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ABSTRACT
To remain competitive in the fast paced world of software
development, managers must optimize the usage of their lim-
ited resources to deliver quality products on time and within
budget. In this paper, we present an approach (The Top Ten
List) which highlights to managers the ten most susceptible
subsystems to have a fault. The list is updated dynamically
as the development of the system progresses. Manager can
focus testing resources to the subsystems suggested by the
list.

We present heuristics to create the Top Ten List and de-
velop techniques to measure the performance of these heuris-
tics. To validate our work, we apply our presented approach
to six large open source projects (three operating systems:
NetBSD, FreeBSD, OpenBSD; a window manager:KDE; an
office productivity suite:KOffice; and a database manage-
ment system:Postgres). Furthermore, we examine the ben-
efits of increasing the size of the Top Ten list and study its
performance.

1 INTRODUCTION
Managers of large projects need to ensure that the project
is delivered within budget with minimal schedule slippage.
They have to prevent the introduction of faults, ensure their
quick discovery and immediate repair, and make sure the
software can evolve gracefully to handle new customers de-
mands. Unfortunately, all of these demands need to be
done with restricted personal resources within limited time.
Resource allocation becomes a non-trivial challenge which
managers must face.

Managers would like to optimize their resources usages.
They would like to allocate resources to areas that are in need
of these resources and reassign them as soon as interest and
focus shifts. In this paper, we focus on the challenges sur-
rounding fault detection and repair in large software systems.
We would like to give managers aTop Ten Listof subsystems
that are most susceptible to faults. We need the list to be
updated dynamically to reflect future risks. By limiting the
number of files in the list, we hope to give managers an easy
and clear way to allocate their limited resources. By updat-
ing the list as the software system evolves and the risks as-
sociated with components change, we hope to give mangers
a dynamic tool which is always able to give informed and

up-to-date warnings. Finally, we would like to build a tool
that is not intrusive and requires as little details and setup
as possible to permit managers to get a high return on their
investment.

Previous research in software faults has focused on two ar-
eas [5]:

1. Count based techniques which focus on predicting the
number of faults in subsystems of a software system.
Managers can use these predictions to determine if the
software is ready for release or it has many lurking bugs.
They can use the predictions to guide their resource al-
locations as they wind up the project towards release.
These models are validated by testing if the data from
one release can be used to predict faults in following
releases.

2. Classification based techniques which focus on pre-
dicting which subsystems in a software system are
fault-prone. Fault-prone is defined by the manager, for
example a fault prone subsystem may be any subsystem
with more than two faults in a releasee. These predic-
tions can be used to assist managers in focusing their re-
sources allocation in a release, by allocating more test-
ing resources and attention to fault-prone subsystems.
Again these models are validated by testing if the data
from one release can be used to predict if a subsystem
is fault prone in following releases.

Unfortunately, these approach focus on long term planning.
They are designed for long term prediction and are validated
by using data from one software release to predict values in
following releases by building some types of statistical mod-
els. In this paper we focus on short term dynamic prediction.
We present an approach to validate short term predictions
and we show an analysis of this framework using several
heuristics for fault predictions.

We focus on predicting the subsystem that are most likely
to have a fault in them in the near future. In contrast to
count based techniques which focus on predicting an abso-
lute count of faults in a system over time, or classification
based techniques which focus on predicting if a subsystem
is fault prone or not. For example, even though a subsystem



may not be fault prone and may only have a few number of
predicted faults, it may be the case that a fault will be dis-
covered in the next few days or weeks. Or in another case,
even though a fault counting based technique may predict
that a subsystem has a large number of faults, they may be
dormant faults that are not likely to cause concerns in the
near future. If we were to draw an analogy to our work and
rain prediction, our prediction model focuses on predicting
the areas that are most likely to rain in the next few days.
The predicted rain areas may be areas that are known to be
dry areas (i.e. not fault prone) and may be areas which aren’t
known to have large precipitation values (i.e low predicted
faults).

The prediction are presented to managers as a list of the Top
Ten most likely subsystems to have faults. That list is modi-
fied over time as new files are modified or as new faults are
discovered and fixed. To validate the quality of our predic-
tions, we borrow concepts from the vast literature of caching
– file system and web proxy caching. In particular, we use
the idea ofHit Ratetraditionally used to determine the qual-
ity of caching systems. A high Hit Rate indicates that the
Top Ten list is performing well and fault that were discov-
ered recently had been already present in the list. Moreover,
we present a new metrics –Average Prediction Age– to mea-
sure the practical benefits of predictions in the Top Ten list.
A prediction that warns of a fault occurring within a couple
of hours is not as valuable as a prediction that warns of a
faults a couple of weeks before its occurrence.

Organization of Paper
The paper is organized as follows. Section 2 introduces the
motivation behind our work and explains the concepts ofHit
Rateand Average Prediction Age. We use both concepts
to evaluate and compare different fault prediction heuris-
tics presented in this paper. In section 3, we present several
heuristics to build the Top Ten List based on various charac-
teristics. Then in Section 4, we present short introductions to
each of the six open source systems used in our case study.
In Section 5, we measure the performance of the proposed
heuristics by analyzing the development history of the stud-
ied software systems using theHit RateandAverage Predic-
tion Ageconcepts introduced earlier. Later in Section 6 we
analyze the performance benefits of increasing the size of the
proposed Top Ten list. In Section 7, we discuss our results
and address shortcomings and challenges we uncovered in
our approach. Section 8 showcases related work in the field
of web systems, file systems, and fault prediction literature.
Finally, section 9 summarizes our results and presents plans
for future work.

2 MOTIVATION
To cope with a large number of tasks at hand, managers are
always in search of a silver bullet that would give them a list
of issues to focus their limited resources on. Hence, the idea
of the Top Ten list. The Top Ten list is a list of the top ten
subsystems which are most susceptible to have a fault appear

in them in the near future. Managers can use this list to focus
their limited resources and maximize their resource usage as.

The inspiration of the idea of Top Ten list comes from the
idea of a resource cache. Previously, caching has been pro-
posed to solve many problems associated with limited re-
sources and latency associated with acquiring them. In the
file system domain, caching is used to store previously used
files in memory so future requests to these files would be ful-
filled from memory instead of accessing the hard drive which
is much slower than memory. The same ideas and concepts
have been applied to database and web systems.

Conceptually, a cache is used to store a limited number of re-
sources for cheap access. Heuristics employed by the cache
system determine which resources to store, usually based on
the probability the resource will be accessed in the near fu-
ture. For example, in a file system cache it is expected that a
file that was accessed recently will be accessed again within
the next few minutes. By storing this file in the cache, con-
secutive accesses will be much faster as they won’t require
slow disk access. Unfortunately, a cache is usually a limited
resource. For example memory is much smaller than hard
disk, or a web proxy server is much smaller than the whole
Internet. Thus cache replacement heuristics are used to de-
cide which resources should stay in the cache and which ones
need to be evicted to store new cacheable resources.

We believe the same idea can be adopted for deciding which
subsystems are most susceptible to having a fault in the near
future. A manager of a project can only focus on a limited
number of resources. These limited resources can be thought
off as the cache system size. Cache heuristics can be devel-
oped to determine which subsystems are no longer suscepti-
ble to a fault and which are still susceptible to a fault. For
example, research has shown that previous faults in a sub-
system are good indicator of future faults [5]. One heuristic
would build the Top Ten list based on the number of previ-
ously discovered faults in a subsystem. Thus the Top Ten list
would contain the ten most faulty subsystems. Other heuris-
tics based on the number of developers that worked on the
subsystem, the recency of the latest fault or modification, the
size of the subsystem, the number of modifications, or a met-
ric that is based on fusion of a subset of these ideas are a few
of the possible heuristics. The huge literature in fault analy-
sis and prediction can be used to develop such heuristics and
many of previous fault prediction findings can be validated
using our presented approach.

By basing the idea of Top Ten list on caching system, we can
borrow many of the well developed concepts used to study
the performance of caching system in our analysis. In par-
ticular, the concept ofHit Rate (HR). Hit Rate is the most
popular measure of the performance of a caching system. It
is the number of times a referenced resource is in the cache.
For example a hit rate of 60% indicates that six out of every
ten requests to the cache found the resource being requested



in the cache. For the analysis of the Top Ten list this would
mean that six out of the ten subsystems that were in the Top
Ten list had faults in them as predicted by the heuristic used
to build the list. Thus, the higher the hit rate the better the
prediction power of the heuristic and the usefulness of the
Top Ten list as managers aren’t wasting resources on sub-
systems that are not susceptible to faults while missing other
subsystems that are susceptible.

Unfortunately, using Hit rate is not sufficient to measure the
practical efficiency of the Top Ten list algorithms. Hit rate
only tells us if a subsystem that had a fault was in the Top
Ten list or not. We hope to give managers enough advance
warning time to react to the fault prediction. For example, if
we have a 90% Hit Rate yet the subsystems that have faults
are put in the Top Ten list just seconds or minutes before the
fault is discovered in them then such predictions although
from a theoretical stand point are valid they are not practi-
cally useful. We would like to have a measure that is more
practical, as managers require enough time to react to the
proposed predictions. Hence, the time of adding a subsys-
tem to the Top Ten list is important to obtain a more accurate
measure of the performance of the Top Ten list. In contrast
for web or file systems, the time of entry of a resource in the
cache does not matter as long as the resource was found in
the cache when requested. To overcome this limitation of the
Hit Rate, we adopted two new metrics:

1. Adjusted Hit Rate (AHR): The adjusted Hit Rate is a
modified hit rate calculation which counts a hit only if
the subsystem had been in the cache/Top Ten list for
over 24 hours (other time limits are possible). For ex-
ample we do not count a hit if the subsystem has been
in the Top Ten list for just a couple of minutes. This
will prevent us from over inflating the performance of
the heuristics used to build the list. In the rest of the
paper we use the term hit rate to refer to AHR, unless
otherwise noted.

2. Average Prediction Age (APA): The Average Prediction
Age calculates on average for each hit how long a sub-
system has been in the cache/Top Ten. Although HR
has been adjusted to account for prediction with a very
short warning, we measure the APA to get a better idea
of the age of the prediction. For example, two heuristic
may have similar HR but one heuristic predicts on aver-
age faults a full week a head of time whereas the other
predicts them a month a head of time. A longer APA
indicates a better performing heuristic for building the
Top Ten list.

Using HR and APA, we proceed to evaluate various heuris-
tics proposed in the following section.

3 HEURISTICS FOR THE TOPTEN LIST
Many heuristics can be used to build the Top Ten list, in par-
ticular, previous findings and observations from published

literature in fault prediction can be used as a heuristic. For
the purposes of this paper, we chose to use the following
heuristics for their simplicity and intuitiveness. They are by
no mean a full listing of all possible heuristics instead they
are some examples to validate our proposed Top Ten list ap-
proach:

Most Frequently Modified (MFM)
The Top Ten list contains the subsystems that were modified
the most since the start of the project. The intuition behind
this heuristic is that subsystems that are modified frequently
tend over time to become disorganized. Also, many of the as-
sumptions that were valid at one time have the tendency to no
longer be valid as more features and modifications are per-
formed on these subsystems. Eicket al. studied the concept
of code decay and used the modification history to predict
the incidence of faults [3, 4]. Graveset al. showed that the
number of modifications to a file is a good predictor of the
fault potential of the file [7]. In other words, the more a sub-
system is changed the higher the probability it will contain
faults.

This heuristic will tend to have a high APA as frequently
modified subsystems will remain in the Toplist for a long
time. This may degrade the HR of this heuristic as it won’t
adapt to changes in the modification of files. For example, if
in one release of an operating system all the work has con-
centrated on improving the memory manager then in the fol-
lowing release all the work has focused on improving the
file system, then the MFM heuristic will still be affected by
the modification counts of the previous release and will give
out bad predictions. This limitation is a concern for any fre-
quency based approach and is commonly refereed to in the
literature of caching as thecache pollution problem[1]. To
overcome this problem heuristics that update the list based
on a combination of the frequency and recency could be
used.

Most Recently Modified (MRM)
The Top Ten list contains the subsystems that were recently
modified. In contrast to the Top Ten list built using the MFM
heuristic, the Top Ten list is changing at a much higher rate
as new files are modified continuously and are inserted in
the Top Ten list. The intuition behind this heuristic is that
subsystems that are modified recently are the ones the most
likely to have a fault in them. Finding faults in subsystems
that were not modified for a long time is highly unlikely.
In [7], Graveset al. showed that more recent changes con-
tribute more to fault potential than older changes over time.

Most Frequently Fixed (MFF)
The Top Ten list contains the subsystems that have had the
most faults in them since the beginning of the project. The
intuition behind this heuristic is that subsystems that have
had faults in them in the past will always tend to have faults
in them in the future. Again this heuristic, like MFM suffers
from thecache pollution problem.



Most Recently Fixed (MRF)
The Top Ten list contains the subsystems that had faults in
them recently. The intuition behind this heuristic is that sub-
systems that had faults in them recently will tend to have
more faults showing up in the future till most of the faults
are found and fixed. In contrast, a Top Ten list built using the
MFF will be a lot more stable than a list built using the MRF,
as the subsystems in the list won’t be changed as often.

The aforementioned heuristic represent a small sample of a
huge variety of heuristics that can be used to build a Top
Ten list. Conceptually, each heuristic can depend on one or
a combination of the following characteristics of a software
system.

1. Recency: The recency of modifications or fault fixes ap-
plied to the source code, such as MRM and MRF

2. Frequency: The frequency of modifications or fault
fixes applied to the source code, such as MFM and MFF.

3. Size: The size of subsystems, the size of modifications.

4. Code Metrics: The fault density, the cyclomatic com-
plexity [9], or simply the LOC.

5. Co-Modification: Subsystems modified together will
tend to have faults during similar times, for example.

We note that the problem of fault prediction has some char-
acteristics that are different from classical caching literature,
in particular:

• Whereas for file and web systems the number of pos-
sible resources to be cached is rather large, the number
of subsystems that are analyzed for inclusion in the Top
Ten list is limited, as managers have a limited number
of resources to allocate to investigate the suggestions of
the Top Ten list.

• Furthermore, CPU usage, algorithm complexity, and re-
sponsiveness of the caching heuristics are not a major
issue due to the small number of subsystems that need
to be analyzed. Also we expect the Top Ten list to be
generated daily thus much more complex and elaborate
algorithms could be used to build the list. This is not
possible in web and file system caching where the user
expects an immediate and quick response.

• Finally, as pointed out earlier, a simple HR metric is not
sufficient to measure the practical benefits of a heuristic,
as managers require enough advance warning time to
react to suggestions.

4 STUDIED SYSTEMS
To study the benefits of using the Top Ten list in the develop-
ment of large software systems, we evaluated our proposed
approach using six large open source software systems. In
this section we give an overview of each of these systems.

Table 1 summarizes the details for these software systems.
The oldest system is over ten years old and the youngest sys-
tem is five years old. For each system, we list the number of
subsystem it has and the number of faults that were discov-
ered in it according to our fault discovery process described
below. For example, the Postgres database systems contains
104 subsystems and over its lifetime has had 1401 faults.
Furthermore, it is written in C.

In the following subsections, we give details of the studied
software systems. To measure the performance of the Top
Ten list, we used the development history of these six soft-
ware systems. The development history is stored in a source
control system, such as CVS [2, 6] or Perforce [11]. The
source control system stores all modifications that occur to
each subsystem in the software system as it evolves. Each
modification records the changed lines in the subsystem, the
reason for the change, and the exact date of the change. Us-
ing a lexical technique, similar to [10], we automatically
classify modifications into three types based on the content
of the detailed message attached to a modification:

Fault Repairing modifications (FR): These are all modifi-
cations which contain terms such asbug, fix, orrepair
in the detailed message attached to the modification.
The Top list attempts to predict ahead of time which
subsystems are most susceptible to have such a modifi-
cation applied to them in the near future.

General Maintenance modifications (GM): These
are modifications that are mainly bookkeeping ones and
do not reflect the implementation of a particular feature.
These modifications are removed from our analysis and
are never considered. For example, modifications to up-
date the copyright notice at the top of each source file
are ignored. Modifications that are re-indentation of the
source code after being processed by a code beautifier
pretty-printer are ignored as well.

Feature Introduction modifications (FI): These are mod-
ifications that are not FR or GM modifications.

The detailed description of the history of code development
provides a rich opportunity to replay the history of the devel-
opment of a software system and measure the benefits that
the developers would have got if ideas such as the Top Ten
list were accessible to them.

Postgres DBMS
Postgres is a sophisticated open-source Object-Relational
DBMS supporting most of the SQL constructs. Its devel-
opment started in 1986 at the University of California at
Berkeley as a research prototype. Since then it has become
an open source software with a globally distributed develop-
ment team. It is being developed by a community of com-
panies and people co-operating to drive the development of
one the world’s most advanced Open Source database soft-
ware (DBMS). In our case study we use data beginning with
1996 when it became an open source project.



Application Application Start Subsys. Faults Prog.
Name Type Date Count Lang.
NetBSD OS 21 March 1993 393 2451 C

FreeBSD OS 12 June 1993 182 3264 C

OpenBSD OS 18 Oct 1995 401 1015 C

Postgres DBMS 9 July 1996 104 1401 C

KDE Windowing 13 April 1997 167 6665 C++
System

Koffice Productivity 18 April 1998 259 5223 C++
Suite

Table 1: Summary of the Studied Systems

KDE K Desktop Environment
Another system we examined in our case study is theKDE
(K Desktop Environment) system. TheKDE project is an
Open Source graphical desktop environment for Unix work-
stations. It seeks to fill the need for an easy to use desktop
for Unix workstations, similar to the desktop environments
found under MacOS or Microsoft Windows. With several
hundred developers working on it, it is currently over 2.6
million lines of code.

KOffice Office Productivity Suite
TheKOffice productivity suite is an integrated office suite
for KDE, the K Desktop Environment. The full suite is
developed by a community of software developers online
under an open source license. It features a full set of ap-
plications which work together seamlessly to provide the
best user experience possible. The list of applications are:
KWord a word processor,KSpread a spreadsheet applica-
tion, KPresenter a presentation program,Kivio a visio-
style flowcharting application,Karbon14 a vector drawing
application,Krita a raster-based image manipulation pro-
gram like Adobe Photoshop,Kugar a business reports gen-
erating tool,KChart a chart drawing tool,KFormula a
powerful formula editor, andKexi a small database similar
to Microsoft Access.

FreeBSD Operating System
FreeBSD is a high performance Operation system (OS) for
desktop and server applications. It features a high perfor-
mance networking and file system which are able to sustain
high loads. It is used in many Internet and Intranet servers.
It is based on the 4.4BSD which in turn is based on the
AT&T BSD. It is being developed under an open source li-
cence with many developers worldwide working on it. In
contrast to Linux where Linus Torvalds gets to choose which
features to add or remove from the OS,FreeBSD develop-
ment model revolves around a group of hundreds of individ-
ual programmers called the “Committers”. The Committers
have the ability to make any change needed to the official
FreeBSD source base at any time. The selection of Com-
mitters and dispute resolution are handled by theFreeBSD
Core Team. The Core Team acts like a board of directors. A

similar model is followed by theOpenBSD andNetBSD
projects.

OpenBSD Operating System
OpenBSD is another BSD based operating system which
is developed through an open source licence. It focuses on
security with the goal of creating the most secure operating
system available. The development team put a lot of focus
on code auditing and ensuring that each line in the code base
in analyzed for security holes.

NetBSD Operating System
NetBSD is derived from 4.4BSD and 386BSD. It is be-
ing developed with a primary focus on creating an extremely
portable and flexible OS. It runs on over 30 hardware plat-
forms and provides a lot of flexibility to enable research and
experimentation with many different types of hardware, and
protocols.

We believe that the variety of development processes used,
implementation programming languages, features, domain
of the studied software systems ensures the generality of
our results and their applicability to different software sys-
tems. In the following sections we explain how we used the
development history of the studied software systems in our
analysis. Also, we present the performance of each heuristic
presented in Section 3 against each of the studied software
systems.

5 MEASURING THE PERFORMANCE OF THE
TOPTEN LIST

In this section, we measure the performance of the proposed
heuristics, in Section 3, to build the Top Ten list. For each of
the software systems we analyzed the source control repos-
itory automatically with no user intervention. We chose to
ignore the first year in the source control repository, due to
the special startup nature of code development during that
year as each project initializes its development process and
the corresponding effect on its source code repository. We
then used the following four years to measure the perfor-
mance. For each heuristic, we plot the Hit Rate (HR) versus
the fixed faults over the four year period. Furthermore, we
calculate the total Hit Rate and the Average Prediction Age
(APA) over the studied four years for each of the six open
source systems we studied.

Figure 1 shows the performance for the four proposed heuris-
tics. In the figure we show theHitRate of the Top Ten list
using each heuristic for each fault that occurs. For exam-
ple for NetBSD once there are1000 faults, the hit rate for
the heuristics are as follow: MFF (29%) MFM (30%) MRF
(20%) and MRM (15%). We note that we do not show the
Hit Rate for the first 100 faults, as we choose to use the first
100 faults to calibrate our Top Ten list with some historical
data to gain a more realistic and fair comparison of the dif-
ferent heuristics as the Top Ten list fills up slowly over time.

Examining the figure, we note that the two heuristics (MFM
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Figure 1: Hit Rate For The 4 Proposed Heuristics



and MFF) that are based on a count of modifications or faults
have a better performance. In contrast, the other two heuris-
tics (MRM and MRF) which are are based on the recency of
modifications and detection of faults in a subsystem have a
much worse performance.

Furthermore, the performance of MFF at the beginning is al-
ways worse than the performance of MFM, this is due to the
fact that at the beginning there are not as many faults thus the
MFF heuristic performance is negatively affected. The need
of MFF for a large number faults to calibrate itself suggests
the need for a heuristic based on the modifications count at
the beginning of the development of the project. Later on we
may switch to a heuristic that is based on the fault counts if it
is performing better. In our analysis, we see that around400
- 500 faults, the MFF has enough faults to calibrate well.

Over time, the performance of the proposed heuristics ei-
ther decline or stay constant except for theKoffice system
where it improves. The decline in the prediction quality may
suggest that the Top Ten list has been polluted by subsys-
tems that were very highly modified/fixed in the past but are
no longer being modified in the later years. An enhanced
heuristic that overcomes this problem may be very beneficial
in improving the performance of the list.

Table 2 summarizes the performance metrics over the four
years of data used in the study. In particular, we notice that
the unadjusted Hit Rate for the recency based heuristics such
as MRM and MRF drops significantly once the Adjusted Hit
Rate is calculated. By examining the Average Prediction Age
we see that it is less than a day in many of the cases where
the recency based heuristic is used.

6 THE EFFECTS OF A LARGER LIST
In the previous section, we presented the performance of the
Top Ten list approach using various heuristics. In this sec-
tion, we examine if increasing the size of the list would im-
prove the performance of the heuristics. Due to space re-
strictions we will focus on only two of the four proposed
heuristics, we chose MFM to represent the frequency based
heuristics as its performance is very similar to MFF and we
chose MRM to represent the recency based heuristics as its
performance is similar to MRF.

For both MFM and MFF, we re-ran the same experiments
done in the previous section while varying the size of the
Top Ten list. We chose to make the size of the list a function
of the number of subsystems in the software system. Thus
we chose to have the size of the list vary between 2%, 10%
20%, 50%, 80%, and 100% of the number of subsystems. In
the case of 100%, we are able to see the best possible HR but
unfortunately this is not practical as managers would have
to focus their attention to all the subsystems in the software
system which defeats the purpose of the Top list.

Figures 2 and 3 show the growth of the Hit Rate as we vary
the size of the Top list. We notice that when the Top list

Application Heuristic HR AHR APA
(%) (%) (in days)

NetBSD MRM 22.4 9 0.3
MRF 20.6 15 0.8
MFM 24.4 24.4 133.8
MFF 25.3 25.3 138.7

FreeBSD MRM 32.6 22.2 0.98
MRF 32.6 27.2 1.7
MFM 44.9 44.9 252.7
MFF 45.1 45.1 245.1

OpenBSD MRM 28.5 17.6 0.71
MRF 24.5 21.8 3.11
MFM 32.1 32.1 182.22
MFF 28.8 28.8 168.5

Postgres MRM 42.1 36.2 3.3
MRF 35.4 31.4 4.4
MFM 48.4 48.4 287.8
MFF 46.6 46.6 288.6

KDE MRM 46.6 21.7 1.4
MRF 49.3 31.7 3.9
MFM 54.3 54.3 375.4
MFF 56.1 56.1 394.1

Koffice MRM 53.6 38.3 2.4
MRF 56 46.6 4.6
MFM 53.4 53.4 133.8
MFF 54.1 54.1 341.3

Table 2: HR, AHR, and APA for the Studied Systems Dur-
ing the 4 Years
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Figure 2: Hit Rate Growth As a Function of The Top List
Size Using MRM Heuristic

size is under 50% of subsystems in the software system then
MFM (frequency based heuristic) outperforms the MRM (re-
cency based heuristic). Once we are above 50% both types
of heuristics have the same performance. Also we can never
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Figure 3: Hit Rate Growth As a Function of The Top List
Size Using MFM Heuristic

reach a Hit Rate of 100% as we always have misses in our
predictions as we populate the list over time. For example,
for the MFF heuristic a subsystem would have to have at
least one fault that was not predicted at the beginning to be
considered for inclusion in the predicted list.

Examining the growth of the hit rate in Figures 2 and 3,
we notice that the hit rate exhibits a logarithm growth as we
increase the size of the Top list. This indicates that the ben-
efit of increasing the size of the Top list diminishes expo-
nentially. From both figures, we see that a Top list which
is around 20% the number of subsystems in the software
achieves the best return on investment for managers.

7 DISCUSSION
In this section, we elaborate on two issues regarding the per-
formance of the heuristics used to build the Top list.

Performance of Fault Based Heuristics
In our analysis we used two heuristics (MFF and MRF) that
are based on fault counts. Unfortunately even though these
two heuristics have good performance as presented in the
previous section, it may be challenging to measure their per-
formance if a Top list did actually exist for the development
team. The Top list biases the effort and work performed by
a development team. There is a high tendency for develop-
ers to focus their testing resources to subsystems that are in
the Top list. Thus over time, the fault discovery may be in-
fluenced by the Top list and using the fault counts becomes
an inaccurate measure. Instead using heuristics based on
the modification counts are likely to be more stable and un-
affected by the Top list suggestions. This poses an interesting
challenge for software engineering research where introduc-
ing new techniques to a process may invalidate the validation
of benefits of the new techniques. Thus, even though histor-
ical data show the benefits of a research idea, validating the

idea in a practical setting may reveal interesting challenges
and issues.

Determining A Practical Average Prediction Age
Through out the paper we emphasized the need for heuris-
tics that are able to provide high HR. To ensure that our re-
sults are useful and practical we measured the Prediction Age
(PA) for each hit and chose not to count hits with low PA. As
a manager is not given enough warning to react when the
PA is low. We then choose to measure the APA which is the
sum of the PA’s for all the Hits divided by the number of hits.
Looking at Table 2, we list the APA for all heuristics for each
of the studied software systems. As pointed out earlier, re-
cency based heuristics have a rather low APA. Unfortunately,
frequency based heuristics have a high APA. This is mainly
due to thecache pollution problem. The need for a heuris-
tic that can combine a low APA with a high HR is justified.
It would be very practical and practical for managers to get
advance warnings that are not too early and are not too late.
We now briefly discuss and present some measurements for
such a heuristic.

Based on the results shown in Table 2, we would like a
heuristic which keeps track of the recency and measures the
frequency of events as well. We propose the use of an ex-
ponential decay function to build our heuristic. The decay
function would reduce exponentially the effect of a modifi-
cation or a fault on the probability that a fault will be dis-
covered based on how long ago a fault/modification to the
subsystem has occurred. Then to measure the frequency,
instead of adding up the number of times a modification/-
fault occurred, we add up the exponentially decayed values.
Consequently, given two subsystems who both have had 3
modifications to them, the subsystem with the 3 more recent
modifications will have a higher heuristic value and would be
considered more likely to have a fault discovered in the near
future. More formally, we define a heuristic function (HF )
and the Top list is created by choosing subsystems with the
highestHF value. TheHF for a modification based heuris-
tic is defined as:

HF (S) =
∑

m∈M(S)

eTm−Current T ime

whereM(S) is the set of modifications to a subsystemS and
Tm is the time of modificationm.

We reran our results on four of the software systems in our
system. Table 3 shows the performance results for using an
exponential decay heuristic. We note that the APA values are
much more moderate compared to the corresponding values
shown in Table 2. The APA suggests that the new heuristic
provides enough early warning and is still capable of dynam-
ically updating as the development in the project changes
over time.

8 RELATED WORK



Application AHR APA
(%) (in days)

NetBSD 25.3 26.1
FreeBSD 42 129
OpenBSD 33.1 38.6
Postgres 49 33.8

Table 3: AHR and APA for the Exponential Decay Heuristic

The work most closely related to our work is done by Khosh-
goftaaret al. In [8], they present a technique to predict the
order of the subsystems that are most likely to have a large
number of faults. The main similarity between our work is
the recognzition that managers have a limited number of re-
sources and need to focus their resources on a selected few
subsystems in a large software project. Whereas, Khoshgof-
taar orders subsystems based on their degree of fault prone-
ness, we order subsystems based on their likelihood of con-
taining a fault in the near future. Thus, our technique may
choose to rank highly subsystems that may not be consid-
ered fault prone, yet they may have just a few faults appear-
ing very soon in them.

9 CONCLUSIONS AND FUTURE WORK
We presented a new approach to assist managers in determin-
ing which subsystems to focus their limited resources on. By
using this approach managers should be able to allocate test-
ing resources wisely, locate faults in a timely manner and fix
them as soon as possible. The approach uses ideas that have
been extensively researched in the the literature of web and
file systems. The idea of caching as a limited resource is
extended to the idea of limited testing resources. We show
that the problem of determining which entities to cache is
similar to the problem of determining which subsystems to
focus testing resources on. We present the concept of Hit
Rate which is widely used to measure the performance of
various caching heuristics. Then we extend it to measure the
performance of our heuristics that are used to build the Top
Ten list.

We studied our proposed approach and heuristics using the
development history of six large open source project. We
saw that we can achieve a hit rate that is higher than 60% for
some of the systems. We then examined the possibility of in-
creasing the size of the Top Ten list and noticed that a list that
contains 20% to 30% of the subsystems in a software system
provides very good results even when using simple heuris-
tics. We then presented a more elaborate heuristic based on
an exponential decay function. We show that the results us-
ing the new heuristics combine the benefits of early warnings
for faults and the ability to dynamically adjust as new devel-
opment data is available.

We believe that the Top list approach holds a lot of promise
and value for software practitioners, it provides a simple and

accurate technique to assist them in maintaining large evolv-
ing software systems.
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