with relatively
many test defects. PSP’s suggested
strategy is that engineers initially strive
for A’FR values ahove 2. If they contin-
ue to find test defects, they should seek
higher A/FR values. Once they consis-
tently find few or no test defects, they
should work to reduce A/FR while
maintaining a high process yield.

Achieving higher product quality is
the reason to increase MFR. Once the
quality objective is met, A/FR reduc-
tions will increase productivity. Since
engineers generally cannot determine
product quality during development,
the A/FR measure is a useful guide to
personal practice. By striving to

increase their A/FR, engineers think
more positively about review time. This
helps them reduce compile and test
time, and it reduces defects found in
test.

The difference in time the engineers
spend m compile and test shows how
effective the A/FR measure can be. In
one class, 75 percent of the engineers
spent more than 20 percent of their
time compiling and testing program 1.
On program 10, only 8 percent did.
Similarly, with program 1, no engineer
spent less than 10 percent of the time
compiling and testing, while with pro-
gram 10, 67 percent did.

Understanding productivity. PSP-trained
engineers learn to relate productivity
and quality. They recognize that it
makes no sense to compare the produc-
tivity of one programming process that
found no test defects with one that had
many. Defect-filled code will likely
require many hours in integration and
system test. Conversely, once engineers

MAY 1996

-

learn to produce defect-free (or nearly added, some engineers end up with
so) programs, their projects will likely he lower LOG/hour rates. Writing mod-
more productive. ule-sized programs is a little like run-

Figure 10 shows the LOUhour rate ning a four-minute mile. When engi-
achieved with PSP program 1 by the neers can produce 40-plus LOC per
104 engineers. From these data, higher ~ hour, where will improvement come
defect content appears associated with from? This focus on maximizing engi-
lower LOUhour rates (productivity). neers’ personal rates, however, leads to
Note, however, that low defect content suboptimization. The PSP management
by itself did not guarantee high produc- and planning methods take time, but
tivity. This relationship is even more these are the very methods that make
pronounced with program 10: Those software engineers effective organiza-
engineers who injected the most defects tional team members. By taking the
had the lowest LOUhour development time to follow disciplined personal
rates. methods, they produce higher quality

Figure 11 shows the improvement in programs. When their programs have
LOUhour for the group of 104 engi- fewer defects, they require less time in
neers. Engineers with the highest integration and system test. The engi-
LOUhour rates on program I usually neers’ more disciplined work thus pre-
had no improvement. Although the pro- pares them to develop high-quality large
ductivity of this group improved by an programs.
average of 20.84 percent, it is clear that
many engineers who had high
LOUhour rates for program 1 had OTHER PSP ISSUES

lower rates for program 10. This sug-
gests two conclusions: Software design, process scale-up,

+ Because many inexperienced engi- and process definition are also addressed
neers initially have higher defect rates in the PSP.
and lower LOUhour rates, the PSP dis-
ciplines will most likely increase their Design. PSP’s principal design focus
LOUhour rates. They will then see the is preventing design defects. The PSP
PSP as helping them to work faster and approach is to use design-completion
will probably continue using PSP meth- criteria, rather than advocating specific
ods. design methods. PSP research shows

+ Some experienced engineers start that defects result mainly from over-
with low defect rates anti high sights, misunderstandings, and simple
LOUhour rates. When these engineers goofs, not complicated logic designs.
add the PSP estimating and planning ;Many defects are caused by improperly
tasks, follow defined coding standards, represented designs, incomplete
review their programs, and track and designs, or no design at all. Moreover,
report their results, their LOUhour poor design representation can cause
rates will often drop. These engineers engineers to design during implemen-
will then see the PSP as rslowing them tation, which can be a significant source
down; if they do not appreciate the ben- of error. By establishing design com-
efits of these plamling and quality-man- pletion criteria, therefore, the PSP
agement practices, they .will probably helps engineers produce reviewable
stop using the PSP. designs that can be implemented with

Engineers do not normally do several minimum error.
major tasks featured in the PSP, so it is PSP data also show that engineers
not surprising that, when these tasks are inject about 3.5 times as many defects

IEEE SOFTWARE

RESOURCES FOR
EDUCATORS AND TRAINERS

The following materials are avail-
able from Addison-Wesley
Publishing Company, Reading,
Mass:

+ Instructor’s Guide for A
Di.rciphe for So$wa~~e Enginee+g.
This is fret to people who teach or
plan to teach a PSP course with this
textbook. It contains the course out-
line, lecture suggestions, data presen-
tation guidelines, grading criteria,
instructions for the instructors’
spreadsheets, and copies of the
homework assignment kits.

+ Instructor’s Diskette for A
Dikpline fo?- Soff7vare Erzgineehg-.
This diskette is free to PSP instruc-
tors. It contains 701 lecture over-
heads for the 15 course lectures,
spreadsheets for analyzing and
graphing student data, and spread-
sheet instructions.

+ Support Diskette for A
Discipline foT SojGare Enginee+q.
This contains a spreadsheet for each
student to use to enter and graph
exercise data, a summary spreadsheet
to simplify exercise reporting, and
the assignment kits.

Additional material and informa-
tion can be obtained electronically
from Addison-Wesley via Internet at
gopher awcorn or via the World
Wide Web at http://www.aw.com/
cseng/. Look under book and author.

The SE1 offers industrial PSP
courses:

+ PSP Instructor Training
l Intro to PSP
+ Advanced PSP
+ PSP for Managers
The SE1 provides additional

information on PSP publications and
industrial courses on the World
Wide Web at SE1 http://www.sei.
cmuedu.

per hour during coding as they do dur-
ing design. When engineers can save
implementation time by producing bet-
tcr designs, they inject fewer defects and
increase their productivity.

Although the PSP does not define
generalized design completion criteria,
it dots offer an approach through four
design templates that help engineers
determine when their design is con-
plete. The template structure is based
on Dennis de Champeaux’s* proposed
object definition framework:

+ hternal-static. Contains a static
pichn-e of the object, such as its logical
design. For this, the PSP provides a
logic-specification template.

* ~~~te7~~al-d-y~~a~~~~. The object’s
dynamic characteristics concerning its
behavior. The dynamic behavior of an
object can be described by treating it as a

state machine. For this, the PSP pro-
vides a state-specification template.
Other possibly important dynamic char-
acteristics are response times and inter-
rupt behavior.

+ l&tmznl-static. The static relation-
ship of this object to other objects. For
this, the PSP provides a function-specifi-
cation template, which includes the
inheritance class structure.

* Eaten-aal-dlina~~?~c. The interac-
tions of this object with other entities.
An example would be the call-return
behavior of each of the object’s metl-
ods. For this, the PSP provides an

operational scenario template.’

Scale-up. The PSP’s objective is to
extend to larger programs the productiv-
ity engineers typicall!- experience with
small program development. The final
PSP step, PSP3, follows the spiral-like
process shown in Figure 2. After subdi-
viding the large program into smaller
elements, each element is developed
with a PSPZ.I-like process. These ele-
ments are then proLgressively integrated
into the completed product.

Process definition. In helping engineers
learn to apply process principles, the
PSP shows them how to define new
processes, how to plan a process-defini-
tion task, and how long such work typ-
tally takes. In the middle of the course,
engineers are assigned the task of defin-
ing a process for analyzing process data
and writing a report on their findings.
They enact this process and submit the
report they- produce, their process defin-
ition, and work data

At course end, the engineers update
the midterm process to fix previously
encountered problems and extend the
process to include the more sophisticat-
ed analyses required for a second report.
From these exercises, they see that
process definition is straighdorward and
applicable to many tasks besides pro-
gram development, including require-
ments definition, system test, program
enhancement, and documentation
development.

PSP WTO PRACTICE

Our focus now at the SE1 is on trail-
sitioning the PSP into general practice
through academic and industrial intro-
duction.

Academic introduction. The initial PSP
course was aimed at first-year graduate

software engineers largely because I
believed the students would have the
required programming language profi-
ciency and software development com-
petence. The one-semester course is
designed for 15 90-minute lectures. The
standard PSP course assigns the 10 A-
series programs listed in Table 1; the B
series is optional. Because the full A-
series course takes about 150 to 200
hours of an engineer’s time, the 1 S-week
class schedule represents a heavy work-
load. The time could be extended,
depending on the academic schedule
and whether or not other materials are
introduced. It is essential, however, that
engineers understand at the outset the
amount of work involved.

The primary learning mechanism is
the engineer’s experience in completing
the exercises. Frequent discussion of
overall class data is necessary, but no
individual engineer’s data are shown to
anyone except that engineer.

We are also experimenting with the
PSP concepts in the undergraduate soft-
ware-engineering curriculum. If the PSP
were taught during their earliest courses,
engineers would have the maximum
opportunity to practice and perfect these
methods before they started professional
work. Based on the PSP experience,
inexperienced engineers are more likely
to find that the PSP discipline improves
their performance, and they are then
more likely to continue using these
methods.

College juniors and seniors have
completed the current PSP course with
apparent success. PSP concepts are
within the intellectual grasp of most col-
lege freshmen, however, so an under-
graduate course textbook (now in test) is
being prepared.”

Industrial introduction. Introducing the
PSP into industrial organizations
appears to be most successful in a
course format. Individual self-study has
been tried, but only about one in five to

MAY 1996

200

: 150 .

100

50 .
T O-tc

-50

i

i

-100 3

.

.

l .

-7 .

L -I--1 -1
0 20 40 60

KLOC written in last year

g-we 12. Improvement vmus KLOC w&ten in lastyear.

10 of the engineers who start such a
course actually completes it. One indus-
trial group of three eng!ineers and a
manager has taken the course as a team,
with success. At latest report, this group
is now starting to use the PSI? on their

project.
Another successful approach is to

introduce the PSP from the top down in
a course taught to the top management
team, then to the engineers who work
for them. In the one case Ithat has been
tried, two laboratory technical directors
and the laboratory management team
took the first course. Courses are next
being given to a class that includes pro-
ject engineers and leaders.. Because the
managers understood the work involved,
they could convince their teams to take
the PSP course. With their PSP back-
ground, the managers also appreciated
the methods their people would be using
and will be better equipped to lead their
teams after PSP training.

Currently, the SE1 offers several
types of PSP training (see the box on p.
85). The SE1 is also working with sever-
al corporations to determine the PSP’s
impact on organizational performance
and is gathering data on engineers’ back-
grounds, the tools and methods used,
and organizational performance. In
addition, various techniques are being
explored to determine how PSP affects
different organizational quality and pro-
ductivity indicators. It will likely take
several years to complete these studies.

LANGUAGE FLUENCY

AND IMPROVEMENT

Is some of the PSP improvement

IEEE SOFTWARE

-50

-100
1

-1soc
. I

-200

-250 ’ c
II I
0 20 40 60

KLOC written in last year

gwe 15. 1mprovemeW verms KLUC’ wvztten zn last year.

due to the programming fluency the
engineers gain while completing the
programming exercises? To find out,
the SE1 developed a questionnaire that

asked the engineers to estimate how
many LOC they had developed in the
preceding 12 months. Figure 12 con-
pares the change in LOUhour versus
the LOC the engineers claimed to
have tiritten ‘in the past year.
Although it is unlikely that many
engineers knew precisely the number
of LOC they had written in the last
year, it is likely that those who had
written little or no code would give
low numbers. From Figure 12, it does
not appear that recent programming
experience is a major factor in the
PSP learning process.

Similarly, Figure 13 shows the
improvement in test defects versus the
LOC written in the last year. Again,
the relationship appears insignificant
and also suggests that the large
improvement in PSP student perfor-
mance cannot be explained by the
increased language fluency gained by
completing the exercises.

When more questionnaire data are
gathered we will refine our statistical
analyses of these questions.

P SP data show that engineers can
substantially improve their perfor-

mance by using a defined and measured
~ personal process. By defining their tasks,
, measuring their work, and striving to

produce the highest quality products,
engineers find that their work is more
predictable and their products have
fewer defects. Results from the PSP
work done to date show the following:

+ The PSP is effectively taught in a
university graduate course. With ade-
quate management support, this same
course format works in industry. In all
cases, the key to learning the material is
that the engineers do the course exer-
cises and periodically analyze their
exercise data. The PSP is a self-learn-
ing experience that provides engineers
an appreciation of data gathering and
process management.

+ The improvement in average
defect levels for engineers who com-
plete the PSP course is 58.0 percent for
total defects per KLOC and 7 1.9 per-
cent for defects per KLOC found in
test.

+ With extensive PSP data support-
ing their estimates, engineers can better
justify their plans and explain to their
managers the logic behind their cost
and schedule estimates. This in turn
helps them make realistic commitments
to, and negotiate them with, their man-
agement.

The PSP is a promising discipline,
but many questions remain to be stud-
ied. Early indications are that improved
PSP performance will result in
improved engineering practices. This
has not yet been demonstrated in
industrial practice however and will be
the next challenge. +

A Comprehensive
Foundation

by Simon Haykin

Represents the most comp-
rehensive treatment available of
1leUtXl netwnrks from a n
engineering perspective. This
thorough, well-organized, and
completely up-to-date book
examines all the important aspects
of this etnergmg technology. The
text fcatures cornprchensive
chapter- introductions, nmnerou
compotcr experiments, network
problems and solutions, photo-
graphs and illustrations and a
bil)liography an d a thoroug-h
glossary that w-ill reinforce the key
concepts pxscnted in this hook.

Contents: lntroductlon l Learning
Process l Correlation Matrix Memory
l The Perceptron l Least-Mean-
Square Algorithm l MultIlayer
Perceptrons l Radial Basis Function
Networks l Recurrent Networks
Rooted In Statlstlcal Physics l Self-
Orgdnlzlng Systems Hebblan, Com-
petitrve Learning, and MaxImum
lnformatron Preservation l Modular
Networks * Temporal Processing
l Neurodynamlcs l VLSI lmple-
mentatlons of Neural Networks
l Appendixes l Blbilography and
References l Index

720 pages 1994 Hardcover
ISBN O-02-35276 1-7

CJtJiOg # BP05687
$55.95 Members I$69 95 List

IEEE

COMPUTER
SOCIETY

r‘--~ Call toll-free: ‘1
I-800-CS-BOOKS

Fax: +I-714-821-4641
-___ --~

MAY 1996

