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The language in which programs are written can 
have a substantial effect on the reliability of the result- 
ing programs. This paper discusses an experiment that 
compares the programming reliability of subjects using 
a statically typed language and a "typeless" language. 
Analysis of the number of errors and the number of 
runs containing errors shows that, at least in one envi- 
ronment, the use of a statically typed language can 
increase programming reliability. Detailed analysis of 
the errors made by the subjects in programming solu- 
tions to reasonably small problems shows that the sub- 
jects had difficulty manipulating the representation of 
data. 
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1. Data Types and Programming Reliability 

The goal of reliable programming is to minimize the 
number of errors in completed programs. Attaining this 
goal may involve reducing the number of errors com- 
mitted by programmers and/or increasing the fraction 
of errors that are detected and corrected before the 
production of a final program. Appropriate language 
design can contribute to both of these goals. 

One language feature which is common to many 
programming languages but appears in different forms 
in different languages is the method of determining the 
type of an operand. Data types may be associated with 
operands in one of three ways: statically, dynamically, 
or not at all. In a statically typed language (e.g. Pascal 
[8]), a data type is associated with an identifier in a 
declaration. During its lifetime, the identifier may only 
be assigned values of the same type. In a language like 
GEDANKEN [5] or SNOBOL, data types are associ- 
ated with an operand dynamically during execution. 
The type of an operand is the type of the last value 
assigned to it. BCPL [6] and BLISS [9] are called 
"typeless" languages since each operand is considered 
to be a collection of bits (usually a word in memory). 
When an operator is applied to operands, the operands 
are assumed to represent a value of the type that the 
operator may manipulate. Many languages do not fit 
neatly into one of the three categories. For example, 
Algol 60 and PL/I are primarily statically typed lan- 
guages. However, Algol 60 does not require complete 
specification of the arguments of procedures, and the 
UNSPEC operation of PL/I allows the type checking 
mechanism to be subverted. 

Some language designers strongly advocate sepa- 
rate specification of the types of operands, while other 
designers feel that this practice interferes with the pro- 
gramming task. Those designers who advocate separate 
specification of data types believe that data types offer 
two principal advantages to a programmer: power and 
redundancy. The power of data types allows a pro- 
grammer to think in terms of his application rather than 
of the characteristics of the machine on which his appli- 
cation will run and to use the operations defined for 
each type rather than building these operations out of 
more primitive operations. Thus the programmer deals 
with characters rather than bit patterns within a word 
and with matrices rather than storage structures of 
words. The programmer is aided in reaching a solution 
and prevented from writing code that depends upon a 
particular representation of his data and thereby pre- 
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dudes redesign of the program. Languages such as 
CLU [4] and Alphard [10] are being designed to offer 
programmers the benefits accruing from limiting the 
availability of information about the representation of 
data. Type checking prevents a programmer from at- 
tempting operations on operands which are not valid 
representations of the operands he wishes to process 
(e.g. addition of Boolean values). In statically typed 
languages, the context of each appearance of an oper- 
and implies a type which can be checked against its 
declared type. Furthermore, this checking can be per- 
formed at compile time. This redundancy is not present 
in dynamically typed or "typeless" languages. Errors 
caused by operators having operands of the wrong type 
can only be detected at run time and then only if the 
code containing the error is executed, a condition that 
cannot be assured by testing. 

However, even among the advocates of separate 
specification of type, there is little agreement on the 
primary benefit of including this feature in a language. 
Some designers feel that the power of data types helps 
programmers avoid errors. Others believe that as many 
as 50 percent of their programming errors are detected 
by the type-checking mechanism. 

As with many other issues in programming language 
design, there is a wealth of personal experience with 
data types, and every language designer feels that his 
experience is the valid one. We cannot logically prove 
that particular language features will enhance program- 
ming reliability, much less derive the amount of im- 
provement by analysis. However, we can gather empir- 
ical evidence that tends to confirm or refute such claims 
by measuring the amount of improvement (or lack 
thereof) in real situations. We can observe program- 
mers at work and examine the programs they create. 
Such an experiment was performed in order to study 
other language features such as scope rules and the 
order of evaluation of expressions [2]. As a by-product 
of this work, we observed evidence of the effects of the 
various methods of associating a type with an operand 
[3]. This evidence indicated that the use of dynamically 
typed operands resulted in errors that remain in pro- 
grams longer than the errors attributable to statically 
typed operands. Furthermore, programmers trying to 
convert an operand from one type to another, who 
were forced to grapple with the representation of an 
operand, committed errors that cast doubt upon their 
ability to write reliably in a language which treats its 
operands as collections of bits. 

The Compelling arguments concerning the superior- 
ity of statically typed languages and our own observa- 
tions in previous work led to the design of an experi- 
ment to compare the effects of statically typed and 
"typeless" languages on programming reliability. Fur- 
thermore, if a statically typed programming language 
was superior, we hoped to be able to determine 
whether power or redundancy was the principal factor 
in the superiority. 
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2. Methodology 

2.1. Overview 
Two groups containing a total of 38 graduate and 

upper-level undergraduate students in a course at the 
University of Maryland programmed solutions to the 
same problem twice. One group of subjects pro- 
grammed solutions first using a statically typed lan- 
guage and then using a "typeless" language. The sec- 
ond group also programmed solutions in the two lan- 
guages, but used the languages in the opposite order. 
Each of the languages contained a substantial number 
of features common to other more widely used lan- 
guages. The solutions to the relatively simple problem 
ranged from 48 to 297 lines. When a problem was 
assigned, each student was given the appropriate lan- 
guage manual containing similar sample programs. In 
order to avoid biasing the subjects, we did not devote 
class meetings to discussions of the features of the 
languages. However, we were available to the subjects 
on an individual basis. The subjects were cautioned to 
treat the problem as a take-home examination and to 
avoid discussing it with each other. 

For the purposes of this study, a language was 
judged to enhance the reliability of software if the 
errors committed by its users were less frequent and 
severe than the errors committed by the users of a 
second language. The underlying hypothesis was that 
the errors that persist in the debugging process are 
similar to, but more numerous than, those that remain 
in completed programs. 

This experiment represents an improvement over 
our previous work, since this experiment dealt with 
only a single language feature and each of the subjects 
used both languages. The first methodological change 
meant that differences in the frequency and severity of 
errors could now be attributed to a single language 
feature rather than to one of several altered features. 
More important, having each subject use both lan- 
guages meant that we no longer relied on having groups 
of subjects with equal abilities; we could compare each 
subject's performance in one language to his own per- 
formance in the other language. However, having the 
subjects solve the same problem twice results in sub- 
jects' "learning solutions" to the problem on their first 
attempts. 

2.2. The Languages 
The first step in the methodology was to design the 

two languages to be used in the experiment. We at- 
tempted to make both languages identical in all fea- 
tures not affected by the issue of data types (e.g. con- 
trol structures, scope rules, and declaration require- 
ments). However, as data types and operations are 
intimately related, many of the operations in the lan- 
guages have been altered. In addition, we intended that 
the features of both languages be shared with other 
widely used languages so that the results of the experi- 
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Table I. Comparison of Language Features. 

F e a t u r e  

Types  

C o n s t a n t s  

S t r u c t u r i n g  

S u b s c r t p t t n g  

S u b s t r i n g  

O t h e r  o p e r a t i o n s  

I n p u t  
S t ream 
Record  

Outpu t  
S t ream 
Record  

ST 
S t a t i c a l l y  t y p e  cl 

I n t e g e r s  
F i x e d  Leng th  

s t r i n g s  

I n t e g e r s  
S t r i n g s  

Arrays 

Arrays only 

S i n g l e  c h a r a c t e r  
s t r 4 n g  o n l y  

No c o n c a t e n a t e  
o r  s e a r c h  
f o r  s t r i n g s  . 

No b i t  o p e r a t i o n s  
f o r  i n t e g e r s  

Any c o n s t  an t  
S i n g l e  s t r i n g s  

(80 c h a r a c t e r s )  

Any e x p r e s s i o n  
S t r i n g s  

C o n v e r s i o n s  None 

NT 
T y D e L e s s  

words 

I n t e g e r s  
L e f t - a d j u s t e d ,  b l a n k -  

f i l l e d  c h a r a c t e r s  
R i g h t - a d j u s t e d  • z e r o -  

f f l i e d  c h a r a c t e r s  
B ~ n a r y ,  o c t a l  and 

h e x a d e c i m a l  numbers  

Groups .of w o r d s  

Any word 

Any D a r t  o f  word 

B i t  o p e r a t i o n s :  and~ 
or~ not  

A~y c o n s t a n t  
2 c o n s e c u t t v e  words 

(6 c h a r a c t e r s / w o r d )  

An e x p r e s s i o n  
P a ~ r s  of a d d r e s s e s  

and l e n g t h s  

N one 

ment would be easy to interpret. 
The "typeless" language (NT) has only single word 

variables. As in BCPL, programmers may associate an 
identifier with either a single word or a group of words. 
However, any identifier may be subscripted without 
error. In keeping with the idea of a "typeless" lan- 
guage, this decision allows the subscript operation to be 
applied to any identifier. A constant may have one of 
several representations, but its value must be storable 
in a single word. The numeric representations are bi- 
nary, octal, decimal, and hexadecimal. The two charac- 
ter constant representations provided are those of 
BLISS: left-adjusted, blank-filled and right-adjusted, 
zero-filled. In order to manipulate the representations 
of data, a partword operation may be applied to select 
or alter an arbitrary portion of a word (e.g. a charac- 
ter). In addition to the common infix arithmetic opera- 
tors, there are three infix bit operators: AND, OR, and 
NOT. The operators of NT can be applied to any 
operands of appropriate size. Stream input allows the 
constants of the language to appear as inputs, and 
stream output produces decimal representations of val- 
ues. Record input reads an input record (i.e. card) into 
twenty consecutive words (four characters per word) 
starting at the location specified by the actual parame- 
ter. Record output accepts pairs of arguments X, Y and 
prints the character representation of the Y words start- 
ing at location X. 

5 8 6  

The statically typed language (ST) has integers and 
strings with arrays of data of both types. Strings are 
fixed length and are padded with blanks on the right in 
an assignment or input operation in which the value 
being given to the string is shorter than the declared 
length of the string. Besides assignment, comparison, 
input, and output, the only other string operation is the 
substring operation, which is restricted to single charac- 
ters within a string. There are no concatenation or 
search operations for strings in the language, although 
these operations may be built by using substring and 
comparison. Integers have the common arithmetic op- 
erations, but no bit operations. Only identifiers de- 
clared to be arrays may be subscripted. The constants 
of ST are decimal numbers and strings. Stream and 
record input are restricted to scalar variables. (For 
example, the programmer must write a loop if he 
wishes to read or write an entire array of strings.) 
Stream input allows the constants of the language to 
appear as inputs, and stream output produces the ap- 
propriate representation of a value. Record input and 
output deal only with scalar strings, and values are 
padded on the right with blanks where appropriate. 

It would hardly seem fair to provide subjects work- 
ing in ST with all the operations normally associated 
with string processing (e.g. concatenate, search, sub- 
string, length, blank trimming, and conversion) and to 
require that the subjects working in NT build these 
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operations out of more primitive operations. If ST 
offered extra powerful operations in addition to its 
power and redundancy,  it would almost certainly aid 
programming reliability more than NT. Instead, we 
restricted the string operations in the statically typed 
language to the essential string primitives: assignment, 
comparison, and selection of single characters within a 
string. This is an at tempt to give the two languages 
"equally powerful"  operations. Thus subjects in each 
language have to build the more powerful operations 
from sets of roughly comparable primitives. These dif- 
ferences are summarized in Table I. 

Although it is obvious that both languages contain 
features common to many widely used languages, the 
differences between existing languages prevent our 
simply picking two of them to use in this study. Con- 
versely, implementing the two compilers from scratch 
was an unappealing amount  of work. Therefore  we 
altered an existing language and its compiler, SIMPL-T 
[1], to produce both compilers. The SIMPL family is a 
set of programming languages under development at 
the University of Maryland. The term "family" implies 
that the languages contain some common basic fea- 
tures, such as data types and control structures. Each of 
the languages in the SIMPL family is built as an exten- 
sion to a base language. Present members of the 
SIMPL family are the base "typeless" language 
SIMPI_,-X, the statically typed (integers and strings) 
language SIMPL-T,  the mathematically oriented 
(reals) language SIMPL-R, and a systems implementa- 
tion language for the Poe-11 SIMPL-XI. 

The basic features of SIMPL-T that became part of 
both the ST and NT languages are: 

1. A program consists of a sequence of procedures 
which can access a set of global variables, parame- 
ters, and local variables. 

2. The statements are the assignment, if, while, case, 
call, return,  exit, and abort.  There is no block 
structure. 

3. Procedures and functions may be recursive. 
4. Procedures may not be passed as parameters.  The 

default parameter  passing mechanism is call by 
value, but call by reference may be specified. 

5. The index of the first value of an array is zero. 
6. Both stream and record input/output are available. 

In addition, the features of NT and ST were added. 

2.3. Data Collection 
In order  to reduce the cost of this experiment,  each 

subject was asked to submit his intermediate listings to 
the experimenter.  As a safeguard against uncoopera- 
tive subjects, a data collection mechanism was built to 
automatically copy each program submitted by each 
subject. In order  that this mechanism be inexpensive, 
the input cards of the subjects, rather than the output  
of the language processors, was copied. This allowed us 
to avoid copying the outputs of jobs that entered indefi- 
nite loops containing output statements and to rerun 
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Table II. Sample Input and Output for Problem. 

Input O u t o u t  

01HGu 01 hGu 
03SYSTEM UGH 

•3SYSTE u 
~F TSYS 
ME TSYS 
METSYS 

the jobs to insert diagnostic aids and  to collect extra 
statistics. 

2.4. Identifying Errors 
We examined the listings for errors,  An error was 

discovered in one of three ways: by the appearance of a 
diagnostic message or incorrect output ,  by marks in the 
listing that subjects made during desk checking or de- 
bugging, or by us during our examination of the sub- 
jects' solutions to the problems. 

In runs following the run on which an error  ap- 
peared,  a subject may have changed his program, 
either correcting the error  or altering the manner  in 
which the error  manifested itself. Whether  or not any 
manifestations of the error  were evident on the subse- 
quent runs, the error  was said to persist if it remained 
uncorrected.  

To determine the number of occurrences of the 
errors,  the errors have been traced back to their origin 
and counted on all intervening runs. Errors that oc- 
curred in the source code have been traced back to the 
run in which the compiler first analyzed the source 
code. Errors that occurred in the input data have been 
traced back to the run in which the program first 
reached execution of a read statement. 

2.5. Measures 
The errors and occurrences described above are 

labeled total errors and total occurrences in the follow- 
ing sections. Errors and occurrences have been divided 
into two kinds, primary and equivalent, which together 
comprise total errors and total occurrences. The fol- 
lowing example illustrates the differences between pri- 
mary and equivalent errors. Suppose a subject changed 
the number of formal parameters accepted by a proce- 
dure, but changed only N - M of the N procedure 
invocations to have the correct number  of actual pa- 
rameters.  Clearly the M procedure invocations with the 
incorrect number  of actual parameters are errors, but 
they are not as serious as M distinct errors. However ,  
each of the M incorrect invocations could stop the 
program from executing correctly. Therefore  one of the 
errors (the one that occurred on the most consecutive 
runs) has been designated as the primary error,  and the 
other M - 1 errors have been called equivalent errors. 
The tables that follow present primary and total (i.e. 
primary plus equivalent) errors and occurrences. 

In addition, the number of runs that contained any 
errors has been calculated. This measure,  called error  
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runs, is an at tempt to measure the severity of errors 
rather than just the gross number of errors. A single 
error  that occurred on five consecutive runs has error  
runs equal to five, while five errors that occurred on the 
same run each have error  runs equal to one. 

2.6. The Problem 
Designing a problem which is typical of the entire 

range of programming applications is an impossible 
task. Instead we tried to design a task that required the 
use of the altered features in the two languages (i.e. 
string assignment, substring assignment and selection, 
and conversion from character to integer representa- 
tions). Subjects were asked to read a series of cards of 
the form d d c c . . ,  c where d is a digit between 0 and 9 
and c is a character and to produce dd copies of the 
reversed character string. Each subject 's program was 
to read the card, place it in an array to be printed, 
process the card (i.e. produce dd copies of the reversed 
characters), place the reversed strings in the output  
array, and print the contents of the array. The program 
was also to contain a recursive procedure to reverse the 
character port ion of the card. Sample input and output  
are shown in Table II (p. 587). 

While the problem is not difficult, it is not trivial 
either. The solutions ranged from 48 to 216 lines and 
27 to 85 statements in ST, and from 58 to 297 lines and 
31 to 105 statements in NT. Although this is not a large 
program, much of the experimental work being done 
by most researchers concentrates on much smaller pro- 
grams (e.g. ten statements).  However ,  should we work 
with programs that become too large, it may become 
difficult to determine if any errors remain in them. 

Since the problem was assigned as a normal home- 
work assignment for the course, subjects were well 
motivated to complete the problem. The subjects were 
given two weeks to solve the problem. Sample solutions 
to the problems may be found in Appendix B (see pp. 
594-595) .  

2.7. Statistical Techniques 
The averages per programmer for the number  of 

errors,  total errors,  occurrences, total occurrences, and 
error  runs have been calculated for a language for each 
hypothesis. Because averages over small samples can 
be greatly distorted by one or two very bad perform- 
ances, nonparametric tests have been used to deter- 
mine the statistical significance of all the differences. 

Nonparametr ic  tests were used because they are not 
related specifically to the parameters  of a given popula- 
tion and may therefore be used under very general 
conditions (for instance, if one of the sample popula- 
tions displays considerably more variance than an- 
other) .  Nonparametr ic  tests waste information because 
they compare the signs or ranks of the values of popula- 
tions rather than the values themselves. This leads to a 
greater risk of accepting a false null hypothesis than the 
alternative standard tests. 

Table III. First Solution. 

P e a s u r e  NT ST 

E r r o r s  1~. ,40  1 2 , & q  

T o t a l  E r r o r s  2 & , 8 7  2 2 , 3 9  

Occurrences 93.80 3~.17 

Total Occurrences 125.~0 51.72 

Error Runs 21 .20 I0.P5 

L e v e t  

45X 

45~ 

45X 

Table IV. Second Solution. 

~ e a s u P e  NT ST L e v e l  

E r r o r s  1 3 , 1 7  7 , ~ 7  42~ 

T o t a l  E r r o r s  26.00 ~.93 4.2X 

Occurrences 59.83 29.20 <5% 

Total Occurrences 99.61 31.&0 41% 

Error Runs 14.~3 10.07 

Table V. NT1/ST2. 

M e a s u r e  NT ST L e v e l  

E r r o r s  1 9 , 4 0  7 , 8 7  4,5% 

T o t a l  E r r o r s  2 3 , h 7  ~ , 9 3  ( 2 , 5 %  

Occurrences 90.80 20.~0 <.5% 

T o t a l  Occurrences 125.80 3 1 . 6 0  <.5Z 

E r r o r  Runs 21.20 1 0 , 0 7  42.5% 

Table VI. ST1/NT2. 

~ e a s u r e  f~T ST L e v e l  

E r r o r s  1 3 , 1 7  12 ,&4, 

T o t a l  E r r o r s  2~.GO 22 .~q~ 

Occurrences 5~.~3 3~.17 <.5~ 

Total Occurrences ~9,bl 51."2 411; 

Error Runs I~, , ~. 3 ln.~5 <1% 

Four nonparametr ic  tests were used in evaluating 
the results of this experiment:  the Mann-Whitney U- 
test, the Wilcoxon matched-pairs signed-ranks test, the 
Spearman rank correlation coefficient, and the Krus- 
kal-Wallis one-way analysis of variance [7]. A two- 
tailed Mann-Whitney test was applied to compare the 
performances of the two independent  groups (the NT 
and ST groups) on their first and second solutions to 
the problem. A two-tailed test was chosen despite our 
belief that,  given two groups of subjects of compatible 
ability, the ST group would perform bet ter  than the NT 
group. We felt there was a possibility that one of the 
groups might contain superior programmers.  In order  
to compare the performances of the same subjects in 
each of the languages (two related sets of measures),  a 
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one-tailed Wilcoxon test was used. Here  the one-tailed 
test was appropriate because we believed that any one 
subject would commit fewer errors solving the problem 
in ST than in NT. In addition, we felt that certain 
subjects would benefit  more than others from using ST 
as opposed to using NT. Two tests, the Spearman and 
Kruskal-Wallis tests, were used to investigate the size 
of the improvements in the error measures attributable 
to the subjects' use of ST. To accomplish this, a sub- 
ject's ST error  measures were subtracted from his NT 
error  measures. The subjects were then ranked in as- 
cending order.  The subjects with lower NT than ST 
error measures were assigned the lower ranks, followed 
by the subjects who had increasingly lower ST than NT 
measures. The Spearman test was used to measure the 
correlation between higher examination scores and 
smaller improvements in the ST error  measures. The 
Kruskal-Wallis test was used to determine if any of 
three groupings of subjects based on experience ex- 
hibited different improvements in error  measures using 
ST. 

and then NT (ST1/NT2) both committed fewer and less 
severe errors using ST than using NT. However ,  while 
the differences in the measures are highly significant for 
the NT1/ST2 group (Wilcoxon matched-pairs signed- 
ranks test, one-tailed), the differences in errors and 
total errors are not statistically significantly different 
for the ST1/NT2 group. 

There are at least two effects to consider: the famil- 
iarity of the subjects with the problem, and the lan- 
guage being used to solve the problem. In solving the 
problem the second time, the NT1/ST2 subjects bene- 
fited both from the knowledge they gained solving the 
problem the first time and from using the data type 
features of ST. The knowledge gained during the first 
solution was both problem-related (e.g. how to use 
recursion and when to stop it) and language-related 
(e.g. the scope rules and control features common to 
both languages). In contrast, the subjects in the ST1/ 
NT2 group benefited mainly from familiarity with the 
problem. Another  factor which may help explain the 
lack of significance of the error  and total error results 
for the ST1/NT2 group is that some of these subjects 

3. Results 

3.1. Summary 
Fifteen of the original 17 subjects who wrote their 

first solutions in NT and 18 of the original 21 subjects 
who wrote their first solutions in ST finished solutions 
in each of the languages. A total of 4834 occurrences of 
1372 errors were committed on 1014 runs by these 33 
subjects during the experiment.  Using ST, the subjects 
made an average of 11.61 runs and had an average of 
.21 errors remaining in their final solutions. Using NT, 
the comparable figures were 19.12 runs and .64 errors 
remaining in the final runs. Tables I I I -VI  contain the 
averages per subject for the number  of errors,  to- 
tal errors, occurrences, total occurrences, and error  
runs. In the first solutions to the problem, the subjects 
using ST had lower error  measures than the subjects 
using NT; however,  only the differences in occur- 
rences, total occurrences, and error  runs are statisti- 
cally significant (Mann-Whitney U-test, two-tailed). 
The total errors show a 13:11 advantage for the ST 
users, while the total occurrences exhibit a 5:2 advan- 
tage. Thus we might conclude that the use of ST does 
not reduce the original commission of errors so much as 
it detects them quickly. 

When the subjects solved the problem a second 
time using a different language (i.e. the subjects who 
used NT in the first solutions now used ST and vice 
versa), all the measures again favored the subjects 
using ST. As was the case with the first solutions, the 
ST advantage for total occurrences (10:3) outweighed 
that for total errors (8:3). 

Subjects in the group that used NT first and then ST 
(NT1/ST2) and those in the group that used ST first 

5 8 9  

Table VII. Character Selection: Position/Length Errors. 

V e a s u r e  N u m b e r  

E r r o r s  16 

Total Errors 50 

Occurrences 1]~ 

Total Occurrences 343 

Error Runs 120 

S u b j e c t s  Invotveo 10 

Table VIII. Word Selection: Position/Length Errors. 

Ueasure 

E r r o r s  

T o t a l  E r r o r s  

O c c u r r e n c e s  

Total Occurrences 

Error buns 

Subjects Invotvea 

Number  

72 

7~ 

203 

;.46 

170 

15 

Table IX. Constants Too Long. 

U e a s u r e  

E r r o r s  

T o t a l  E r r o r s  

O c c u r r e n c e s  

T o t a l  O c c u r r e n c e s  

E r r o r  ~uns  

S u b j e c t s  Invo lveO 

4 u m o e r  

23 
c4 

47. 

R9 

43 

17 
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used the types and operations of ST (e.g. characters 
and substrings) as abstract operations in solving the 
problem by using NT. (See the sample NT solution in 
Appendix B.) A complete breakdown of the measures 
for each subject may be found in Appendix A (see pp. 
592-593), 

3.2.  Detailed Analysis of Errors 

3.2.1. NT errors. Subjects working in NT had 
more difficulty coping with the representation of string 
data (i.e. its origin, length, and justification) than with 
differences between types of data (i.e. integer and 
character format). In selecting characters within words, 
subjects either used 1 (instead of 0) as the index of the 
leftmost bit within a word and 9 as the length of a 
character in bits (character positions 1, 10, 19, 28), or 
1 as both the index of the leftmost bit and the length of 
a character (character positions 1 ,2 ,  3 ,4) ,  or 35 as the 
index of the leftmost bit and 9 as the length of a 
character (character positions 35, 27, 18, 9). Table VII 
contains a summary of these kinds of errors made by 
the 10 NT subjects who made them (i.e. Subjects 
Involved). 

NT subjects made similar errors dealing with groups 
of words used to represent strings of characters (Table 
VIII), Errors arose from using 1 (instead of 0) as the 
index of the first word in a group of words and from 
using either 1 or 80 (instead of 20) as the length of a 
group of words used to represent a string of characters. 

In addition to these selection errors, subjects using 
NT had to cope with considerably more complex selec- 
tion mechanisms. In ST, characters are selected via a 
substring operation which requires a single argument, 
the position of the character in the string. In NT, 
characters are selected by using both a subscript opera- 
tion, which requires the location of the word in which 
the character occurs, and a partword operation, which 
requires the location of the bit at which the character 
occurs and the length of the character in bits. Thus, in 
order to process strings of characters, a subject must 
maintain one index in ST but two indices in NT. Similar 
problems arise in processing a group of words as an 
array of character strings. The subscript operation in 
ST is applied to an array of strings to select a single 
string; the subscript operation in NT must be used to 
select both a particular string and a word containing a 
character in that string. Some subjects working in NT 
actually broke up the subscript computation into a 
string selector and a word selector but occasionally 
forgot to include one of these components while 
processing a string. Other NT subjects combined 
the calculation and miscalculated the boundaries of 
strings. 

Subjects using NT also had difficulty with the length 
of constants (Table IX) and their justification and fill 
(Table X). Character and octal constants, which were 

Table X. Incorrect Justification of Constants. 

Ueasure 

Errors 21 

Total Errors 79 

Occur rences  223 

T o t a l  O c c u r r e n c e s  638 

E r r o r  Runs 185 

S u b j e c t s  I n v o l v e ~  17 

L e f t - j u s t i f i e d  R i g h t - J u s t i f i e d  

Table XI. Subscripting Formal Parameters. 

M e a s u r e  

E r r o r s  

T o t a l  E r r o r s  

O c c u r r e n c e s  

T o t a l  O c c u r r e n c e s  

E r r o r  Runs 

S u b j e c t s  InvolveO 

Number 

? 

Io 

61 

79 

55 

b 

Table XII. Incompatible Types. 

~easure  O p e r a t o r s  I n t r i n s i c s  

E r r o r s  3 23 

Total E r r o r s  4 52 

Occur rences  9 99 

T o t a l  O c c u r r e n c e s  11 174 

E r r o r  Runs 9 98 

Subjects Involveo 3 19 

Table XIII. Representation of Arrays/Strings. 

M e a s u r e  Number  

E r r o r s  4 

T o t a l  E r r o r s  ZO 

O c c u r r e n c e s  21 

T o t a l  O c c u r r e n c e s  61 

E r r o r  Runs 22 

S u b j e c t s  Involve~ 4 

restricted i~ values which could be placed in a single 
word, were often too long. 

Character constants, especially single character 
blanks and digits, were often incorrectly justified and 
filled. The large discrepancy in the measures for the 
two types of justification errors can probably be attrib- 
uted to the backgrounds of the subjects. Left-justified 
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Table XIV. Origins of Arrays/Strings. 

. e a s u r e  

E r r o r s  

T o t a t  E r r o r s  

O c c u r r e n c e s  

T o t a l  O c c u r r e n c e s  

E r r o r  Runs 

S u b j e c t s  I n v o l v e d  

Strings 

4 

4 

15 

15 

13 

3 

Arrays 

2 

2 

3 

3 

3 

2 

Table XV. Representation of Constants. 

~ e a s u r e  ~umber  

E r r o r s  5 

T o t a t  E r r o r s  5 

O c c u r r e n c e s  16 

T o t a l  O c c u r r e n c e s  16 

Error Runs 16 

S u b j e c t s  I n v o l v e a  q 

Table XVI. Incompatible Types. 

~easure OPera to r  I n t r i n s i c  

E r r o r s  9 7 

T o t a l  E r r o r s  29 7 

Occurrences 37 24 

Tote[ Occurrences 70 24 

E r r o r  Runs 37 26 

Sub jec t s  I n v o l v e a  9 7 

Table XVII. Substring Assignment to Uninitialized Variables. 

~ e a s u r e  Number 

E r r o r s  19 

T o t a l  E r r o r s  19 

O c c u r r e n c e s  125 

T o t a l  O c c u r r e n c e s  125 

E r r o r  Runs 106 

Subjects Involveo 15 

blank-filled character constants are specified (as are 
string constants in most programming languages) by 
enclosing the character in single quotation marks. 
Right-justified zero-filled character constants are speci- 
fied in double quotation marks. The NT convention 
was not designed to mislead the subjects intentionally 
but follows the conventions established by other type- 

591 

less languages (e.g. BLISS). The partword operation in 
NT returns a right-justified zero-filled value which sub- 
jects often tried to compare to a left-justified blank- 
filled constant. There was only one error which in- 
volved a subject working with variables having differ- 
ent justifications. 

NT subjects also had trouble with the parameter 
passing mechanism, which defaulted to call by value in 
each of the languages. In order to apply the subscript 
operation correctly to a formal parameter in NT, the 
parameter had to be passed by reference. (Otherwise a 
temporary location is subscripted.) Six NT subjects 
committed errors of this kind (Table XI). 

In contrast to the problems subjects had with the 
representation of data in NT, relatively few errors re- 
sulted from uses of data of the wrong type. One of 
these errors resulted in incrementing the elements of 
an array instead of shifting them from right to left. 
That is, 

Card(Word) := Card(Word) + 1 

instead of 

Card(Word) := Card(Word + 1) 

Only in using the NT intrinsics to read and write values 
(READ/WRITE for integers and READC/WRITEL 
for characters) did the subjects make a large number of 
errors (Table XII). 

3.2.2. ST errors. Subjects using ST had relatively 
little trouble with either the representation or the type 
of data. Several subjects did attempt to treat strings of 
length 80 as arrays of 80 strings of length 1 and vice 
versa (Table XIII). 

There were also several errors caused either by 
using zero (instead of one) as the index of the first 
character in the string or by using one (instead of zero) 
as the index of the first element of an array (Table 
XIV). Errors involving the incorrect representation of 
constants were also rare (Table XV). 

Examining operations on data of an incorrect type, 
we find that ST subjects made a few more errors involv- 
ing operators and a few less errors involving I/O 
intrinsics than did the same subjects using NT 
(Table XVI). 

The most frequent errors made by the subjects 
using ST were attempts to use the substring operation 
to assign a value to a variable which had not been 
initialized (Table XVII). 

3.3. Subjects Aided by ST 
Examining the tables that summarize the perform- 

ances of the subjects in Appendix B, we can easily see 
that, although most subjects benefited from using ST, 
not all of the them did. Furthermore, even among those 
subjects whose performances improved, the amount of 
improvement differed radically. This made us wonder 
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Table XVIII. High Scores and Less Improvement Using ST. 

C o r r e l a t i o n  
~easu re  C o e f f i c i e n t  L e v e l  

E r r o r s  ,1~ 

Total Errors .~2 <2% 

O c c u r r e n c e s  o19 

T o t a l  O c c u r r e n c e s  .37 <5% 

E r r o r  Runs ,21 

Table XIX. Differences between NT and ST Error Measures Within 
Groups of Subjects Based on Experience. 

= e a s u r e  0 1 =o re  L e v e l  

E r r o r s  ~°50 &oS5 ~°17 

Total Errors 21.1~ 10.45 -1.67 <20% 

Occurrences 6Z.50 59,01 Z1.17 

Total O c c u r r e n c e s  13~.50 5~.3b 25.98 <I0¢ 

Error Runs E.40 11.00 2.~3 

which (if any) group of subjects benefited most from 
using ST. 

The first comparison we made involved examina- 
tion scores. We felt that better students might be more 
disciplined programmers and either benefit less from 
the abstractions offered by the data types of ST or cope 
better with the representation of data in NT. To exam- 
ine this hypothesis, we ranked the subjects twice: first 
in descending order according to their average exami- 
nation scores, and then in ascending order according to 
the differences between the error measures for their 
NT and ST performances. Those subjects at the head of 
the second ranking benefited least from using ST. They 
had negative differences between the NT and the ST 
measures, having more errors, occurrences, and error 
runs in ST than in NT. A Spearman rank correlation 

coefficient showed two significant positive correlations 
between subjects with higher examination averages and 
those with smaller improvements in error measures 
using ST (Table XVIII). 

The final comparison we made concerned the effect 
of a subject's experience on his performance. We mea- 
sured experience in terms of the number of languages 
in which the subject had written 25 or more programs. 
As programmers learn new languages, each new lan- 
guage requires less learning investment than the pre- 
vious one. Thus we felt the more languages with which 
a subject was familiar, the easier time he would have 
learning both new languages. We broke the subjects 
into three groups based on the number of languages 
that they indicated they had used frequently (10 sub- 
jects with zero languages, 11 subjects with one lan- 

Table XX. NT1/ST2. 

S u b j e c t  E r r o r s  T o t a l  E r r o r s  O c c u r  T o t a l  0¢¢  E r r o r  Runs 

1 11121 1 6 / 2 1  50161 82101 16122 
2 114 115 115 116 114  
..~ 1717  4217  1 2 1 1 2 7  2 0 0 1 2 7  1 8 1 1 0  
4 85111 1 2 6 1 1 2  3 0 5 1 2 9  491139 6818 
5 712 712 3 13 3813 912 
6 l c 1 5  3 0 / 5  1 9 7 / 1 8  24011~ 7 0 1 1 2  
? 2313 4013  6 4 1 1 0  2 1 7 1 1 0  1615  

51 1013 2316 512 .~1~ 1015 
9 1219  10142  13142 5 1 1 3  

10 1312  1712 5 3 / 4  81 I~  1 3 / 3  
11 2 6 1 2 4  30132 1011136 136/159 19125 
I~ 1013 1013 46114 4611/, 1118 
15 11112 1111q 115124 115126 26120 
l& 19/7 24/~ 95/53 119/56 20/13 
15 2110 2716 7619 8519 2114 

Table XXI. ST1/NT2. 

S u b j e c t  E r r o r s  T o t a l  E r r o r s  O c c u r  T o t a l  O c t  E r r o r  Runs 

16 ZI7 2136 2•20 215-  ~ 1 18 
17 519 519 13119 1311 ° 414 
1F 27116 48122 93•00 1311111 18/16 
19 2 1 / 1 5  /,111 7 1 521171  1 7 7 1 1 7 4  3 2 1 3 9  
20 3110 3123 5 / 1 9  5153 315 
21 21113 24150 45169 481248 9112 
22 1 U I 7  2017 1 0 1 1 8  4 0 / 1 ~  7110  
23 11120 14133 251137 30/1.°.0 :il 132 
24 ~ ; t19  1 5134  2 ~ / 5 7  36182 9 1 1 7  
25 1 G ! 8  2111 n 2 R / 2 5  4812~  1010  
26 36126 40150 1271156 13613~2 38138 
27 12114 85126 31163 111192 11112 
2~ 71~ 16112 I(]119 19/3~ 517 
29 ~ / 7  1117 15113  1~113 714  
30 4 / 5  411/ ,  1 1 / 2 0  11105 517  
31 2213~ 32150 591123 731152 17126 
32 7112 12129 13147 21 166 3119 
33 ~17 1C11 2 11111 12117 515 
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guage, and 12 subjects with more than one language). 
The figures in Table XIX again represent the differ- 
ences between ST and NT performances. For example, 
subjects who were not experienced with any other pro- 
gramming language made 8.50 more errors in NT than 
ST. It appears that the improvement in performance 
from NT to ST varies inversely with experience as 
measured by the number of frequently using program- 
ming languages. 

4. Condusions and Future Work 

This experiment shows that at least in our environ- 
ment, the features of a statically typed language in- 
crease programming reliability more than the features 
of a "typeless" language. Of course these results come 
as no surprise. The statically typed language still has 
better primitives with which to solve string-processing 
problems. In addition, most students learn a statically 
typed language as their first language and make errors 
when encountering a new concept like a "typeless" 
language for the first time. 

Furthermore, the detailed analysis of the magnitude 
and kinds of errors committed by the subjects seems to 
indicate that the power of the statically typed language 
aided the subjects more than the redundancy did. Fi- 
nally, subjects who are less able and experienced are 
helped most by a statically typed language. 

There is no reason to assume that languages de- 
signed without explicit concern for reliability will be 
suitable for the production of reliable software. Both 
the "typeless" and statically typed languages share fea- 
tures with other widely used programming languages. 
The empirical evidence gathered in this research should 
help in selecting an existing language in which to 
implement a piece of software and serve as an 
objective basis in the design of new programming 
languages. 

There are several possible directions for future 
work. Additional experimental work with data types 
could involve comparing the statically typed language 
to another statically typed language with extended 
string operations (e.g. concatenation, multiple charac- 
ter substring, conversions, etc.) to discover the possible 
advantages of providing these high-level operations. 
The statically typed language could also be compared 
to an identical language whose compiler/interpreter 
waited until run time to detect type mismatches. This 
experiment would point out the advantages of compile- 
time error checking. The experimental approach could 
also be applied to other language features as well as to 
measuring programmer aptitude or productivity. Lan- 
guage designers are continually proclaiming constructs 
"harmful" and proposing alternative features. We are 
anxious to perform experiments on some of these fea- 
tures (e.g. interfaces, assignment statements, synchro- 

nization primitives, etc.) to determine if the alternative 
features achieve their goals. 
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Appendix A 

Tables XX and XXI contain a breakdown of the 
measures for each subject by language. Each column 
contains two figures separated by a slash (/). The first 
number is a measure of the subject's performance in 
the first language he used and the second number is the 
comparable measure in the second language. 

Appendix B 

The following two programs are sample solutions to 
the problem described in Section 2.6. The first solution 
is written in ST and the second solution is written in 
NT. 

(Appendix B continues on next page) 
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ST Sample Solution 

594 

/ *  READ IN STRINGS OF THE FORM DDCC...C AND PRODUCE * 1  
/ *  DD COPIES OF THE REVERSED STRING C. . .CC * l  

STRING ARRAY OUTPUT[~O](20) = ("  " ( 2 0 ) )  
INT FIRSTCHARPOS = I ,  

LASTCHARPOS = 80t 
FIRSTSTRPOS = Oy 
STRINGSIZE = I~ 
NUMDIGITS = Z I *  NUMBER OF DIGITS TO CONVERT * l  

STRING BLANK[ l ]  = " * 

INT FUNC NUU(STRING CVAL) 

I *  RETURN NUMERIC EQUIVALENT OF FIRST CHARACTER OF CVAL * I  

CASE CVAL[ I ]  OF 
~*O*\ RETURN(O) 
~'1"~ R E T U R N ( I )  
\'2"~ RETURN ( 2 )  
\'3"~ RETURN ( 3 )  
~ " 4 " ~  R E T U R N ( A )  
\ ' 5 " ~  R E T U R N ( 5 )  
~'6"~ R E T U R N ( b )  
\ ' 7 " ~  RETURN (7) 
~ '8 "~  RETURN (8) 
\ 'Q*~  RETURN (9) 
ELSE 

WRITEL('ILLE6AL CHARACTER CONVERSION') 
RETURN(O) 

END 

PROC P R O D U C E C O P Z E S ( S T R I N G  I N ~ R E F  I N T  L O C )  

I *  PLACE ONE COPY OF THE S T R I N G  AND 
DD C O P I E S  OF THE REVERSED S T R I N G  IN  * I N "  * /  

I N T  I • 
FIRST~ I *  START OF STRING TO F~E REVERSED * I  
lASTt I *  END OF STRING TO BE REVERSED * I  
COPIES I *  NUMBER OF REVERSED COPIES TO BE PRODUCED * I  

FIRST :=  F I R S T C H A R P O S  
C O P I E S  : =  N U M ( I N [ F I R S T ] )  * 10 + N U M ( I N [ F I R S T + I ] )  
FIRST :=  FIRST + NUMDIGITS 
LAST := LASTCHARPOS 

WHILE LAST >= FIRST .AND. INELAST] = BLANK 
DO I *  LAST POINTS TO FINAL NONBLANK CHARACTER * I  
LAST := LAST - I 
END I *  LAST P O I N T S  TO L A S T  NONBLANK CHARACTER * l  

I := F I R S T C H A R P O S  
WHILE I <= LAST 

DO I *  COPY UNREVERSED SIRING TO OUTPUT ARRAY * l  
OUTPUT(LOC)[I] := I N E I ]  
I := I ÷ I 
END 

LOC := LOC ÷ STRINGSIZE /* NEXT AVAIL OUTPUT POS *l 

I F  COPIES > 0 
THEN I*. REVERSE STRING AND MAKE COPIES *I 

CALL REV(OUTPUT(LOC) ~ , F I R S T C H A R P O S , O U T P U T ( L O C - S I R I N G S I Z E ) t  
f IRST,LAST) 

LOC : =  LOC + S T R I N G S I Z E  
COPIES := COPIES  - I 
WHILE COPIES > 0 

DO I* MAKE ADDITIOhAL COPIES OF REVERSED STRING *I 
O U T P U T ( L O C )  :=  O U T P U T I L O C - S T R I N G S I Z E )  
LOC :=  LOC + S T R I N G S I Z E  
C O P I E S  := C O P I E S  - 1 
END 

END 

REC PROC REV(REF STRING OUT.INT OUTPOStSTRING IN , INT  FIRSTt 
INT LAST) 

/ *  "LAST* CHARACTER OF " I N "  TO "FIRST" POSITON OF "OUT" * 1  

I F  LAST < F I R S T  
THEN 

RETURN 
ELSE 

OUT[OUTPOST := IN[LAST] 
CALL REV(OUTvOUTPOS÷I~INIFIRSTtLAST-I) 

END 

PROC DRIVER 

STRING CARD[801 
I N T  LASTRECORD,  I 

LASTRECORD := F I R S T S T R P O S  
WHILE .NOT. EOIC 

DO I* READ AND REVERSE INPUT */ 
READE (CARD) 
CALL PRODUCECOPIES(CARD tLASTRECORD) 
END 

I :=  F I R S T S T R P O S  
WHILE I <= LASTRECORD-STRINGSIZE 

DO / *  PRINT OUTPUT ARRAY CONTENTS * l  
WR ITEL(OUTPUT ( I ) 1  
1 : =  I + S T R I N G S I Z E  
END 

START DRIVER 
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NT Sample Solution 

595 

/ *  READ IN  STRINGS OF THE FORM D D C C . . . C  AND PRODUCE * /  
I *  DD COPIES OF THE REVERSED STRZN6 C . o , C C  * /  
VAR O U T P U T ( 3 0 0 )  = ( ' ' ( ~ 0 ~ ) )  
VAR FIRSTCHARPOS -- O ,  

LASTCHARPOS = 7 9 ,  
FIRSTST.RPOS = [ ,  
STRINGSIZE = 20, 
CHARLEN = 9 t  
CHARPERWD = ~ ,  
NUMDIGITS = 2, /* NtJ~BER OF DIGITS TO CONVERT */ bLANK = N .. 

FUNC WD(VAR POS) 
/ *  RETURN THE wORD INDEX C O N T A I N I N G  THE POS-TH CHARACTER * /  

RETURN (POS / CHAR PER wD ) 

FUNC CHAR(VAR POS) 
/ *  RETURN THE BIT INDEX OF THE POS-TH CHARACTER * l  

RETURN ((  POS-POS / CHARPER WD* CHARPE RWD)*CHARLEN) 

FUNC SuBSTR(REF V~R STRtVAR PO~.) 
/ *  RETURN THE POS-TH CHARACTER OF STR * /  

RETURN (STR (wD(POS))[CHA P (POS).CH ARLEN] ) 

REC PROC REV(REF VAR OUT,VAR POStREF VAR IN,VAR FIRST tVAR LAST) 

/ *  "LAST" C~ARACTER OF " IN"  IO "FIRST" POSITON OF "OUT" * /  

IF LAST < FIRST 
THFN 

RETURn. 
ELSE 

OUT(w D(PO S)) [CHAR (PO S) tCHA RLEN] .'I)SUBSTR(IN, LAST) 
CALL REV(OUT,POS+ I t I N, FIRS T,LAST 

END 

PROC PRODUCECOPIES(REF VAR Ir,,REF VAR LOC) 

1. PLACE ONE COPY OF THE STRINb AND 
DO COPIES OF THE REVERSED STRING IN " IN"  * /  

VAR I, 
DIGIT, 
FIRST. / *  START OF STRIN~ TO BE REVERSED * /  
LIST, / *  END OF STRING TO BE REVERSED * /  
COPIES / *  NUMBER OF RE.VERSED COPIES TO BE PRODUCED ,'/ 

FIRST := FIRSTCHARPOS 
COPIES := 0 
I :=  FIRST 
WHILE I <= FIRST + I 

DO / *  CONVERT REPETITION COUNT TO INTEGER * /  
DIGIT := SUBSTK(IN,I) - "0" 
IF DIGIT < .3 .OR. DIGIT > 9 

THE'~ / *  ILLEbAL DIGIT * /  
WRITEL ( 'ERR ' ,1 )  
DIGIT := 0 

COPIES := COPIES * 10 + DIGIT 
I : = I + 1  
END 

FIRST := FIRST + NUMDIGITS 
LAST := LASTCHARPOS 
wHILE LAST >= FIRST .AND° SUSSTR (IN.LAST) = BLANK 

DO l *  LAST * ILL POINT TO FINAL NONBLANK CHARJCTER * /  
LAST := LAST - I 
END 

I := FIRSTCHARPOS 
.HILE I <= LAST 

DO / *  COPY U~JREVERSED INPUT TO OUTPUT ARRAY * /  
OUTPUT(LOC+wD(I))[CHAR(1)tCHARLEN] := SUBSTR(INt I )  
I : =  I + 1 
END 

LOC := kOC ". STRINGSIIE / *  NEXT AVAIL OUTPUT POS * I  
IF COPIES > 0 

THEN / *  REVERSE STRING AND MAKE COFIES * /  
CALL REV(OUTPUT(LOC) ,FIRSTCHARPOS,OUTPUT(LOC-STRINGSIZE), F I R S T t L A S T )  
LOC : =  LOC + STRINGS IZE 
COPIES := COPIES - I 
WHILE COPIES • 0 

DO /* ~*AKE ADDITIONAL COPIES OF REVERSED STRING */ 
I := O 
WHILE I <= LAST 

DO I *  COPY REVERSED STRING TO OUTPUT ARRAY * I  
OUTPUT (LOC+WD(I)) [CHAR(I ) t CHARLEN] := 

SUB STR (OUTPUT (LOC-STR IN GS I ZE) t I ) 
I := I + I 
END 

LOC := LOC + STRINGSIZE 
COPIES := COPIES - I 
END 

END 

PROC DRIVER 

VAR CARD(20) 
VAR LAST~ECORDt I 

LASTRECORD := FIRSTSTRPOS 
wHILE .NOT. EOIC 

DO /* READ AND REVERSE INPUT */ 
READC (CARD) 
CALL PRODUCECOPIES(CARD ,LASTRECORD)  
END 

| == F IRSTSTRPOS 
w H I L E  I <= L A S T R E C O R D -  S T R I N G S I Z E  

DO 1 ,  P R I N T  OUTPUT ARRAY CONTENTS * /  
WRI T E L ( O U T P U T  ( I )  t STRING S IZE  ) 
I : =  I ÷ S T R I N G S I Z E  
END 

S T A R T  DRIVER 
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