
Language Design for
Reliable Software

S.L. Graham
Editor

An Experimental
Evaluation of Data
Type Conventions
J . D . G a n n o n
U n i v e r s i t y o f M a r y l a n d

The language in which programs are written can
have a substantial effect on the reliability of the result-
ing programs. This paper discusses an experiment that
compares the programming reliability of subjects using
a statically typed language and a "typeless" language.
Analysis of the number of errors and the number of
runs containing errors shows that, at least in one envi-
ronment, the use of a statically typed language can
increase programming reliability. Detailed analysis of
the errors made by the subjects in programming solu-
tions to reasonably small problems shows that the sub-
jects had difficulty manipulating the representation of
data.

Key Words and Phrases: data types, experimenta-
tion, language design, redundancy, reliable software

CR Categories: 4.22

Copyright © 1977, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part of
this material is granted provided that ACM's copyright notice is
given and that reference is made to the publication, to its date of
issue, and to the fact that reprinting privileges were granted by per-
mission of the Association for Computing Machinery.

A version of this paper was presented at the SIGPLAN/SIG-
OPS/SICSOFT Conference on Language Design for Reliable Soft-
ware, Raleigh, N.C., March 28-30, 1977.

Authors's address: Department of Computer Science, Univer-
sity of Maryland, College Park, Maryland 20742.

This work was supported by grants from the National Science
Foundation (MCS76-23346) and the National Bureau of Standards
(5-9017).

1. Data Types and Programming Reliability

The goal of reliable programming is to minimize the
number of errors in completed programs. Attaining this
goal may involve reducing the number of errors com-
mitted by programmers and/or increasing the fraction
of errors that are detected and corrected before the
production of a final program. Appropriate language
design can contribute to both of these goals.

One language feature which is common to many
programming languages but appears in different forms
in different languages is the method of determining the
type of an operand. Data types may be associated with
operands in one of three ways: statically, dynamically,
or not at all. In a statically typed language (e.g. Pascal
[8]), a data type is associated with an identifier in a
declaration. During its lifetime, the identifier may only
be assigned values of the same type. In a language like
GEDANKEN [5] or SNOBOL, data types are associ-
ated with an operand dynamically during execution.
The type of an operand is the type of the last value
assigned to it. BCPL [6] and BLISS [9] are called
"typeless" languages since each operand is considered
to be a collection of bits (usually a word in memory).
When an operator is applied to operands, the operands
are assumed to represent a value of the type that the
operator may manipulate. Many languages do not fit
neatly into one of the three categories. For example,
Algol 60 and PL/I are primarily statically typed lan-
guages. However, Algol 60 does not require complete
specification of the arguments of procedures, and the
UNSPEC operation of PL/I allows the type checking
mechanism to be subverted.

Some language designers strongly advocate sepa-
rate specification of the types of operands, while other
designers feel that this practice interferes with the pro-
gramming task. Those designers who advocate separate
specification of data types believe that data types offer
two principal advantages to a programmer: power and
redundancy. The power of data types allows a pro-
grammer to think in terms of his application rather than
of the characteristics of the machine on which his appli-
cation will run and to use the operations defined for
each type rather than building these operations out of
more primitive operations. Thus the programmer deals
with characters rather than bit patterns within a word
and with matrices rather than storage structures of
words. The programmer is aided in reaching a solution
and prevented from writing code that depends upon a
particular representation of his data and thereby pre-

584 Communications August 1977
of Volume 20
the ACM Number 8

dudes redesign of the program. Languages such as
CLU [4] and Alphard [10] are being designed to offer
programmers the benefits accruing from limiting the
availability of information about the representation of
data. Type checking prevents a programmer from at-
tempting operations on operands which are not valid
representations of the operands he wishes to process
(e.g. addition of Boolean values). In statically typed
languages, the context of each appearance of an oper-
and implies a type which can be checked against its
declared type. Furthermore, this checking can be per-
formed at compile time. This redundancy is not present
in dynamically typed or "typeless" languages. Errors
caused by operators having operands of the wrong type
can only be detected at run time and then only if the
code containing the error is executed, a condition that
cannot be assured by testing.

However, even among the advocates of separate
specification of type, there is little agreement on the
primary benefit of including this feature in a language.
Some designers feel that the power of data types helps
programmers avoid errors. Others believe that as many
as 50 percent of their programming errors are detected
by the type-checking mechanism.

As with many other issues in programming language
design, there is a wealth of personal experience with
data types, and every language designer feels that his
experience is the valid one. We cannot logically prove
that particular language features will enhance program-
ming reliability, much less derive the amount of im-
provement by analysis. However, we can gather empir-
ical evidence that tends to confirm or refute such claims
by measuring the amount of improvement (or lack
thereof) in real situations. We can observe program-
mers at work and examine the programs they create.
Such an experiment was performed in order to study
other language features such as scope rules and the
order of evaluation of expressions [2]. As a by-product
of this work, we observed evidence of the effects of the
various methods of associating a type with an operand
[3]. This evidence indicated that the use of dynamically
typed operands resulted in errors that remain in pro-
grams longer than the errors attributable to statically
typed operands. Furthermore, programmers trying to
convert an operand from one type to another, who
were forced to grapple with the representation of an
operand, committed errors that cast doubt upon their
ability to write reliably in a language which treats its
operands as collections of bits.

The Compelling arguments concerning the superior-
ity of statically typed languages and our own observa-
tions in previous work led to the design of an experi-
ment to compare the effects of statically typed and
"typeless" languages on programming reliability. Fur-
thermore, if a statically typed programming language
was superior, we hoped to be able to determine
whether power or redundancy was the principal factor
in the superiority.

585

2. Methodology

2.1. Overview
Two groups containing a total of 38 graduate and

upper-level undergraduate students in a course at the
University of Maryland programmed solutions to the
same problem twice. One group of subjects pro-
grammed solutions first using a statically typed lan-
guage and then using a "typeless" language. The sec-
ond group also programmed solutions in the two lan-
guages, but used the languages in the opposite order.
Each of the languages contained a substantial number
of features common to other more widely used lan-
guages. The solutions to the relatively simple problem
ranged from 48 to 297 lines. When a problem was
assigned, each student was given the appropriate lan-
guage manual containing similar sample programs. In
order to avoid biasing the subjects, we did not devote
class meetings to discussions of the features of the
languages. However, we were available to the subjects
on an individual basis. The subjects were cautioned to
treat the problem as a take-home examination and to
avoid discussing it with each other.

For the purposes of this study, a language was
judged to enhance the reliability of software if the
errors committed by its users were less frequent and
severe than the errors committed by the users of a
second language. The underlying hypothesis was that
the errors that persist in the debugging process are
similar to, but more numerous than, those that remain
in completed programs.

This experiment represents an improvement over
our previous work, since this experiment dealt with
only a single language feature and each of the subjects
used both languages. The first methodological change
meant that differences in the frequency and severity of
errors could now be attributed to a single language
feature rather than to one of several altered features.
More important, having each subject use both lan-
guages meant that we no longer relied on having groups
of subjects with equal abilities; we could compare each
subject's performance in one language to his own per-
formance in the other language. However, having the
subjects solve the same problem twice results in sub-
jects' "learning solutions" to the problem on their first
attempts.

2.2. The Languages
The first step in the methodology was to design the

two languages to be used in the experiment. We at-
tempted to make both languages identical in all fea-
tures not affected by the issue of data types (e.g. con-
trol structures, scope rules, and declaration require-
ments). However, as data types and operations are
intimately related, many of the operations in the lan-
guages have been altered. In addition, we intended that
the features of both languages be shared with other
widely used languages so that the results of the experi-

Communications August 1977
of Volume 20
the ACM Number 8

Table I. Comparison of Language Features.

F e a t u r e

Types

C o n s t a n t s

S t r u c t u r i n g

S u b s c r t p t t n g

S u b s t r i n g

O t h e r o p e r a t i o n s

I n p u t
S t ream
Record

Outpu t
S t ream
Record

ST
S t a t i c a l l y t y p e cl

I n t e g e r s
F i x e d Leng th

s t r i n g s

I n t e g e r s
S t r i n g s

Arrays

Arrays only

S i n g l e c h a r a c t e r
s t r 4 n g o n l y

No c o n c a t e n a t e
o r s e a r c h
f o r s t r i n g s .

No b i t o p e r a t i o n s
f o r i n t e g e r s

Any c o n s t an t
S i n g l e s t r i n g s

(80 c h a r a c t e r s)

Any e x p r e s s i o n
S t r i n g s

C o n v e r s i o n s None

NT
T y D e L e s s

words

I n t e g e r s
L e f t - a d j u s t e d , b l a n k -

f i l l e d c h a r a c t e r s
R i g h t - a d j u s t e d • z e r o -

f f l i e d c h a r a c t e r s
B ~ n a r y , o c t a l and

h e x a d e c i m a l numbers

Groups .of w o r d s

Any word

Any D a r t o f word

B i t o p e r a t i o n s : and~
or~ not

A~y c o n s t a n t
2 c o n s e c u t t v e words

(6 c h a r a c t e r s / w o r d)

An e x p r e s s i o n
P a ~ r s of a d d r e s s e s

and l e n g t h s

N one

ment would be easy to interpret.
The "typeless" language (NT) has only single word

variables. As in BCPL, programmers may associate an
identifier with either a single word or a group of words.
However, any identifier may be subscripted without
error. In keeping with the idea of a "typeless" lan-
guage, this decision allows the subscript operation to be
applied to any identifier. A constant may have one of
several representations, but its value must be storable
in a single word. The numeric representations are bi-
nary, octal, decimal, and hexadecimal. The two charac-
ter constant representations provided are those of
BLISS: left-adjusted, blank-filled and right-adjusted,
zero-filled. In order to manipulate the representations
of data, a partword operation may be applied to select
or alter an arbitrary portion of a word (e.g. a charac-
ter). In addition to the common infix arithmetic opera-
tors, there are three infix bit operators: AND, OR, and
NOT. The operators of NT can be applied to any
operands of appropriate size. Stream input allows the
constants of the language to appear as inputs, and
stream output produces decimal representations of val-
ues. Record input reads an input record (i.e. card) into
twenty consecutive words (four characters per word)
starting at the location specified by the actual parame-
ter. Record output accepts pairs of arguments X, Y and
prints the character representation of the Y words start-
ing at location X.

5 8 6

The statically typed language (ST) has integers and
strings with arrays of data of both types. Strings are
fixed length and are padded with blanks on the right in
an assignment or input operation in which the value
being given to the string is shorter than the declared
length of the string. Besides assignment, comparison,
input, and output, the only other string operation is the
substring operation, which is restricted to single charac-
ters within a string. There are no concatenation or
search operations for strings in the language, although
these operations may be built by using substring and
comparison. Integers have the common arithmetic op-
erations, but no bit operations. Only identifiers de-
clared to be arrays may be subscripted. The constants
of ST are decimal numbers and strings. Stream and
record input are restricted to scalar variables. (For
example, the programmer must write a loop if he
wishes to read or write an entire array of strings.)
Stream input allows the constants of the language to
appear as inputs, and stream output produces the ap-
propriate representation of a value. Record input and
output deal only with scalar strings, and values are
padded on the right with blanks where appropriate.

It would hardly seem fair to provide subjects work-
ing in ST with all the operations normally associated
with string processing (e.g. concatenate, search, sub-
string, length, blank trimming, and conversion) and to
require that the subjects working in NT build these

Communications August 1977
of Volume 20
the ACM Number 8

operations out of more primitive operations. If ST
offered extra powerful operations in addition to its
power and redundancy, it would almost certainly aid
programming reliability more than NT. Instead, we
restricted the string operations in the statically typed
language to the essential string primitives: assignment,
comparison, and selection of single characters within a
string. This is an at tempt to give the two languages
"equally powerful" operations. Thus subjects in each
language have to build the more powerful operations
from sets of roughly comparable primitives. These dif-
ferences are summarized in Table I.

Although it is obvious that both languages contain
features common to many widely used languages, the
differences between existing languages prevent our
simply picking two of them to use in this study. Con-
versely, implementing the two compilers from scratch
was an unappealing amount of work. Therefore we
altered an existing language and its compiler, SIMPL-T
[1], to produce both compilers. The SIMPL family is a
set of programming languages under development at
the University of Maryland. The term "family" implies
that the languages contain some common basic fea-
tures, such as data types and control structures. Each of
the languages in the SIMPL family is built as an exten-
sion to a base language. Present members of the
SIMPL family are the base "typeless" language
SIMPI_,-X, the statically typed (integers and strings)
language SIMPL-T, the mathematically oriented
(reals) language SIMPL-R, and a systems implementa-
tion language for the Poe-11 SIMPL-XI.

The basic features of SIMPL-T that became part of
both the ST and NT languages are:

1. A program consists of a sequence of procedures
which can access a set of global variables, parame-
ters, and local variables.

2. The statements are the assignment, if, while, case,
call, return, exit, and abort. There is no block
structure.

3. Procedures and functions may be recursive.
4. Procedures may not be passed as parameters. The

default parameter passing mechanism is call by
value, but call by reference may be specified.

5. The index of the first value of an array is zero.
6. Both stream and record input/output are available.

In addition, the features of NT and ST were added.

2.3. Data Collection
In order to reduce the cost of this experiment, each

subject was asked to submit his intermediate listings to
the experimenter. As a safeguard against uncoopera-
tive subjects, a data collection mechanism was built to
automatically copy each program submitted by each
subject. In order that this mechanism be inexpensive,
the input cards of the subjects, rather than the output
of the language processors, was copied. This allowed us
to avoid copying the outputs of jobs that entered indefi-
nite loops containing output statements and to rerun

587

Table II. Sample Input and Output for Problem.

Input O u t o u t

01HGu 01 hGu
03SYSTEM UGH

•3SYSTE u
~F TSYS
ME TSYS
METSYS

the jobs to insert diagnostic aids and to collect extra
statistics.

2.4. Identifying Errors
We examined the listings for errors, An error was

discovered in one of three ways: by the appearance of a
diagnostic message or incorrect output , by marks in the
listing that subjects made during desk checking or de-
bugging, or by us during our examination of the sub-
jects' solutions to the problems.

In runs following the run on which an error ap-
peared, a subject may have changed his program,
either correcting the error or altering the manner in
which the error manifested itself. Whether or not any
manifestations of the error were evident on the subse-
quent runs, the error was said to persist if it remained
uncorrected.

To determine the number of occurrences of the
errors, the errors have been traced back to their origin
and counted on all intervening runs. Errors that oc-
curred in the source code have been traced back to the
run in which the compiler first analyzed the source
code. Errors that occurred in the input data have been
traced back to the run in which the program first
reached execution of a read statement.

2.5. Measures
The errors and occurrences described above are

labeled total errors and total occurrences in the follow-
ing sections. Errors and occurrences have been divided
into two kinds, primary and equivalent, which together
comprise total errors and total occurrences. The fol-
lowing example illustrates the differences between pri-
mary and equivalent errors. Suppose a subject changed
the number of formal parameters accepted by a proce-
dure, but changed only N - M of the N procedure
invocations to have the correct number of actual pa-
rameters. Clearly the M procedure invocations with the
incorrect number of actual parameters are errors, but
they are not as serious as M distinct errors. However ,
each of the M incorrect invocations could stop the
program from executing correctly. Therefore one of the
errors (the one that occurred on the most consecutive
runs) has been designated as the primary error, and the
other M - 1 errors have been called equivalent errors.
The tables that follow present primary and total (i.e.
primary plus equivalent) errors and occurrences.

In addition, the number of runs that contained any
errors has been calculated. This measure, called error

Communications August 1977
of Volume 20
the ACM Number 8

runs, is an at tempt to measure the severity of errors
rather than just the gross number of errors. A single
error that occurred on five consecutive runs has error
runs equal to five, while five errors that occurred on the
same run each have error runs equal to one.

2.6. The Problem
Designing a problem which is typical of the entire

range of programming applications is an impossible
task. Instead we tried to design a task that required the
use of the altered features in the two languages (i.e.
string assignment, substring assignment and selection,
and conversion from character to integer representa-
tions). Subjects were asked to read a series of cards of
the form d d c c . . , c where d is a digit between 0 and 9
and c is a character and to produce dd copies of the
reversed character string. Each subject 's program was
to read the card, place it in an array to be printed,
process the card (i.e. produce dd copies of the reversed
characters), place the reversed strings in the output
array, and print the contents of the array. The program
was also to contain a recursive procedure to reverse the
character port ion of the card. Sample input and output
are shown in Table II (p. 587).

While the problem is not difficult, it is not trivial
either. The solutions ranged from 48 to 216 lines and
27 to 85 statements in ST, and from 58 to 297 lines and
31 to 105 statements in NT. Although this is not a large
program, much of the experimental work being done
by most researchers concentrates on much smaller pro-
grams (e.g. ten statements). However , should we work
with programs that become too large, it may become
difficult to determine if any errors remain in them.

Since the problem was assigned as a normal home-
work assignment for the course, subjects were well
motivated to complete the problem. The subjects were
given two weeks to solve the problem. Sample solutions
to the problems may be found in Appendix B (see pp.
594-595) .

2.7. Statistical Techniques
The averages per programmer for the number of

errors, total errors, occurrences, total occurrences, and
error runs have been calculated for a language for each
hypothesis. Because averages over small samples can
be greatly distorted by one or two very bad perform-
ances, nonparametric tests have been used to deter-
mine the statistical significance of all the differences.

Nonparametr ic tests were used because they are not
related specifically to the parameters of a given popula-
tion and may therefore be used under very general
conditions (for instance, if one of the sample popula-
tions displays considerably more variance than an-
other) . Nonparametr ic tests waste information because
they compare the signs or ranks of the values of popula-
tions rather than the values themselves. This leads to a
greater risk of accepting a false null hypothesis than the
alternative standard tests.

Table III. First Solution.

P e a s u r e NT ST

E r r o r s 1~. ,40 1 2 , & q

T o t a l E r r o r s 2 & , 8 7 2 2 , 3 9

Occurrences 93.80 3~.17

Total Occurrences 125.~0 51.72

Error Runs 21 .20 I0.P5

L e v e t

45X

45~

45X

Table IV. Second Solution.

~ e a s u P e NT ST L e v e l

E r r o r s 1 3 , 1 7 7 , ~ 7 42~

T o t a l E r r o r s 26.00 ~.93 4.2X

Occurrences 59.83 29.20 <5%

Total Occurrences 99.61 31.&0 41%

Error Runs 14.~3 10.07

Table V. NT1/ST2.

M e a s u r e NT ST L e v e l

E r r o r s 1 9 , 4 0 7 , 8 7 4,5%

T o t a l E r r o r s 2 3 , h 7 ~ , 9 3 (2 , 5 %

Occurrences 90.80 20.~0 <.5%

T o t a l Occurrences 125.80 3 1 . 6 0 <.5Z

E r r o r Runs 21.20 1 0 , 0 7 42.5%

Table VI. ST1/NT2.

~ e a s u r e f~T ST L e v e l

E r r o r s 1 3 , 1 7 12 ,&4,

T o t a l E r r o r s 2~.GO 22 .~q~

Occurrences 5~.~3 3~.17 <.5~

Total Occurrences ~9,bl 51."2 411;

Error Runs I~, , ~. 3 ln.~5 <1%

Four nonparametr ic tests were used in evaluating
the results of this experiment: the Mann-Whitney U-
test, the Wilcoxon matched-pairs signed-ranks test, the
Spearman rank correlation coefficient, and the Krus-
kal-Wallis one-way analysis of variance [7]. A two-
tailed Mann-Whitney test was applied to compare the
performances of the two independent groups (the NT
and ST groups) on their first and second solutions to
the problem. A two-tailed test was chosen despite our
belief that, given two groups of subjects of compatible
ability, the ST group would perform bet ter than the NT
group. We felt there was a possibility that one of the
groups might contain superior programmers. In order
to compare the performances of the same subjects in
each of the languages (two related sets of measures), a

588 Communications August 1977
of Volume 20
the ACM Number 8

one-tailed Wilcoxon test was used. Here the one-tailed
test was appropriate because we believed that any one
subject would commit fewer errors solving the problem
in ST than in NT. In addition, we felt that certain
subjects would benefit more than others from using ST
as opposed to using NT. Two tests, the Spearman and
Kruskal-Wallis tests, were used to investigate the size
of the improvements in the error measures attributable
to the subjects' use of ST. To accomplish this, a sub-
ject's ST error measures were subtracted from his NT
error measures. The subjects were then ranked in as-
cending order. The subjects with lower NT than ST
error measures were assigned the lower ranks, followed
by the subjects who had increasingly lower ST than NT
measures. The Spearman test was used to measure the
correlation between higher examination scores and
smaller improvements in the ST error measures. The
Kruskal-Wallis test was used to determine if any of
three groupings of subjects based on experience ex-
hibited different improvements in error measures using
ST.

and then NT (ST1/NT2) both committed fewer and less
severe errors using ST than using NT. However , while
the differences in the measures are highly significant for
the NT1/ST2 group (Wilcoxon matched-pairs signed-
ranks test, one-tailed), the differences in errors and
total errors are not statistically significantly different
for the ST1/NT2 group.

There are at least two effects to consider: the famil-
iarity of the subjects with the problem, and the lan-
guage being used to solve the problem. In solving the
problem the second time, the NT1/ST2 subjects bene-
fited both from the knowledge they gained solving the
problem the first time and from using the data type
features of ST. The knowledge gained during the first
solution was both problem-related (e.g. how to use
recursion and when to stop it) and language-related
(e.g. the scope rules and control features common to
both languages). In contrast, the subjects in the ST1/
NT2 group benefited mainly from familiarity with the
problem. Another factor which may help explain the
lack of significance of the error and total error results
for the ST1/NT2 group is that some of these subjects

3. Results

3.1. Summary
Fifteen of the original 17 subjects who wrote their

first solutions in NT and 18 of the original 21 subjects
who wrote their first solutions in ST finished solutions
in each of the languages. A total of 4834 occurrences of
1372 errors were committed on 1014 runs by these 33
subjects during the experiment. Using ST, the subjects
made an average of 11.61 runs and had an average of
.21 errors remaining in their final solutions. Using NT,
the comparable figures were 19.12 runs and .64 errors
remaining in the final runs. Tables I I I -VI contain the
averages per subject for the number of errors, to-
tal errors, occurrences, total occurrences, and error
runs. In the first solutions to the problem, the subjects
using ST had lower error measures than the subjects
using NT; however, only the differences in occur-
rences, total occurrences, and error runs are statisti-
cally significant (Mann-Whitney U-test, two-tailed).
The total errors show a 13:11 advantage for the ST
users, while the total occurrences exhibit a 5:2 advan-
tage. Thus we might conclude that the use of ST does
not reduce the original commission of errors so much as
it detects them quickly.

When the subjects solved the problem a second
time using a different language (i.e. the subjects who
used NT in the first solutions now used ST and vice
versa), all the measures again favored the subjects
using ST. As was the case with the first solutions, the
ST advantage for total occurrences (10:3) outweighed
that for total errors (8:3).

Subjects in the group that used NT first and then ST
(NT1/ST2) and those in the group that used ST first

5 8 9

Table VII. Character Selection: Position/Length Errors.

V e a s u r e N u m b e r

E r r o r s 16

Total Errors 50

Occurrences 1]~

Total Occurrences 343

Error Runs 120

S u b j e c t s Invotveo 10

Table VIII. Word Selection: Position/Length Errors.

Ueasure

E r r o r s

T o t a l E r r o r s

O c c u r r e n c e s

Total Occurrences

Error buns

Subjects Invotvea

Number

72

7~

203

;.46

170

15

Table IX. Constants Too Long.

U e a s u r e

E r r o r s

T o t a l E r r o r s

O c c u r r e n c e s

T o t a l O c c u r r e n c e s

E r r o r ~uns

S u b j e c t s Invo lveO

4 u m o e r

23
c4

47.

R9

43

17

Communications
of
the ACM

August 1977
Volume 20
Number 8

used the types and operations of ST (e.g. characters
and substrings) as abstract operations in solving the
problem by using NT. (See the sample NT solution in
Appendix B.) A complete breakdown of the measures
for each subject may be found in Appendix A (see pp.
592-593),

3.2. Detailed Analysis of Errors

3.2.1. NT errors. Subjects working in NT had
more difficulty coping with the representation of string
data (i.e. its origin, length, and justification) than with
differences between types of data (i.e. integer and
character format). In selecting characters within words,
subjects either used 1 (instead of 0) as the index of the
leftmost bit within a word and 9 as the length of a
character in bits (character positions 1, 10, 19, 28), or
1 as both the index of the leftmost bit and the length of
a character (character positions 1 ,2 , 3 ,4) , or 35 as the
index of the leftmost bit and 9 as the length of a
character (character positions 35, 27, 18, 9). Table VII
contains a summary of these kinds of errors made by
the 10 NT subjects who made them (i.e. Subjects
Involved).

NT subjects made similar errors dealing with groups
of words used to represent strings of characters (Table
VIII), Errors arose from using 1 (instead of 0) as the
index of the first word in a group of words and from
using either 1 or 80 (instead of 20) as the length of a
group of words used to represent a string of characters.

In addition to these selection errors, subjects using
NT had to cope with considerably more complex selec-
tion mechanisms. In ST, characters are selected via a
substring operation which requires a single argument,
the position of the character in the string. In NT,
characters are selected by using both a subscript opera-
tion, which requires the location of the word in which
the character occurs, and a partword operation, which
requires the location of the bit at which the character
occurs and the length of the character in bits. Thus, in
order to process strings of characters, a subject must
maintain one index in ST but two indices in NT. Similar
problems arise in processing a group of words as an
array of character strings. The subscript operation in
ST is applied to an array of strings to select a single
string; the subscript operation in NT must be used to
select both a particular string and a word containing a
character in that string. Some subjects working in NT
actually broke up the subscript computation into a
string selector and a word selector but occasionally
forgot to include one of these components while
processing a string. Other NT subjects combined
the calculation and miscalculated the boundaries of
strings.

Subjects using NT also had difficulty with the length
of constants (Table IX) and their justification and fill
(Table X). Character and octal constants, which were

Table X. Incorrect Justification of Constants.

Ueasure

Errors 21

Total Errors 79

Occur rences 223

T o t a l O c c u r r e n c e s 638

E r r o r Runs 185

S u b j e c t s I n v o l v e ~ 17

L e f t - j u s t i f i e d R i g h t - J u s t i f i e d

Table XI. Subscripting Formal Parameters.

M e a s u r e

E r r o r s

T o t a l E r r o r s

O c c u r r e n c e s

T o t a l O c c u r r e n c e s

E r r o r Runs

S u b j e c t s InvolveO

Number

?

Io

61

79

55

b

Table XII. Incompatible Types.

~easure O p e r a t o r s I n t r i n s i c s

E r r o r s 3 23

Total E r r o r s 4 52

Occur rences 9 99

T o t a l O c c u r r e n c e s 11 174

E r r o r Runs 9 98

Subjects Involveo 3 19

Table XIII. Representation of Arrays/Strings.

M e a s u r e Number

E r r o r s 4

T o t a l E r r o r s ZO

O c c u r r e n c e s 21

T o t a l O c c u r r e n c e s 61

E r r o r Runs 22

S u b j e c t s Involve~ 4

restricted i~ values which could be placed in a single
word, were often too long.

Character constants, especially single character
blanks and digits, were often incorrectly justified and
filled. The large discrepancy in the measures for the
two types of justification errors can probably be attrib-
uted to the backgrounds of the subjects. Left-justified

$ 9 0 Communications August 1977
of Volume 20
the ACM Number 8

Table XIV. Origins of Arrays/Strings.

. e a s u r e

E r r o r s

T o t a t E r r o r s

O c c u r r e n c e s

T o t a l O c c u r r e n c e s

E r r o r Runs

S u b j e c t s I n v o l v e d

Strings

4

4

15

15

13

3

Arrays

2

2

3

3

3

2

Table XV. Representation of Constants.

~ e a s u r e ~umber

E r r o r s 5

T o t a t E r r o r s 5

O c c u r r e n c e s 16

T o t a l O c c u r r e n c e s 16

Error Runs 16

S u b j e c t s I n v o l v e a q

Table XVI. Incompatible Types.

~easure OPera to r I n t r i n s i c

E r r o r s 9 7

T o t a l E r r o r s 29 7

Occurrences 37 24

Tote[Occurrences 70 24

E r r o r Runs 37 26

Sub jec t s I n v o l v e a 9 7

Table XVII. Substring Assignment to Uninitialized Variables.

~ e a s u r e Number

E r r o r s 19

T o t a l E r r o r s 19

O c c u r r e n c e s 125

T o t a l O c c u r r e n c e s 125

E r r o r Runs 106

Subjects Involveo 15

blank-filled character constants are specified (as are
string constants in most programming languages) by
enclosing the character in single quotation marks.
Right-justified zero-filled character constants are speci-
fied in double quotation marks. The NT convention
was not designed to mislead the subjects intentionally
but follows the conventions established by other type-

591

less languages (e.g. BLISS). The partword operation in
NT returns a right-justified zero-filled value which sub-
jects often tried to compare to a left-justified blank-
filled constant. There was only one error which in-
volved a subject working with variables having differ-
ent justifications.

NT subjects also had trouble with the parameter
passing mechanism, which defaulted to call by value in
each of the languages. In order to apply the subscript
operation correctly to a formal parameter in NT, the
parameter had to be passed by reference. (Otherwise a
temporary location is subscripted.) Six NT subjects
committed errors of this kind (Table XI).

In contrast to the problems subjects had with the
representation of data in NT, relatively few errors re-
sulted from uses of data of the wrong type. One of
these errors resulted in incrementing the elements of
an array instead of shifting them from right to left.
That is,

Card(Word) := Card(Word) + 1

instead of

Card(Word) := Card(Word + 1)

Only in using the NT intrinsics to read and write values
(READ/WRITE for integers and READC/WRITEL
for characters) did the subjects make a large number of
errors (Table XII).

3.2.2. ST errors. Subjects using ST had relatively
little trouble with either the representation or the type
of data. Several subjects did attempt to treat strings of
length 80 as arrays of 80 strings of length 1 and vice
versa (Table XIII).

There were also several errors caused either by
using zero (instead of one) as the index of the first
character in the string or by using one (instead of zero)
as the index of the first element of an array (Table
XIV). Errors involving the incorrect representation of
constants were also rare (Table XV).

Examining operations on data of an incorrect type,
we find that ST subjects made a few more errors involv-
ing operators and a few less errors involving I/O
intrinsics than did the same subjects using NT
(Table XVI).

The most frequent errors made by the subjects
using ST were attempts to use the substring operation
to assign a value to a variable which had not been
initialized (Table XVII).

3.3. Subjects Aided by ST
Examining the tables that summarize the perform-

ances of the subjects in Appendix B, we can easily see
that, although most subjects benefited from using ST,
not all of the them did. Furthermore, even among those
subjects whose performances improved, the amount of
improvement differed radically. This made us wonder

Communications August 1977
of Volume 20
the ACM Number 8

Table XVIII. High Scores and Less Improvement Using ST.

C o r r e l a t i o n
~easu re C o e f f i c i e n t L e v e l

E r r o r s ,1~

Total Errors .~2 <2%

O c c u r r e n c e s o19

T o t a l O c c u r r e n c e s .37 <5%

E r r o r Runs ,21

Table XIX. Differences between NT and ST Error Measures Within
Groups of Subjects Based on Experience.

= e a s u r e 0 1 =o re L e v e l

E r r o r s ~°50 &oS5 ~°17

Total Errors 21.1~ 10.45 -1.67 <20%

Occurrences 6Z.50 59,01 Z1.17

Total O c c u r r e n c e s 13~.50 5~.3b 25.98 <I0¢

Error Runs E.40 11.00 2.~3

which (if any) group of subjects benefited most from
using ST.

The first comparison we made involved examina-
tion scores. We felt that better students might be more
disciplined programmers and either benefit less from
the abstractions offered by the data types of ST or cope
better with the representation of data in NT. To exam-
ine this hypothesis, we ranked the subjects twice: first
in descending order according to their average exami-
nation scores, and then in ascending order according to
the differences between the error measures for their
NT and ST performances. Those subjects at the head of
the second ranking benefited least from using ST. They
had negative differences between the NT and the ST
measures, having more errors, occurrences, and error
runs in ST than in NT. A Spearman rank correlation

coefficient showed two significant positive correlations
between subjects with higher examination averages and
those with smaller improvements in error measures
using ST (Table XVIII).

The final comparison we made concerned the effect
of a subject's experience on his performance. We mea-
sured experience in terms of the number of languages
in which the subject had written 25 or more programs.
As programmers learn new languages, each new lan-
guage requires less learning investment than the pre-
vious one. Thus we felt the more languages with which
a subject was familiar, the easier time he would have
learning both new languages. We broke the subjects
into three groups based on the number of languages
that they indicated they had used frequently (10 sub-
jects with zero languages, 11 subjects with one lan-

Table XX. NT1/ST2.

S u b j e c t E r r o r s T o t a l E r r o r s O c c u r T o t a l 0¢¢ E r r o r Runs

1 11121 1 6 / 2 1 50161 82101 16122
2 114 115 115 116 114
..~ 1717 4217 1 2 1 1 2 7 2 0 0 1 2 7 1 8 1 1 0
4 85111 1 2 6 1 1 2 3 0 5 1 2 9 491139 6818
5 712 712 3 13 3813 912
6 l c 1 5 3 0 / 5 1 9 7 / 1 8 24011~ 7 0 1 1 2
? 2313 4013 6 4 1 1 0 2 1 7 1 1 0 1615

51 1013 2316 512 .~1~ 1015
9 1219 10142 13142 5 1 1 3

10 1312 1712 5 3 / 4 81 I~ 1 3 / 3
11 2 6 1 2 4 30132 1011136 136/159 19125
I~ 1013 1013 46114 4611/, 1118
15 11112 1111q 115124 115126 26120
l& 19/7 24/~ 95/53 119/56 20/13
15 2110 2716 7619 8519 2114

Table XXI. ST1/NT2.

S u b j e c t E r r o r s T o t a l E r r o r s O c c u r T o t a l O c t E r r o r Runs

16 ZI7 2136 2•20 215- ~ 1 18
17 519 519 13119 1311 ° 414
1F 27116 48122 93•00 1311111 18/16
19 2 1 / 1 5 /,111 7 1 521171 1 7 7 1 1 7 4 3 2 1 3 9
20 3110 3123 5 / 1 9 5153 315
21 21113 24150 45169 481248 9112
22 1 U I 7 2017 1 0 1 1 8 4 0 / 1 ~ 7110
23 11120 14133 251137 30/1.°.0 :il 132
24 ~ ; t19 1 5134 2 ~ / 5 7 36182 9 1 1 7
25 1 G ! 8 2111 n 2 R / 2 5 4812~ 1010
26 36126 40150 1271156 13613~2 38138
27 12114 85126 31163 111192 11112
2~ 71~ 16112 I(]119 19/3~ 517
29 ~ / 7 1117 15113 1~113 714
30 4 / 5 411/ , 1 1 / 2 0 11105 517
31 2213~ 32150 591123 731152 17126
32 7112 12129 13147 21 166 3119
33 ~17 1C11 2 11111 12117 515

592 Communications
of
the ACM

August 1977
Volume 20
Number 8

guage, and 12 subjects with more than one language).
The figures in Table XIX again represent the differ-
ences between ST and NT performances. For example,
subjects who were not experienced with any other pro-
gramming language made 8.50 more errors in NT than
ST. It appears that the improvement in performance
from NT to ST varies inversely with experience as
measured by the number of frequently using program-
ming languages.

4. Condusions and Future Work

This experiment shows that at least in our environ-
ment, the features of a statically typed language in-
crease programming reliability more than the features
of a "typeless" language. Of course these results come
as no surprise. The statically typed language still has
better primitives with which to solve string-processing
problems. In addition, most students learn a statically
typed language as their first language and make errors
when encountering a new concept like a "typeless"
language for the first time.

Furthermore, the detailed analysis of the magnitude
and kinds of errors committed by the subjects seems to
indicate that the power of the statically typed language
aided the subjects more than the redundancy did. Fi-
nally, subjects who are less able and experienced are
helped most by a statically typed language.

There is no reason to assume that languages de-
signed without explicit concern for reliability will be
suitable for the production of reliable software. Both
the "typeless" and statically typed languages share fea-
tures with other widely used programming languages.
The empirical evidence gathered in this research should
help in selecting an existing language in which to
implement a piece of software and serve as an
objective basis in the design of new programming
languages.

There are several possible directions for future
work. Additional experimental work with data types
could involve comparing the statically typed language
to another statically typed language with extended
string operations (e.g. concatenation, multiple charac-
ter substring, conversions, etc.) to discover the possible
advantages of providing these high-level operations.
The statically typed language could also be compared
to an identical language whose compiler/interpreter
waited until run time to detect type mismatches. This
experiment would point out the advantages of compile-
time error checking. The experimental approach could
also be applied to other language features as well as to
measuring programmer aptitude or productivity. Lan-
guage designers are continually proclaiming constructs
"harmful" and proposing alternative features. We are
anxious to perform experiments on some of these fea-
tures (e.g. interfaces, assignment statements, synchro-

nization primitives, etc.) to determine if the alternative
features achieve their goals.

Acknowledgments. We have benefited from discus-
sions on this topic with J.J. Horning of the University
of Toronto, M.V. Zelkowitz, R.G. Hamlet, V.R. Bas-
ill, and B. Shneiderman of the University of Maryland,
R.E. Noonan of the College of William and Mary, and
the members of IFIP Working Group 2.4 (Machine-
Oriented Higher-Level Languages). A.J. Turner of
Clemson University provided valuable information
about the SIMPL-T compiler. We are also grateful to
the referees for their helpful comments on an earlier
version of this paper.

References
1. Basili, V.R., and Turner, A.J, A transportable extendable com-
piler. Sojqware-Practice and Experience 5 (1975), 269-278.
2. Gannon, J.D., and Homing, J.J. Language design for program-
ming reliability. IEEE Trans. Software Eng. SE-1, 2 (June 1975),
179-191.
3. Gannon, J.D. Data types and programming reliability: some
preliminary evidence. MRI Symp. on Comptr. Software Eng., Vol.
24, Polytechic Press, Polytechnic Institute of N. Y. (1976). 367-376,
4. Liskov, B.H., and Zilles, S.N, Programming with abstract data
types. SIGPLAN Notices (ACM) 9, 4 (April 1974), 50-59.
5. Reynolds, J.C. G E D A N K E N - a simple typeless language based
on the principle of completeness and the reference concept. Comm.
ACM 13, 5 (May 1970), 308-319,
6, Richards, M. BCPL: a tool for compiler and system writing.
Proc. AFIPS 1969 SJCC, Vol. 34, AFIPS Press, Montvale, N.J., pp.
557-566.
7, Siegel, S. Nonparametric Statistics for the Behavioral Sciences.
McGraw-Hill, New York, 1956.
8. Wirth, N. The programming language Pascal. Acta lnformatica
1, 1 (1971), 35-63.
9. Wulf, W.A., Russell, D.B., and Habermann, A.N. BLISS: a
language for systems programming, Comm ACM 14, 12 (Dec.
1971), 780-790.
10. Wulf, W.A., London, R.L.. and Shaw, M. An introduction to
the construction and verification of Alphard programs. IEEE Trans.
Software Eng. SE-2, 4 (Dec. 1976), 253-264.

Appendix A

Tables XX and XXI contain a breakdown of the
measures for each subject by language. Each column
contains two figures separated by a slash (/). The first
number is a measure of the subject's performance in
the first language he used and the second number is the
comparable measure in the second language.

Appendix B

The following two programs are sample solutions to
the problem described in Section 2.6. The first solution
is written in ST and the second solution is written in
NT.

(Appendix B continues on next page)

593 Communications August 1977
of Volume 20
the ACM Number 8

ST Sample Solution

594

/ * READ IN STRINGS OF THE FORM DDCC...C AND PRODUCE * 1
/ * DD COPIES OF THE REVERSED STRING C. . .CC * l

STRING ARRAY OUTPUT[~O](20) = (" " (2 0))
INT FIRSTCHARPOS = I ,

LASTCHARPOS = 80t
FIRSTSTRPOS = Oy
STRINGSIZE = I~
NUMDIGITS = Z I * NUMBER OF DIGITS TO CONVERT * l

STRING BLANK[l] = " *

INT FUNC NUU(STRING CVAL)

I * RETURN NUMERIC EQUIVALENT OF FIRST CHARACTER OF CVAL * I

CASE CVAL[I] OF
~*O*\ RETURN(O)
~'1"~ R E T U R N (I)
\'2"~ RETURN (2)
\'3"~ RETURN (3)
~ " 4 " ~ R E T U R N (A)
\ ' 5 " ~ R E T U R N (5)
~'6"~ R E T U R N (b)
\ ' 7 " ~ RETURN (7)
~ '8 "~ RETURN (8)
\ 'Q*~ RETURN (9)
ELSE

WRITEL('ILLE6AL CHARACTER CONVERSION')
RETURN(O)

END

PROC P R O D U C E C O P Z E S (S T R I N G I N ~ R E F I N T L O C)

I * PLACE ONE COPY OF THE S T R I N G AND
DD C O P I E S OF THE REVERSED S T R I N G IN * I N " * /

I N T I •
FIRST~ I * START OF STRING TO F~E REVERSED * I
lASTt I * END OF STRING TO BE REVERSED * I
COPIES I * NUMBER OF REVERSED COPIES TO BE PRODUCED * I

FIRST := F I R S T C H A R P O S
C O P I E S : = N U M (I N [F I R S T]) * 10 + N U M (I N [F I R S T + I])
FIRST := FIRST + NUMDIGITS
LAST := LASTCHARPOS

WHILE LAST >= FIRST .AND. INELAST] = BLANK
DO I * LAST POINTS TO FINAL NONBLANK CHARACTER * I
LAST := LAST - I
END I * LAST P O I N T S TO L A S T NONBLANK CHARACTER * l

I := F I R S T C H A R P O S
WHILE I <= LAST

DO I * COPY UNREVERSED SIRING TO OUTPUT ARRAY * l
OUTPUT(LOC)[I] := I N E I]
I := I ÷ I
END

LOC := LOC ÷ STRINGSIZE /* NEXT AVAIL OUTPUT POS *l

I F COPIES > 0
THEN I*. REVERSE STRING AND MAKE COPIES *I

CALL REV(OUTPUT(LOC) ~ , F I R S T C H A R P O S , O U T P U T (L O C - S I R I N G S I Z E) t
f IRST,LAST)

LOC : = LOC + S T R I N G S I Z E
COPIES := COPIES - I
WHILE COPIES > 0

DO I* MAKE ADDITIOhAL COPIES OF REVERSED STRING *I
O U T P U T (L O C) := O U T P U T I L O C - S T R I N G S I Z E)
LOC := LOC + S T R I N G S I Z E
C O P I E S := C O P I E S - 1
END

END

REC PROC REV(REF STRING OUT.INT OUTPOStSTRING IN , INT FIRSTt
INT LAST)

/ * "LAST* CHARACTER OF " I N " TO "FIRST" POSITON OF "OUT" * 1

I F LAST < F I R S T
THEN

RETURN
ELSE

OUT[OUTPOST := IN[LAST]
CALL REV(OUTvOUTPOS÷I~INIFIRSTtLAST-I)

END

PROC DRIVER

STRING CARD[801
I N T LASTRECORD, I

LASTRECORD := F I R S T S T R P O S
WHILE .NOT. EOIC

DO I* READ AND REVERSE INPUT */
READE (CARD)
CALL PRODUCECOPIES(CARD tLASTRECORD)
END

I := F I R S T S T R P O S
WHILE I <= LASTRECORD-STRINGSIZE

DO / * PRINT OUTPUT ARRAY CONTENTS * l
WR ITEL(OUTPUT (I) 1
1 : = I + S T R I N G S I Z E
END

START DRIVER

Communications
of
the ACM

August 1977
Volume 20
Number 8

NT Sample Solution

595

/ * READ IN STRINGS OF THE FORM D D C C . . . C AND PRODUCE * /
I * DD COPIES OF THE REVERSED STRZN6 C . o , C C * /
VAR O U T P U T (3 0 0) = (' ' (~ 0 ~))
VAR FIRSTCHARPOS -- O ,

LASTCHARPOS = 7 9 ,
FIRSTST.RPOS = [,
STRINGSIZE = 20,
CHARLEN = 9 t
CHARPERWD = ~ ,
NUMDIGITS = 2, /* NtJ~BER OF DIGITS TO CONVERT */ bLANK = N ..

FUNC WD(VAR POS)
/ * RETURN THE wORD INDEX C O N T A I N I N G THE POS-TH CHARACTER * /

RETURN (POS / CHAR PER wD)

FUNC CHAR(VAR POS)
/ * RETURN THE BIT INDEX OF THE POS-TH CHARACTER * l

RETURN ((POS-POS / CHARPER WD* CHARPE RWD)*CHARLEN)

FUNC SuBSTR(REF V~R STRtVAR PO~.)
/ * RETURN THE POS-TH CHARACTER OF STR * /

RETURN (STR (wD(POS))[CHA P (POS).CH ARLEN])

REC PROC REV(REF VAR OUT,VAR POStREF VAR IN,VAR FIRST tVAR LAST)

/ * "LAST" C~ARACTER OF " IN" IO "FIRST" POSITON OF "OUT" * /

IF LAST < FIRST
THFN

RETURn.
ELSE

OUT(w D(PO S)) [CHAR (PO S) tCHA RLEN] .'I)SUBSTR(IN, LAST)
CALL REV(OUT,POS+ I t I N, FIRS T,LAST

END

PROC PRODUCECOPIES(REF VAR Ir,,REF VAR LOC)

1. PLACE ONE COPY OF THE STRINb AND
DO COPIES OF THE REVERSED STRING IN " IN" * /

VAR I,
DIGIT,
FIRST. / * START OF STRIN~ TO BE REVERSED * /
LIST, / * END OF STRING TO BE REVERSED * /
COPIES / * NUMBER OF RE.VERSED COPIES TO BE PRODUCED ,'/

FIRST := FIRSTCHARPOS
COPIES := 0
I := FIRST
WHILE I <= FIRST + I

DO / * CONVERT REPETITION COUNT TO INTEGER * /
DIGIT := SUBSTK(IN,I) - "0"
IF DIGIT < .3 .OR. DIGIT > 9

THE'~ / * ILLEbAL DIGIT * /
WRITEL ('ERR ' ,1)
DIGIT := 0

COPIES := COPIES * 10 + DIGIT
I : = I + 1
END

FIRST := FIRST + NUMDIGITS
LAST := LASTCHARPOS
wHILE LAST >= FIRST .AND° SUSSTR (IN.LAST) = BLANK

DO l * LAST * ILL POINT TO FINAL NONBLANK CHARJCTER * /
LAST := LAST - I
END

I := FIRSTCHARPOS
.HILE I <= LAST

DO / * COPY U~JREVERSED INPUT TO OUTPUT ARRAY * /
OUTPUT(LOC+wD(I))[CHAR(1)tCHARLEN] := SUBSTR(INt I)
I : = I + 1
END

LOC := kOC ". STRINGSIIE / * NEXT AVAIL OUTPUT POS * I
IF COPIES > 0

THEN / * REVERSE STRING AND MAKE COFIES * /
CALL REV(OUTPUT(LOC) ,FIRSTCHARPOS,OUTPUT(LOC-STRINGSIZE), F I R S T t L A S T)
LOC : = LOC + STRINGS IZE
COPIES := COPIES - I
WHILE COPIES • 0

DO /* ~*AKE ADDITIONAL COPIES OF REVERSED STRING */
I := O
WHILE I <= LAST

DO I * COPY REVERSED STRING TO OUTPUT ARRAY * I
OUTPUT (LOC+WD(I)) [CHAR(I) t CHARLEN] :=

SUB STR (OUTPUT (LOC-STR IN GS I ZE) t I)
I := I + I
END

LOC := LOC + STRINGSIZE
COPIES := COPIES - I
END

END

PROC DRIVER

VAR CARD(20)
VAR LAST~ECORDt I

LASTRECORD := FIRSTSTRPOS
wHILE .NOT. EOIC

DO /* READ AND REVERSE INPUT */
READC (CARD)
CALL PRODUCECOPIES(CARD ,LASTRECORD)
END

| == F IRSTSTRPOS
w H I L E I <= L A S T R E C O R D - S T R I N G S I Z E

DO 1 , P R I N T OUTPUT ARRAY CONTENTS * /
WRI T E L (O U T P U T (I) t STRING S IZE)
I : = I ÷ S T R I N G S I Z E
END

S T A R T DRIVER

Communications August 1977
of Volume 20
the ACM Number 8

