

Developing and Using
Defect Classification Schemes

 Author:
Bernd Freimut

IESE-Report No. 072.01/E
Version 1.0
September 1, 2001

A publication by Fraunhofer IESE

Funded by the German BMBF
under grant VFG0004A (“QUASAR”)

Fraunhofer IESE is an institute of the
Fraunhofer Gesellschaft.
The institute transfers innovative software
development techniques, methods and
tools into industrial practice, assists com-
panies in building software competencies
customized to their needs, and helps them
to establish a competetive market position.

Fraunhofer IESE is directed by
Prof. Dr. Dieter Rombach
Sauerwiesen 6
D-67661 Kaiserslautern

Copyright © Fraunhofer IESE 2001 v

Abstract

Defects play a crucial role in software development. This is because on one
hand, defects, when detected, should be corrected so that the final version of
the developed software artifact is of higher quality. On the other hand, defects
carry a lot of information that can be analyzed in order to characterize the
quality of processes and products, to track the progress of a project and con-
trol it, and to improve the process.

Therefore, defect measurement plays a crucial role in many software meas-
urement programs. Consequently, in many measurement programs defect
data are collected. Generally there are several pieces of information that can be
collected about defects. The most often used pieces of information relate to
the quantity of defects (i.e., their number) and their type. For the latter one,
defect classification schemes are used to quickly characterize the nature of de-
fects.

Two important questions arise, when using defect classification: “How can a
defect classification be designed?” and “How can defect classification data be
analyzed?”

In order to answer the first question, this report presents the aspects of a de-
fect that have been measured in the literature and it presents the possible
structures of a defect classification scheme. Finally, examples of frequently
used defect classification schemes are presented.

In order to answer the second question, this report presents general methods
to analyze defect classification as reported in the literature as well as concrete
analyses for a variety of purposes.

This report is a result of the project “Integrierte Qualitätssicherung und Anfor-
derungsanalyse zur Softwareentwicklung im Umfeld Fahrzeug (QUASAR)“,
which is funded by the German BMBF under the grant VFG0004A.

Keywords: Defect, Defect Classification, Inspection, Testing, Measurement Program

Copyright © Fraunhofer IESE 2001 vii

Table of Contents

1 Introduction 1

2 Terminology 3

3 Defect Classification Schemes 4
3.1 Scope of classification: what can be classified 4
3.2 Existing Schemes 6
3.2.1 IEEE Standard Classification for Software Anomalies 7
3.2.2 Hewlett-Packard Scheme 8
3.2.3 Orthogonal Defect Classification 9
3.2.4 Defect Classification for Inspections 12
3.3 Structure of defect classification schemes 14
3.4 Properties of defect classification schemes 16

4 How to develop Defect Classification Schemes 19
4.1 Strategies in Developing Defect Classification Schemes 19
4.2 A Process for Re-Using and Introducing

Defect Classification Schemes 21

5 How to analyze defect classification data 22
5.1 General methods to analyze defect classification data 22
5.2 Interpretation of Analyses 24
5.3 Specific Analyses 25
5.3.1 Characterization of the defects found 25
5.3.2 Defect Prevention 26
5.3.3 Control Inspections 29
5.3.4 Evaluate and Improve Technologies 31
5.3.5 Control Testing 32
5.3.6 Plan Testing 33
5.3.7 Reduce field defects 35
5.3.8 Monitor process changes 38

6 Summary and Open Issues 40

7 References 41

Introduction

Copyright © Fraunhofer IESE 2001 1

1 Introduction

Defects play a crucial role in software development. This is because on one
hand, defects, when detected, should be corrected so that the final version of
the developed software artifact is of higher quality. On the other hand, defects
carry a lot of information that can be analyzed in order to characterize the
quality of processes and products, to track the progress of a project and con-
trol it, and to improve the process.

Therefore, defect measurement plays a crucial role in many software meas-
urement programs. Consequently, in many measurement programs defect
data are collected. Generally there are several pieces of information that can be
collected about defects. The most often used pieces of information relate to
the quantity of defects (i.e., their number) and their type. For the latter one,
defect classification schemes are used to quickly characterize the nature of de-
fects.

Defect classification schemes are used by organizations of low and high matur-
ity. For example, [Paulk et al., 2000] report that many high maturity organiza-
tions (CMM level 4 and 5) use defect classification (esp. orthogonal defect clas-
sification) for their quantitative management. But also when implementing
measurement programs in companies with smaller CMM-levels, defect classifi-
cation is used very frequently (e.g., [Briand et al.,1998])

Two important questions arise, when using defect classification. The first ques-
tion is how a “good” defect classification scheme can be defined. This ques-
tion is of practical relevance as many companies want to define and use their
own classification scheme, which is specifically tailored to their needs and
goals. However, in practice such self-defined classification schemes often im-
pose problems due to ambiguous or overlapping attribute types, or by captur-
ing different aspects of a defect in the same attribute, as also reported by [Os-
trand and Weyuker, 1984], [Hirsh et al., 1999]. Thus, a systematic approach to
define defect classification schemes would be useful.

The second question is, for what purposes defect classification data can be
analyzed and how this analysis can be performed. This question is on one hand
interesting because in the set-up of a measurement program the potential for
measurement goals answerable with defect classification should be known. On
the other hand, knowing methods to analyze defect classification data allows
to fully exploit the information and address the measurement goals.

Introduction

Copyright © Fraunhofer IESE 2001 2

To address these two questions, this report presents the results of a literature
survey on defect classification schemes.

The basis of this survey were papers identified by means of a query in the lit-
erature database INSPEC with the keywords “defect” and “classification”.
Moreover the internet was searched with various search engines using the
keywords “defect classification” and “software”.

The literature search, however, proved difficult as only few papers specifically
deal with defect classification schemes. Often defect classification schemes are
used as a tool for investigating other aspects (e.g., in the domain of software
inspections). These reports could therefore not be systematically included in
this report.

In contrast to existing surveys on that topic ([Fredericks and Basili, 1998],
[Kuhröber, 1997]), which focus more on an in-depth discussion of single defect
classification schemes, this survey aims at providing a more aggregate discus-
sion on the definition and usage of defect classification schemes.

Terminology

Copyright © Fraunhofer IESE 2001 3

2 Terminology

This section introduces the terminology used throughout this report.

A failure is a departure of the system behavior from its required behavior. Fail-
ures can be observed when the system is executed such as in testing or during
field usage.

A fault is uncovered when either a failure of the program occurs or an internal
error (e.g., an incorrect state) is detected within the program. The cause of the
failure or internal error is said to be a fault.

An error is a human action resulting in software with a fault.

The term defect is used in a generic manner referring to either a fault or a fail-
ure, provided the distinction is non-critical.

An Attribute is a feature or property of a defect that we are interested in [Fen-
ton and Pfleeger, 1996]. Using defect classification, this attribute is measured
on a nominal or ordinal scale with a set of pre-defined values. These values are
called Attribute Values.

Defect Classification Schemes

Copyright © Fraunhofer IESE 2001 4

3 Defect Classification Schemes

3.1 Scope of classification: what can be classified

There are many aspects of a defect that might be relevant for analysis. Defects
are inserted due to a particular reason into a particular piece of software at a
particular point in time. The defects are detected at a specific time and occa-
sion by noting some sort of symptom and they are corrected in specific way.
Each of these aspects (and more) might be relevant for a specific measurement
and analysis purpose.

[Mellor, 1992] and [Fenton and Pfleeger, 1996] proposed a framework1 of de-
fect key elements that capture on a high-level different aspects of a defect.
These key elements of a defect have been chosen to be (as far as possible) mu-
tually independent (i.e., orthogonal).

Each of the framework’s key elements can be refined leading to many attrib-
utes of a defect that can be captured by means of measurement in the form of
defect classification. In order to give the reader an idea on what might be pos-
sible to measure, explain the key elements and illustrate them with concrete
attributes from of existing, common defect classification schemes2.

Location The location of a defect describes where in the documentation the defect was
detected. This information can be very detailed and capture a within-system
identifier (e.g., document name or module identifier). However, the attribute
can also contain attribute values describing different high-level entities of the
entire system (e.g., Specification/Requirements, Design, Code, Documentation,
etc.) or describe the faulty document in more detail such as its age or history.

Timing The timing of a defects refers to phases when the defect was created, de-
tected, and corrected.

An attribute like Detection Phase can capture the phase during which the de-
fect was detected. Another aspect of timing beside the detection of a defect is
the question of when the defect was created and first introduced in the sys-
tem. This information is usually captured in an attribute Origin that contains
process phases as attribute values.

1 The framework can be instantiated differently for faults and failures. In this context we instantiate it in

terms of faults.
2 In several instances the mapping was hard to perform (e.g., for symptom and end result). Therefore, the

mapping of attributes to key elements is considered to be subjective.

Defect Classification Schemes

Copyright © Fraunhofer IESE 2001 5

Symptom Symptom captures what was observed when the defect surfaced or the activity
revealing the defect. For example, the ODC attribute Trigger captures the
mechanism that allows a defect to surface. For instance, during inspections the
inspector classifies a defect according to what he was thinking when detecting
the defect while a tester classifies according to the purpose of the test case re-
vealing the defect.

Under symptom it is also possible to classify what is observed during diagnosis
or inspection. For example, the attribute Type of the IEEE classification scheme
provides a very detailed classification of the symptom.

End result End result describes the failure caused by the fault. For example, the ODC at-
tribute Impact captures the impact of a fault (or resulting failure) on the cus-
tomer. This attribute contains values such as Performance, Usability, Installabil-
ity, etc.

Mechanism Mechanism describes how the defect was created, detected, and corrected3.
Creation captures the activity that inserted the defect into the system. The Ac-
tivity captured the activity that was performed when the defect was detected
(e.g., inspection, unit test, system test, operation). Finally, the correction refers
to the steps taken to remove the defect. For example, the ODC attribute Type
is explicitly defined in terms of activities performed when correcting defects.

Many defect classification schemes contain attributes that describe the creation
or correction of defects in terms of omission and commission. (e.g., schemes
for inspections, HP scheme and attribute mode, and ODC scheme defect quali-
fier.) These can also be seen as describing how a defect was created and cor-
rected.

Cause Cause describes the error leading to a fault. For example [Mays et al., 1990]
uses attribute values like Education, Oversight, Communication, Tools, and
Transcription for an attribute Cause. [Leszak et al., 2000] uses different attrib-
utes capturing different kind of causes: Human-Related Causes (e.g., lack of
knowledge, communication problems, etc), Project Causes such as time pres-
sure or management mistake. Finally, Review Causes describe why the defect
slipped potentially through an inspection (e.g., no or incomplete inspection, in-
adequate participation, etc)4.

Severity Severity describes the severity of a resulting or potential failure. For example, it
might capture whether a fault can actually be evidenced as a failure.

3 In contrast to the key element Timing, which captures process phases, the element mechanism captures

activities.
4 In addition to the presented three attributes, Leszak et al. use the attribute Phase Causes to capture the

phase in which the defect was introduced (thus, being equivalent to the Origin attribute described earlier).

Defect Classification Schemes

Copyright © Fraunhofer IESE 2001 6

Cost Cost capture the time or effort to locate/isolate a fault and correct it. Typically,
such information is captured not by means of a classification but by means of a
ratio-scale. However, it is also possible to capture time or effort data on an or-
dinal scale (thus, being able to use classification).

Table 1 summarizes this information by mapping attributes of the schemes
presented in Section 3.2 to the key elements. The attributes are organized ac-
cording to contain the defect classification schemes in which the attribute is
defined (ODC, IEEE, HP, other).

Attributes of existing schemes Framework Key Element
ODC HP IEEE other

Location of a defect describes where
in the system the defect was detected

Target, Age,
History

Origin Source

Timing of a defects refers to phases
when the defect was created, de-
tected, and corrected

 Project Phase Origin5,

Symptom captures what was ob-
served when the defect surfaced or
the activity revealed the defect

Trigger Type Type, Product
Status, Symptom

End result describes the failure caused
by the fault

Impact Repeatability,
Impact Attributes,
Product Status

Mechanism describes the how the
defect was created, detected, and
corrected

Type, Activ-
ity, Defect
Qualifier

Mode Project Activity,
Corrective Action

Cause describes the error leading to a
fault

 Suspected Cause ,
Actual Cause

Cause6,
Causes7

Severity describes the severity of a
resulting or potential failure

Cost capture the time or effort to
locate/isolate a fault and correct it

Table 1 Mapping of framework’s key elements to attributes of existing defect classification schemes

3.2 Existing Schemes

In this section examples of common defect classification systems are presented.
The purpose of the presentation is to give the reader who want to re-use exist-
ing or develop new defect classification schemes appropriate references and to
introduce appropriate examples for the subsequent sections.

The rationale of selecting the schemes was to take common schemes that have
been often used and reported. In particular, we present one defect classifica-

5 [Freimut et al., 1998]
6 [Mays et al., 1990]
7 [Leszak et al., 2000]

Defect Classification Schemes

Copyright © Fraunhofer IESE 2001 7

tion scheme proposed by an IEEE standard and two industrial schemes for
which several types of analyses have been published and that have been refer-
enced in general software engineering books (e.g. [Pfleeger, 1998]). Addition-
ally, two defect classification schemes specifically for inspections are presented.

In particular, we present the IEEE Standard Classification for Software Anoma-
lies [IEEE,1994], the Hewlett-Packard Scheme [Grady, 1992], and the Orthogo-
nal Defect Classification Scheme [Chillarege, 1992],[IBM].

3.2.1 IEEE Standard Classification for Software Anomalies

The IEEE scheme is aimed for audiences who want to implement a defect clas-
sification scheme compliant to a standard or who want to expand a defect
tracking or defect classification scheme and are looking for proven methodolo-
gies supporting that effort [IEEE,1994].

The different attributes of the scheme are organized according to a general de-
fect classification process consisting of four steps.

The first step Recognition occurs when the defect is found. In the second step,
Investigation, the defect is investigated in sufficient depth either to identify all
unknown issues and propose solutions or indicate that the defect requires no
action. In the third step, Action, a plan of action is established to resolve the
defect and prevent it from occurring. The last step, Disposition, is performed
when all required resolution actions are completed or at least identification of
long-term corrective actions have been completed.

Table 2 shows the attributes of the entire scheme. The table contains the steps
of the defect classification process, the attribute names as well as their mean-
ing. Finally it is indicated, whether the attributes are mandatory (m) or optional
(o) in order to be IEEE standard compliant.

Defect Process Attribute Name Attribute Meaning mandatory
Project Activity What were you doing when the defect oc-

curred?
m

Project Phase In which life-cycle phase is the product? m
Suspected Cause What du you think might be the cause? o
Repeatability Could you make the defect appear more then

once?
o

Symptom How did the defect manifest itself? m

Recognition

Product Status What is the usability of the product with no
changes?

o

Actual Cause What caused the anomaly to occur? m Investigation
Source Where (part of the system and its documenta-

tion) was the origin of the defect?
m

Defect Classification Schemes

Copyright © Fraunhofer IESE 2001 8

Defect Process Attribute Name Attribute Meaning mandatory
 Type What type of defect/enhancement at the

code level?
m

Resolution What to do to prevent the defect from hap-
pening again?

m Action

Corrective Ac-
tion

What action to take to resolve the defect? m

Severity How bad was the defect in more objective
engineering terms?

m

Priority Rank the importance of resolving the defect
(taking subjectively into account all other
Impact attributes)?

o

Customer Value How important is a fix to the customer? o
Mission Safety How bad was the defect wrt. Project objec-

tives or human well-being?
o

Project Schedule Relative effect on the project schedule to fix? m
Project Cost Relative effect on the project budget to fix? m
Project Risk Risk associated with implementing a fix? o
Project Quality/
Reliability

Impact to the product quality or reliability to
make a fix?

o

Impact Identi-
fication

Societal Impact of society of implementing the fix? o
Dispostion Disposition What actually happened to close the anom-

aly?
m

Table 2 Attributes of IEEE scheme

The attribute values for the attributes are not shown here but can be referred
to in [IEEE,1994]

3.2.2 Hewlett-Packard Scheme

The HP scheme was developed by HP’s Software Metrics Council in 1986
[Grady, 1992]. The purpose of the entire scheme is to improve the develop-
ment process by reducing the number of defects over time [Pfleeger, 1998].

The developers use this scheme by selecting three descriptors for each defect:
the Origin (i.e., where was the defect injected in the system), the type of de-
fect, and the mode (i.e., whether information was missing, unclear, wrong,
changed, or done in a better way).

The entire scheme with attributes and attribute values is shown in Figure 1.
The bold lines in this picture denote the possible selection of attribute values.
As it will be described in Section 3.3, the choice of an attribute value for the
attribute Origin defines the possible set of attributes available (and reasonable)
for the attribute Type.

Defect Classification Schemes

Copyright © Fraunhofer IESE 2001 9

Specifications/
Requirements Design Code Environment/

Support Documentation other

Requirements/
Specifications

Functionality

Origin

HW Interface

SW Interface

User Interface

Funct. Descr.

(Inter-) Process
Communications

Data Definition

Module Design

Logical
Description

Error Checking

Standards

Logic

Computation

Data Handling

Module Interface/
Implementation

Standards

Test HW

Test SW

Integration SW

Developmental
Tools

Type

Missing Unclear Wrong Changed Better Way

Mode

Figure 1 HP Defect Classification Scheme.

3.2.3 Orthogonal Defect Classification

Orthogonal Defect Classification has been developed by IBM [Chillarege,
1992]. This defect classification scheme can also be used to improve the entire
development process by reducing the number of defects over time [Pfleeger,
1998]. However, the original, and most often reported purpose is to give pro-
ject teams feedback on the progress of the current project.

Since its definition in [Chillarege, 1992] this classification scheme has been
adopted by more and more organizations, as shown by an increasing number
of experience reports ([Sreenivasan, 1999], [Silberman, 1998], [Schultz, 1999],
[Hirsh et. al, 1999], [Dalal et. al., 1999], [Bridge and Miller, 1997], [Amezquita
and Siewiorek, 1996], [Rentschler, 1995], [Humphrey, 1995]). In the survey
performed by [Paulk et al., 2000], 14 out of 37 high-maturity organizations
(i.e., being of CMM level 4 or 5) used this scheme as quantitative analysis prac-
tice.

Table 3 shows the attributes of the ODC scheme for design and code defects,
their meaning, and the corresponding attribute values. Extensions of the ODC

Defect Classification Schemes

Copyright © Fraunhofer IESE 2001 10

scheme exist for information development, graphic user interface, the build
process, and national language support. These extensions introduce additional
sets of attribute values for Defect Type and Trigger that are available depend-
ing on the attribute value of the attribute Target. These extensions, however,
are not discussed here.

The attributes are organized according to the two process steps, in which the
defect classification data are collected. The process step Open is performed
when a defect has been detected and a new defect report is opened in the de-
fect tracking system. The process step close is performed when the defect has
been corrected and the defect report is closed.

Proc-
ess

Attribute
Name

Attribute Meaning Attribute values

Activity When did you detect
the defect?

design inspection, code inspection, unit test,
integration test, system test
Design Conformance, Logic/ Flow, Backward
Compatibility, Lateral Compatibility, Concur-
rency, Internal Document, Language De-
pendency, Side Effect, Rare Situations
Simple Path, Complex Path, Coverage, Varia-
tion, Sequencing, Interaction

Trigger How did you detect the
defect?

Workload/Stress, Recovery/Exception,
Startup/Restart, Hardware Configuration,
Software Configuration, Blocked Test

Open

Impact What would have cus-
tomer noticed if defect
had escaped into the
field?

Installability, Serviceability, Standards, Integ-
rity/Security, Migration, Reliability, Perform-
ance, Documentation, Requirements, Main-
tenance, Usability, Accessibility, Capability

Target What high level entity
was fixed?

requirements, design, code8,
build/package/merge, information, user-
interface

Source Who developed the
target?

in-house, library, out-sourced, ported

Age What is the history of
the target?

base, new, rewritten, re-fixed

Defect
Type

What had to be fixed? assignment, checking, algorithm, function,
timing, interface, relationship

Close

Defect
Qualifier

 missing, incorrect, extraneous

Table 3 ODC Scheme (for Design and Code)

While all these attributes capture the semantics of a defect [Chillarege, 1992]
and are useful to analyze, the attributes defect type and trigger play a crucial
role in the scheme.

8 For targets Natural Language, Build/Package/Merge a set of own defect types exist. For target Interface an

own set of triggers exist

Defect Classification Schemes

Copyright © Fraunhofer IESE 2001 11

The attribute Defect Type captures the fix that was made to resolve the defect.
One interesting aspect was taken into account when developing the set of at-
tribute values: For each defect type an expectation exists, in which detection
activity (e.g., unit test, function test, system test) that defect type should be
detected. If an analysis of the defects reveals that the activities are not finding
the right types of defects, obviously, these processes need to be improved [Kel-
sey, 1997] and within the project it has to be reacted upon this result.

For example, defects of type Function are those that require a formal design
change. It can be expected that the number of Function-defects decreases over
time. This profile of an attribute value over time (i.e., different detection activi-
ties) is called a signature.

Based on such a signature, deviations from the expected trend can be identi-
fied. For example, if the number of Function-defects is increasing with testing
time, then a problem might exist that should be investigated.

Since each attribute value has a signature of its own, each detection activity
has a specific distribution of attribute values that is expected. The progress of
the project can be measured against these expected distributions, as shown in
Figure 2.

Start
Development Release

Development process

Defects

Design Inspections Unit Test Integration Test System Test

Function

Assignment

Interface

Timing

Defect Types

%

10

20

30

40

Distribution determines “where we are” in the process

Expected
distributions
over time

Actual
distribution for
one point in time

Figure 2 Signatures of ODC Attribute Defect Type

The second attribute special to ODC is the attribute Trigger. This attribute cap-
tures the reason why a particular piece of software was executed when the
fault caused a failure. This illustrated in Figure 3.

Defect Classification Schemes

Copyright © Fraunhofer IESE 2001 12

Fault Failure

Trigger1

Trigger3

Trigger2

Figure 3 Concept of trigger.

At first, a defect is dormant in the system. Then the code is activated (e.g.,
automatically via test cases or mentally in inspections) and the fault turns into a
failure. The facilitator activating dormant software faults into failures is called
the trigger and there can be several facilitators why the code is executed
(physically or mentally).

In practice, the data collector assigns an attribute value according to the ques-
tion “What were you thinking about when you detected the defect?” (for in-
spections) and “What was the purpose of the test case?” (for testing).

Thus, the attribute trigger gives feedback to the defect detection process as it
captures how defects are revealed.

3.2.4 Defect Classification for Inspections

While the schemes presented above aim to be used for several life-cycle
phases, there are also defect classification schemes specifically developed for
investigating inspections. These classifications can be more detailed than
schemes supporting several life cycle phases as they can be tailored to the type
of document being inspected and to the environment.

To give the reader a flavor of schemes used, we present one scheme for re-
quirements documents and one for design documents.

As an example for a defect classification scheme for requirements we present
the scheme proposed in [Porter et al., 1995]

1st level name 2nd level name Definition
Missing Functionality Information describing the desired internal opera-

tional behavior of the system has been omitted.
Omission

Missing Performance Information describing the desired performance
specification has either been omitted or described
in a way that is unacceptable for acceptance test-
ing.

Defect Classification Schemes

Copyright © Fraunhofer IESE 2001 13

1st level name 2nd level name Definition
Missing Environment Information describing the required hardware,

software, database, or personnel environment in
which the system will run has been omitted.

Missing Interface Information describing how the proposed system
will interface and communicate with objects out-
side the scope of the system has been omitted.

Ambiguous Information An important term, phrase or sentence essential to
the understanding of the system has either been
left undefined or defined in a way that can cause
confusion and misunderstanding.

Inconsistent Information Two sentences directly contradict each other or
express actions that cannot both be correct or
cannot both be carried out.

Incorrect or Extra
Functionality

Some sentence asserts a fact that cannot be true
under the specified conditions.

Commission

Wrong Section Essential information is misplaced within the docu-
ment.

For design inspections little information is currently available in terms of defect
classification. [Shull et al., 1999] proposed a scheme, by adapting a scheme
proposed by [Baslili et al, 1996] for requirements for design documents.

Attribute
Value

Definition

Omission One or more design diagrams that should contain some concept from the gen-
eral requirements or from the requirements document do not contain a repre-
sentation for that concept.

Incorrect Fact A design diagram contains a misrepresentation of a concept described in the
general requirements or the requirements document.

Inconsistency A representation of a concept in one design diagram disagrees with a represen-
tation of the same concept in either the same or another diagram.

Ambiguity A representation of a concept in the design is unclear, and could cause a user
of the document (developer, low-level designer, etc.) to misinterpret or misun-
derstand the meaning of the concept.

Extraneous
Information

The design contains information that, while perhaps true, does not apply to this
domain and should not be included in the design.

When comparing the attribute values for design inspections that have been
proposed to classify defects with the attributes proposed by other defect
classification schemes it becomes obvious that the attribute values are similar
to the concepts captured from the ODC attribute Defect Qualifier.

Those defect classification schemes specifically developed for code inspections
often either capture an ODC-Defect Type-like information, or capture the
structure of the code that contained the defect, similar to the ODC Defect
Type and the IEEE defect type

Defect Classification Schemes

Copyright © Fraunhofer IESE 2001 14

3.3 Structure of defect classification schemes

Measurement via classification is performed by assigning a measurement
variable (i.e., an attribute) a discrete value, which is selected based from a pre-
defined set of values (i.e., attribute values).

Defect classification schemes can differ in the way different attributes or
attribute values relate to each other.

One early approach to structure defect classification schemes was to place a
given defect in an appropriate node in a tree of categories. The primary
characteristic of such a tree scheme is the requirement to place each error in a
unique category that simultaneously represent all its features [Ostrand and
Weyuker, 1984]. However, the many features of a defect and the resulting
large number of categories make such schemes difficult to use.

While tree-based classification schemes aim at organizing different attribute in
a tree-structure, it is also possible to organize the attribute values of one at-
tribute in a hierarchical way. Thus, the attribute values on one level of the hier-
archy are refined by the attribute values on the next level of the hierarchy. An
example of this structure is for example given by the scheme in [IEEE, 1994] as
shown in an excerpt in Table 4.

Attribute Attribute Value
Logic
 Forgotten cases or steps
 Duplicate logic
 Extreme Conditions neglected
 …
Computation
Problem

 Equation insufficient or incorrect
 Missing computation
 Operand in equation

incorrect
 …
 Precision Loss
 Rounding or trunca-

tion fault
 Mixed modes
 Sign convention fault

Type

…

Table 4 Example of hierarchically organized attribute values [IEEE, 1994]

Finally, a derivate of tree-based classification schemes are those defect classifi-
cation schemes where the attributes are not independent but the selection of

Defect Classification Schemes

Copyright © Fraunhofer IESE 2001 15

attribute values in one attribute influences the selection of attributes in a sec-
ond attribute.

An example of such a scheme is the scheme used at Hewlett-Packard [Grady,
1992] as shown in Figure 4

Specifications/
Requirements Design Code Environment/

Support Documentation other

Requirements/
Specifications

Functionality

Origin

HW Interface

SW Interface

User Interface

Funct. Descr.

(Inter-) Process
Communications

Data Definition

Module Design

Logical
Description

Error Checking

Standards

Logic

Computation

Data Handling

Module Interface/
Implementation

Standards

Test HW

Test SW

Integration SW

Developmental
Tools

Type

Missing Unclear Wrong Changed Better Way

Mode

Figure 4 Scheme in which attributes are not independent

Based on the selection of an attribute value for the attribute Origin, different
sets of attribute values for the attribute Type are possible.

A somewhat different approach is an attribute categorization scheme [Ostrand
and Weyuker, 1994]. In such a scheme the various attributes whose values de-
scribe a defect are similar to the attributes of a relation in a relational data-
base. Thus, the attribute values are assigned independently for each attribute.
The ODC scheme for design and code [Chillarege et al., 1992] or the IEEE
scheme are examples of such a scheme as shown in Figure 5.

Defect Classification Schemes

Copyright © Fraunhofer IESE 2001 16

Impact Defect Type Qualifier Target
Installability Assignment/ Initialization Missing X Code X
Integrity/ Security Checking Incorrect GUI
Performance X Algorithm/ Method X Extraneous
Maintenance Function/ Class/ Object
Serviceability Timing/ Serialization
Migration Interface/ O-O Messages
Documentation Relationship
Usability
Standards
Reliability
Requirements
Accessibility
Capability

Figure 5 Attribute categorization scheme (ODC excerpt)

The advantage of such a scheme is that new attributes (i.e., aspects of a
defect) can be easily added.

3.4 Properties of defect classification schemes

As reported in [Ostrand and Weyuker, 1984], defect classification scheme
often have problems including incomplete, ambiguous, and overlapping
attribute types, too many attribute types, and a mixture of causes, symptoms,
and actual faults for one attribute. Such problems make it difficult to correctly
and reliably classify a specific defect resulting in poor quality data, which also
question the results obtained from defect data analysis.

To prevent such problems, a defect classification scheme should possess several
quality features as described below. These features should allow for an easy
classification process, which is the prerequisite for high-quality data and
analyses.

Orthogonal The set of attribute values for a specific attribute should be orthogonal. This
attributes and means that for a particular defect only one attribute value is appropriate.
Orthogonal If the attribute values are not orthogonal, it may happen that two or more
attribute values attribute values may fit so that the data collector has arbitrarily to decide which

value to assign. This, of course, leads to inconsistent and unreliable data.

An example of such problems is shown below according to [Fenton and Pflee-
ger, 1996]. Often organizations try to provide a single attribute for defects
rather than using several attributes as depicted in Section 3.1. Consider the fol-
lowing classification for defects based on severity:

Defect Classification Schemes

Copyright © Fraunhofer IESE 2001 17

{major, minor, negligible, documentation, unknown}

This classification is not orthogonal as, for example, a documentation problem
could also be a major problem. Consequently, there is more than one attribute
value appropriate. The reason stems from mixing two different aspects of the
defect, in this case Severity and Location.

To prevent this, orthogonal attributes should be developed. As described in
Section 3.1, a defect has many aspects. Orthogonal attributes ensure that dif-
ferent aspects of a defect are captured in different attributes.
If one attribute contains two or more different aspects of a defect, the attrib-
ute values for that attribute can not be orthogonal. The problem most often
occurring in practice is that cause, type, and impact are mixed. Thus, for a de-
fect several attribute values (e.g., one for the cause, one for the impact) can be
appropriate.

Complete
attribute values The set of attribute values should be complete so that for all defects an

appropriate attribute value can be selected.
If the set of values is not complete, data collectors may decide not to classify
the defect or select “the nearest” possible value resulting in inconsistent or
incomplete data.
This problem can be easily prevented by using an attribute value “Other”, for
which the data collector has to textually describe the attribute value missing
attribute values. This information can then be used to check whether the set of
attribute values is actually incomplete and how to modify it.

Small number of
attribute values The number of attribute values should not be too large. If the number of

attribute values is small, there is a greater chance that the human mind can
accurately resolve between them. Having a small set to choose from makes the
classification process easier and less error prone [Chillarege, 1992].
The number of attribute values depends on the purpose of the scheme. If the
scheme is to be used by developers in their daily work, classification should be
able to be performed easily and quickly. Consequently, only few attribute
values are possible. If, on the other hand, the scheme is used by researchers,
who have usually more time for a more careful analysis, a larger number of
attribute values are possible.

Description of
attribute values The attribute values should be well-defined by means of a textual description.

Often it can be seen in practice that the “definition” consists only of the title
of the attribute value (e.g., logic). Therefore, it is easily possible to confuse or
differently interpret different attribute values, which results in inconsistent and
unreliable data. Therefore, each attribute value should be well-defined and

Defect Classification Schemes

Copyright © Fraunhofer IESE 2001 18

augmented with example defects [Freimut et al, 2000]. An example of such
definition is given in the ODC Standard [IBM] as shown below.

Attribute Value: Checking
Errors caused by missing or incorrect validation of parameters or data in con-
ditional statements. It might be expected that a consequence of checking for
a value would require additional code such as a do while loop or branch. If
the missing or incorrect check is the critical error, checking would still be the
type chosen.

Examples:
 1) Value greater than 100 is not valid, but the check to make sure that the
value was less than 100 was missing.
 2) The conditional loop should have stopped on the ninth iteration. But it
kept looping while the counter was <= 10.

All these properties of a classification scheme (i.e., orthogonal, complete, well-
defined, not too many attribute values for orthogonal attributes) are to make
the classification process easy and therefore, improve the reliability of the data.
Under reliability of a defect classification system it is understood that different
people assign the same attribute value to the same defect. [El Emam and
Wieczorek, 1999] propose a procedure to systematically and quantitatively
assess the reliability of defect classification schemes.

In addition to these necessary properties, there are additional properties. For
example, [Chillarege et al., 1992] asks for consistent defect classification
schemes across process phases and products.

Consistency across phases means that the same classification scheme is used
throughout all development phases. This feature eases classification as people
have only to memorize one scheme for a project or product. If different
schemes are applied for different phases, people might confuse the schemes
used, especially when process stages of subsequent releases overlap.
Moreover, consistency across phases allows also to look at trends across
stages.
Consistency across products and projects means that the same scheme is used
in different projects. This also eases classification for developers working in
several projects since they only need to memorize one scheme. Moreover, it is
then possible to analyze the data in order to identify process-independent de-
fect patterns and obtain useful relationships and models [Chillarege et al.,
1992].

How to develop Defect
Classification Schemes

Copyright © Fraunhofer IESE 2001 19

4 How to develop Defect Classification Schemes

4.1 Strategies in Developing Defect Classification Schemes

If an organization wants to introduce a new classification scheme there are
generally two strategies. The first one is to employ an existing defect
classification scheme and tailor it to the organization’s context. The second one
is to develop a new scheme based on the objectives and needs of the
organization.
Re-use of an existing scheme

Employing an existing classification schemes is particularly interesting for
companies who start with defect measurement and simply want to
characterize the defects found or do not want to invest effort in the
development of a company-tailored scheme.

Schemes often adopted are the IEEE standard classification scheme [IEEE. 1994]
and the Orthogonal Defect Classification scheme [Chillarege, 1992]. Especially
for the latter more and more experience reports from organizations adopting
ODC are being published ([Sreenivasan, 1999], [Silberman, 1998], [Schultz,
1999], [Hirsh et. al, 1999], [Dalal et. al., 1999], [Bridge and Miller, 1997],
[Rentschler, 1995], [Humphrey, 1995].

Also the work of [Florac, 1992] aims at providing a re-usable defect
classification scheme. In this report a principal set of measurable, orthogonal
attributes are described. Checklists are provided supporting the construction of
defect classification schemes by simply checking off attributes and values that
are to be included for a specific context.

However, when re-using existing defect classification schemes they have
nevertheless to be tailored to the organization. For example, the IEEE standard
classification scheme explicitly assumes that for all attribute values
organization-specific definitions have to be provided, a fact that is sometimes
overlooked in practice. And also the ODC scheme (attribute defect type,
trigger) employed, for example, at Tandem [Rentschler, 1995] has been
modified against the original IBM scheme [Chillarege, 1992]. In addition,
[Silberman, 1998] provides a very detailed study on transferring ODC into a
different context.

How to develop Defect
Classification Schemes

Copyright © Fraunhofer IESE 2001 20

Define new scheme based on measurement goals

In order to define a new classification scheme, rather than re-using and adapt-
ing existing schemes, the aspect to be captured in an attribute has to be se-
lected and appropriate attribute values have to be defined.

The attributes to be included and their appropriate values are to be selected so
that useful analyses are possible and the underlying measurement goals are
achieved.

Typically, to select the attribute to be measured the framework developed by
[Mellor, 1992] and presented in Section 3.1 can give guidance or apply “who,
what, why, when, where, and how” questions [Fenton, 1991].

In order to define the attribute values generally two approaches are possible.
Either based on supposition or based on empirical evidence.

Using supposition the attribute values are designed following pre-defined
rationales. For example, in the design of the attribute defect type in the ODC
scheme the attribute values were selected according to the activities performed
when correcting a defect. Using empirical evidence the descriptions of actual
defects are used to define the attribute values. For example, in [Ostrand and
Weyuker, 1984] data collection captured textual descriptions of defects and
their symptoms and used these descriptions as a basis for the definition of the
classification scheme.

A helpful strategy to define attribute values is to use a rationale for selecting
the attributes and their values. First, it should be clear what aspect of the
defect the attribute is to capture. Once this aspect has been clearly defined, it
will also be less likely that different aspects are mixed into one attribute
violating the orthogonality of the scheme.

For example, in the ODC scheme, [Chillarege et al., 1992] the attribute defect
type is to describe how to fix a (design and code) defect. The attribute values
were then selected according to the activities the developers typically perform
when fixing a defect.

[Chillarege et al, 1992] state that such a classification that is performed
according to the activities the developers perform, ease the task of assigning
attribute values (as the assignment is based on that task just performed) and
therefore increase the quality and reliability of the defect classification data.

However, once an initial design for a defect classification scheme exists,
modifications based on experiences have to be expected [Chaar et al, 1993].

How to develop Defect
Classification Schemes

Copyright © Fraunhofer IESE 2001 21

4.2 A Process for Re-Using and Introducing Defect Classification Schemes

A process for the re-use of a defect classification scheme is presented in [IEEE,
1994]. This process is intended for organizations that want to implement the
IEEE Standard Classification for Defect Anomalies on their projects or that want
to expand an existing defect tracking system and are looking for proven
methodologies supporting that effort.

Although this process is described in the context of re-using existing defect
classification schemes, it can also be used as a basis for developing an entirely
new scheme.

We briefly summarize this process in the following.

1. Select the attributes to be considered based on an intended standard
compliance, based on the potential usage of the data, and based on the
value for the organization’s business.

2. For each attribute, determine the list of attribute values to be used. In this
step first, attribute values are selected and an actual set of defects is
classified according to them to check whether the attribute values make
sense. If necessary, new attribute values have to be defined for special
cases not considered in the proposed set of attribute values.

3. Document the attributes. Describe what is meant by each attribute using
the organization’s terminology and references.

4. Document the attribute values. Write sentences or paragraphs that exactly
describe what the attribute values mean.

5. For each attribute value, determine, who is going to collect it and when.

6. Determine how the data can be collected by means of an existing defect
tracking system.

7. Plan the kind of analyses you want to perform and when.

8. Provide training on the classification scheme to users and management.

How to analyze defect
classification data

Copyright © Fraunhofer IESE 2001 22

5 How to analyze defect classification data

Already during the development of a defect classification scheme, the required
and potential analyses are to be taken into account. For this purpose this
section describes how defect classification data can be analyzed. The focus is
on examples that have been reported in the literature.

5.1 General methods to analyze defect classification data

Charts The most common form to analyze defect data is to determine their absolute
and relative frequency. To visualize this distribution data often pie charts, his-
tograms, or Pareto charts are used, for example as shown in Figure 6.

Pareto Chart for defect type

Defect Type

N
um

be
r o

f d
ef

ec
ts

0

1

2

3

4

5

6

7

8

9

10

Interface Data Logic Initialization Computation

Figure 6 Pareto Chart to analyze defect data.

The appeal of such graphs is that they can be easily understood by developers
[Silberman, 1998].

Comparison with
Hypotheses In order to control defect detection activities (i.e., inspections, testing), the

distributions can be compared to expected distributions [Chillarege et
al.,1992], [Chaar et al, 1993], [Bassin et al, 1998]. These expected distributions
either stem from qualitative expectations on what attribute values should have
a low or high number of occurrences or they can stem from historical
baselines.

Data Mining While it is relatively straightforward to compare the actual distribution of one
attribute with its expected distribution, this is more difficult if several attribute

How to analyze defect
classification data

Copyright © Fraunhofer IESE 2001 23

or even cross-products of two or more attributes are to be analyzed. To sup-
port this kind of analyses [Bhandari et al., 1994], [Bhandari, 1993] proposed an
automatic procedure based on data exploration techniques. This so-called At-
tribute Focusing Method aims at comparing automatically the actual relative
frequencies of attribute values or attribute value pairs with expected relative
frequencies and selecting those deviations that seem to be most interesting.

An illustration, taken from [Bandhari et al., 1994], is shown in Table 5 and
Table 6.

Attribute
Qualifier

Observed Frequency (%) Expected Distribution (%) Difference (%)

Incorrect 37 50 -13

Missing 63 50 13

Table 5 Illustration of Attribute Focusing (one attribute)

In Table 5 attribute focusing with one attribute is illustrated. For each attribute
value the actual relative frequency is determined. Next, the expected relative
frequency is computed by assuming a uniform distribution of all attribute val-
ues of a given attribute. Then the difference between the actual and expected
distribution is computed. Finally, all attribute values are listed in decreasing or-
der of the differences. A so-called filtering function selects then from top the
attribute values (and hence the attributes) to be displayed in a chart. This filter-
ing is performed in order to keep the number of analyses manageable.

Attribute
Defect Type

Observed
Frequency
Defect Type
(%)

Attribute
Origin

Observed
Frequency
Origin
(%)

Observed
Frequency
Type AND
Origin (%)

Expected
Frequency
Type AND
Origin (%)9

Difference
(%)

Document 14 CLD 16 5 2 3

Document 14 MLD 84 8 11 -3

Assignment 16 MLD 84 16 14 3

Assignment 16 CLD 16 0 3 -3

Table 6 Illustration of Attribute Focusing (Two Attributes)

In Table 6 the computations are shown for two attributes. Again, for each at-
tribute value the actual relative frequency is determined. Then, also for the at-
tribute value pairs the relative frequency is determined. Next, the expected
relative frequency of the attribute value pair is computed assuming statistical
independence between the attribute values. Thus, the expected frequency of
the attribute value pair is computed by multiplying the relative frequencies of

9 Computes as “Observed Frequency Defect Type” x “Observed Frequency Trigger”

How to analyze defect
classification data

Copyright © Fraunhofer IESE 2001 24

each attribute value. Similarly for the case of one attribute, the differences are
then computed. Finally, all attribute value pairs are listed in decreasing order of
the differences and can be selected by the above-mentioned filtering function.

Statistical Tests Another way of analyzing defect classification data is to perform statistical
analyses as proposed in [IEEE, 1994]. In this standard it is shown, for example,
how to apply chi-square tests in order to test statistically, whether the attribute
values of a given attribute are distributed uniformly. A second application is to
test statistically, whether two attributes are statistically independent. However,
in the literature considered in this survey none of these statistical analyses have
been performed.

5.2 Interpretation of Analyses

One very important aspect of a defect data analysis is the interpretation of the
analysis results by the data providers and the project team in the context of
which the data were collected. While the methods described above merely to
interesting situations in the project or process, only people with sufficient
background and context information can relate the analysis results to causes of
the detected patterns.

Two explicit processes of interpreting analysis results have been reported by
[Bhandari, Halliday, et al., 1994] and [Matthews, 1999].

The interpretation process of [Bhandari, Halliday, et al., 1994] consists of the
following steps:

Result: What is the observation made by means of the analyses?
Cause: What situations in the project might have yielded the observed results?’
Implication: What is going to happen, if no action is initiated?
Action: What is to be done to prevent negative consequences?
Validation: The action has been performed, check whether it produced the
expected results.

The interpretation process of [Matthews, 1999] looks similar:

Result: Describe each unusual result briefly in words. Collect the facts from
several results together and make a summary in plain, understandable words.
Cause: Elaborate on the summary to identify the story that explains the results.
Try to confirm the story or decide alternative interpretations. Talk to key people
involved in the project.
Action: When the story seems solid, propose specific actions to address any
issues.

How to analyze defect
classification data

Copyright © Fraunhofer IESE 2001 25

5.3 Specific Analyses

While the previous section discussed several techniques to analyze defect
classification data in general, this section presents actual measurement goals
that have been achieved by analyzing defect classification data.

The purpose of the section is on one hand to give the reader an idea what
possible measurement goals can be achieved using defect classification. On the
other hand, when the reader has a concrete measurement goal in mind, the
corresponding section presents attributes that can be defined and also analyses
that can be performed.

The measurement goals presented in the following are not intended to be
orthogonal. Rather, they are organized according to the intention of the source
describing the analysis.

5.3.1 Characterization of the defects found

The simplest purpose of analyzing defect classification data is to characterize
the defects found. Characterization in this context means that the number and
proportion for each attribute value is known.

This type of analysis goal is often employed by companies starting
measurement program who want to obtain a first overview of the defects. For
example, in [Briand et al., 1998] the defects found in newly introduced
inspections were classified according to the ODC-impact in order to
characterize the defect found in terms of their visibility to the user.

Q1.6: Impact of detected defects

64%

0%

23%

4% 3%
7%

0% 0%

25%

0%

50%

25%

0% 0% 0% 0%
0%

10%

20%

30%

40%

50%

60%

70%

80%

Userfriendl. Docum. Functionality Integrity Performance Standards Maintain. Reliabil.

Analysis-Inspections (BB) Design-Inspections (MB)

Q1.6: Impact of detected defects

64%

0%

23%

4% 3%
7%

0% 0%

25%

0%

50%

25%

0% 0% 0% 0%
0%

10%

20%

30%

40%

50%

60%

70%

80%

Userfriendl. Docum. Functionality Integrity Performance Standards Maintain. Reliabil.

Analysis-Inspections (BB) Design-Inspections (MB)

Figure 7 Simple characterization of defects with bar chart

How to analyze defect
classification data

Copyright © Fraunhofer IESE 2001 26

Typically, some sort of improvement (see Section 5.3.2) or some sort of evalua-
tion of the employed technologies [Briand et al., 1998] can then be initiated
based upon the results.

5.3.2 Defect Prevention

One important purpose of analyzing defect data is to learn what kind of
defects are made and to use this knowledge to prevent similar defects in the
future. The technique for analyzing the data is called Defect Causal Analysis
[Card, 1998] or Defect Prevention Process [Mays et al., 1990].

The idea of Defect Causal Analysis (DCA) is to analyze defect data in order to
find a systematic error. In this context, a systematic error is an error that is
committed repeatedly and therefore causes many faults and failures. Once the
systematic error is identified, its underlying cause can be identified and
appropriate process changes can be performed to prevent the systematic error
and the resulting faults and failures. Overall, this techniques aims to prevent
defects or at least enable an earlier detection.

One important part of this technique is the identification of the systematic
error. For this purpose, the analysis of defect classification data is used. Based
on a Pareto-Chart, the type(s) of defects occurring most often are identified.
These types of defects typically hint to the systematic error.

Depending on the actual implementation of DCA in an organization either
defect reports of a sample of the corresponding defects are analyzed in a
qualitative manner [Card, 1998] to identify the systematic error or directly the
identified types are used for reasoning about the systematic error [Grady,
1992].
According to [Chillarege et al., 1992], [Matthews, 1999] the advantage of the
latter approach is, that it is supposed to take less time. The disadvantage of a
qualitative analysis is that few defects have to be discussed in detail in a team
of developers, whereas an analysis of defect classification data can take into
account all defects and provide results in short time.

In the following, an example from [Grady, 1992] is shown for illustrating
purposes. The defect data were collected during maintenance in a Hewlett-
Packard division developing systems software (using the language C, SA/SD
design, informal and sporadic code inspections, branch coverage testing,
regression testing).

The defects were classified according to the HP scheme presented in Section 4.
Figure 8 shows the defect classification data.

How to analyze defect
classification data

Copyright © Fraunhofer IESE 2001 27

Logic Impl.
8% Logic Descr.

5%
SW Interface

11%

Error Checking
16%

Documentation
12%

Specifications
19%

HW Interface
12% Module Design

17%

Figure 8 Defect data (type what)

This picture shows that the majority of defects, as indicated by the striped
wedges, have their origin in the design phase. Therefore, one potential
systematic error could be in that phase. However, [Grady, 1992] not only takes
into account the number or proportion of an attribute value to make a decision
about systemic errors, but also the value obtained by normalizing with the
average effort to find and fix a defect.

To do so, for all defects of a given attribute value the effort to find and fix the
defects is determined. This overall effort is then divided by the number of
defects with the given attribute value to obtain the average effort to find and
fix a defect of the given attribute value. The cost of the given attribute value is
then the number of defects with that attribute value multiplied by the average
effort to find and fix those defects.

In Figure 9 such data is shown for the example.

SW Interface
10%

Error Checking
15%

Module Design
15%

HW Interface
11%

Specifications
39%

Logic Descr.
5%

Logic Impl.
3%

Documentation
2%

Figure 9 Normalized defect data

How to analyze defect
classification data

Copyright © Fraunhofer IESE 2001 28

This figure shows that specification defects make a large proportion and
therefore offer much improvement potential, especially for new products.
Consequently, it was decided to prevent specification-defects in the future.

Since from the type of defects (i.e., specification) the systematic error was not
obvious, a brainstorming was performed in the course of which a Fishbone-
Diagram, as shown in Figure 10, was developed.

Figure 10 Fishbone-Diagram to identify root cause

As root causes from Figure 10 were identified: an unclear understanding of
customer segments, a lack of clearly assigned responsibilities, the absence of
document standards, and several changes in the hardware.

To improve the process (and prevent future defects) it was decided to have the
marketing department to set up customer visits in order to learn about
customer needs, to assign the configuration management responsibility to one
person who is to select a tool for version control, and to set up task force for
developing a new specification documentation format.

How to analyze defect
classification data

Copyright © Fraunhofer IESE 2001 29

This example is narrated in a straightforward manner. In practice, however,
typically several attributes are investigated in an explorative manner to investi-
gate a meaningful subset of data.

Often, the crucial attribute(s) used in the course of a DCA is the attribute or
attributes capturing the cause of a defect. Such a classification (e.g., [Mays et
al., 1990] or [Leszak et al., 2000] aims at more directly pinpointing to the root
causes.

5.3.3 Control Inspections

Defect classification can be used to assess the effectiveness of software
inspections and use the gained knowledge to control inspections. The
approach followed in [Chaar et al., 1993] is to analyze the actual kinds of
defects found and compare them with the expected kinds of defects.

An important attribute for this type of analysis is the ODC attribute trigger. For
inspections this attribute captures the way the defect was detected (i.e., the
classification in performed based on the question: What were you thinking
about when you detected the defect?).

An example of this type of analysis is given in [Chaar et al., 1993] and shown
in Figure 11. This figure shows data obtained from a high-level design inspec-
tion of a middleware component.

The attribute shown is the ODC-trigger. Two particular attribute values for this
attribute are Lateral Compatibility and Backward Compatibility. A defect is
assigned the value Backward Compatibility when the inspector uses extensive
product/component experience to identify an incompatibility between the
function described by the design document or the code, and that of earlier
versions of the same product or component. From a field perspective, the
customer's application, which ran successfully on the prior release, fails on the
current release. A defect is assigned the value Lateral Compatibility when the
inspector with broad-based experience, detects an incompatibility between the
function described by the design document or the code, and the other
systems, products, services, components, or modules with which it must
interface.
It is clear from the description of the attribute values that different skills are
necessary to detect defects with both triggers. To detect Lateral Compatibility
defects, the inspector needs broad-based experience with the systems the
inspected system has to interface with. On the other hand, to detect Backward
Compatibility defects, the inspector needs experience within the inspected
system across several releases.

How to analyze defect
classification data

Copyright © Fraunhofer IESE 2001 30

As it can be seen in Figure 11, only a small proportion of defects was found
with the Lateral Compatibility trigger. For the data analysts this was surprising
as they expected beforehand many more defects of Lateral Compatibility as
the inspected system was a middleware component, which, naturally, has to
interface with other systems.

First HLD-Inspection

Rare Situation

Operational Semantic

Backward Compatibili

Document Consistency

Design Conformance

Lateral Compatibilit

0 10 20 30 40 50 60 70 80 90
Algorithm Documentation Timing/Serialize Interface Function

expected:completeness
and correctness addressed

unexpected:too few interface and
lateral comp. for middleware

Figure 11 Data for ODC-trigger from High-Level-Design Inspections of middleware component

The interpretation of this deviation given by the project team was that mainly
inexperienced inspectors inspected the document. Therefore, there was
potential that many more defects addressing compatibility issues were still
undetected.

Consequently the project team decided to re-inspect the system using experts
who specifically concentrated on compatibility issues. The result of the re-
inspection is shown in Figure 12.

Second HLD-Inspection with Experts

Rare Situation

Operational Semantic

Backward Compatibili

Document Consistency

Design Conformance

Concurrency

Lateral Compatibilit

0 5 10 15 20 25 30 35 40 45

Assignment
Checking
Build/Package
Algorithm
Documentation
Timing/Serialize
Interface
Function

Many defects more

more defects
more types

Figure 12 Data from second high-level-design inspection

How to analyze defect
classification data

Copyright © Fraunhofer IESE 2001 31

This picture shows that many more defects have been found due to the second
inspection, especially in the suspected compatibility areas. Moreover, defects
covering more ODC defect types have been found indicating a more thorough
inspection.

5.3.4 Evaluate and Improve Technologies

Defects can be used to evaluate technologies. Defect detection activities like
inspections and testing can be evaluated and improved by investigating the
kind of defects they find and do not find. Constructive activities can be
evaluated and improved by investigating the defects that are typically
generated by these technologies.

For example, in order to investigate reading techniques in the framework of
inspections, the defects found by the reading technique and not found by the
reading technique can be classified.

Defect classifications for such purposes can either be of a more general nature
as presented in Section 3.2, or specifically tailored to the technology under
study.

For example, in [Briand et al., 1998] it was the purpose to assess whether the
introduction of inspections was beneficial to the project. One aspect of the
benefit is that important defects are detected and not only clerical issues. For
this purpose the severity of defects was classified with an ordinal scale (A being
highest severity, C being lowest severity). The corresponding statistics are
shown in Figure 13. Although the measurement goal was just to characterize
the defects found, this result could be used to evaluate inspections since it
showed that inspections reveal serious defects and not only clerical issues.

distribution of findings by severity

28%

50%

22% severity A
severity B
severity C

Figure 13 Severity of defects found during inspections

Another example of evaluating technologies with defect classification comes
from the same source. Inspections are supposed to find defects before these

How to analyze defect
classification data

Copyright © Fraunhofer IESE 2001 32

can leak into subsequent development activities. For this purpose, in Figure 14
the defect origin is shown for each defect detection activity.

Number of defects per activity and origin

88

237

23

84
7

8
6
3

0

20

40

60

80

100

120

Analysis Design Int-test Acc.Test Fie ld

nu
m

be
r o

f d
ef

ec
ts

Analysis de fects Design defects Code defects

Figure 14 Defect Origin per Defect Detection Activity

This chart shows for each defect detection activity (analysis inspection, design
inspection, integration test, acceptance test, field) the number of detected
defects. In addition the number of defects is subdivided according to the
different defect origins (Origin: Analysis, Design, Code).

This chart indeed demonstrates that many defects are detected much earlier in
the life-cycle than without inspections. For example, without inspections, 95
defects more would have been necessary to be removed in testing.

5.3.5 Control Testing

As described in Section 3.2.3, the attribute Defect Type of ODC was designed
to yield different signatures as the product passes through the life cycle so that
each defect detection activity has its own characteristic expected distribution.
Deviations of the actual distribution from the expected one can hint to poten-
tial problems in the project.

A typical example for this analysis is shown in Figure 15.

How to analyze defect
classification data

Copyright © Fraunhofer IESE 2001 33

Percentage of defects found in Integration Test

4,35

39,13

10,67

17,78

1,19

Function

Interface

Checking

Assignment

Timing

0 5 10 15 20 25 30 35 40 45

Should have already been found

Should also detect these

Figure 15 Defect type data

This figure shows the distribution of defects found in integration test. Expected
to be found (in the environment under study) were Interface- and Function-
defects. However, as it can be seen, only a small number of Function-defects
have been found. On the other hand a large proportion of Assignment- and
Checking-defects have been found. These are defects, however, are associated
with unit test and should therefore have already been found. The
interpretation of the development team here was that the product was
prematurely in integration test. Thus, the defects that should have already
been found hampered the integration test in finding Function-defects.

Such an analysis can be performed as regular entry criterion for test activities,
as reported in [Hirsh et al., 1999].

5.3.6 Plan Testing

[Schultz99] describes a method to plan and control testing by using the ODC
scheme. The rationale of this method is to map the number of defects found
to the number of test cases and to analyze whether the defect space has been
sufficiently exercised.

Using two attributes, namely Impact and Trigger, the defects detected during
testing are classified and their cross-product determined as shown in Figure 16.

How to analyze defect
classification data

Copyright © Fraunhofer IESE 2001 34

Recovery

Start / Restart

Workload / Stress

HW/SW config.

Normal Mode

Install-
ability

Service-
ability

Stan-
dards

Inte-
grity

Mig-
ration

Relia-
bility

Perfor-
mance

Usa-
ability

Cap-
ability

Docu-
mentation

8

1

5

1

1

1

1

2

2

9

Figure 16 Defects detected in testing classified by Impact and Trigger

As the ODC attribute trigger represented the reason, why a test case was writ-
ten, the test cases can be also classified according to the trigger definitions. In
addition, the test case is classified according to the impact that is most af-
fected by the test. With these data from the classified test cases it is also possi-
ble to generate the cross-products as for the defects. Such a table is shown in
Figure 17.

Recovery

Start / Restart

Workload / Stress

HW/SW config.

Normal Mode

Install-
ability

Service-
ability

Stan-
dards

Inte-
grity

Mig-
ration

Relia-
bility

Perfor-
mance

Usa-
ability

Cap-
ability

Docu-
mentation

174681

2

2

2

4

12

24

Figure 17 Test cases classified by Impact and Trigger

Such a table can show, whether the entire defect space spanned by Impact
and Trigger is exercised with test cases or whether only a part of the space is
exercised.

In order to improve the test case planning, both tables can be combined as
shown in Figure 18. In order to represent both sets of data in the same table,
the number of test cases is coded by means of shading.

How to analyze defect
classification data

Copyright © Fraunhofer IESE 2001 35

Recovery

Start / Restart

Workload / Stress

HW/SW config.

Normal Mode

Install-
ability

Service-
ability

Stan-
dards

Inte-
grity

Mig-
ration

Relia-
bility

Perfor-
mance

Usa-
ability

Cap-
ability

Docu-
mentation

8

1

5

1

1

1

1

2

2

9

high number of test cases

medium number of test cases

low number of test cases

• Identify undertested areas (more defects?)
• Identify saturated areas (unecon. testing)

Figure 18 Combination of defects found and number of test cases

Based on the combination it is now possible to identify areas of potential
improvement.

1. Areas with no tests and a low or high number of defects indicate the
presence of defects that are not targeted by test cases. Here new test cases
should be defined.

2. Areas with high numbers of tests and no defects indicate that you might
spend too much effort on testing issues where no defects are. Here it
should be checked whether it is from an economical more reasonable to
spend some portion of this testing effort elsewhere.

3. Areas with a low number of test cases uncovering a large number of
defects indicate a problem area. More testing should be done here or even
to perform a further analysis of this part of the system (e.g., code
inspections)

5.3.7 Reduce field defects

Defects are not only detected during development (i.e., by means of
inspections and testing) but also after release to the customer. Analyzing these
customer-found defects, which are here referred to as field defects, enable to
find out why they were not detected during development. This knowledge can
be used for improving the development and test process, and preventing
similar field defects from occurring and slipping through to the customer
again, thus increasing the quality of the system as perceived by the customer.

Therefore, the reduction of field defects is a special case of defect prevention
as described in Section 5.3.2. For example, by means of histograms it is deter-

How to analyze defect
classification data

Copyright © Fraunhofer IESE 2001 36

mined, what kind of defects are most bothering for the customer. These de-
fects are the analyzed further.

One suitable way of focusing on customer-relevant defects is to use an attrib-
ute describing the defects’ impact on the customer, such as the ODC attribute
Impact. Such a distribution is shown in Figure 19.

83%

1%
5%

3%
4% 3%

1%

Capability Usability Performance
Reliability Installability Documentation
Serviceability Security/Integrity Standards

Figure 19 Impact distribution for field defects

In this example, process improvement efforts should focus on removing capa-
bility defects. A more detailed analysis of these defects is then to be per-
formed.

One potential additional analysis is to compare the Impact of those defects de-
tected in field with those detected during development (esp. testing). For ex-
ample, the acceptance test or system test (depending on the concrete defini-
tions of the test) should simulate the usage of the system from the users’ point
of view. Consequently the kind of defects detected in acceptance test should
be similar to the kind of defects detected in field.

Thus, it should be analyzed whether the distributions are similar [Schultz99]. If
necessary, a process change could be made to plan the test cases in order to
cover the appropriate Impact-types for each function.

How to analyze defect
classification data

Copyright © Fraunhofer IESE 2001 37

A second way to analyze field defect data is to use the ODC attribute Trigger
[Bassin99]. This attribute describes for defects detected during development
the catalysator that forces the defect to surface (e.g., the purpose of the test
case). For defects detected in field the attribute value for the attribute Trigger
is selected from the entire list of triggers which most closely matches the
environment, special conditions, or catalyst which was required for the defect
to surface. A trigger to activity mapping is then applied to determine – based
on the Trigger-value – the activity in which the defect should have been
detected.
An example of such data is shown in Figure 20.

0 20 40 60 80 100

Des.Insp

Int.Test

Syst.Test

Design Conformance Logic/Flow

Coverage Variation

Sequencing Interaction
Workload/Stress Recovery/Exception

HW Configuration SW Configuration

Figure 20 Trigger distribution for field defects

In such a graph it is visible, through which defect detection activity most of the
field defects slip. This activity then has the largest potential for improvement. In
addition, the Trigger-information offers a more detailed analysis: The defect
detection activity can be specifically improved by paying more attention to
those triggers that escaped into field.

For example, in Figure 20 the integration test can be improved by adding more
test cases addressing Coverage and Variation. Thus, the rationale for the ana-
lyzed attribute Trigger can be used to obtain directly information on appropri-
ate changes in the process.

A third way, how defect data has been analyzed within ODC are trigger pro-
files for field defects. For each set of triggers (i.e., system test triggers, etc.) the
number and proportion of attribute values is plotted over time as shown in
Figure 21.

How to analyze defect
classification data

Copyright © Fraunhofer IESE 2001 38

0

20

40

60

80

#defects
per quarter

1Q 2Q 3Q 4Q 5Q 6Q 7Q 8Q

System Test Triggers

HW configuration Stress SW Configuration Recovery Startup

Figure 21 Trigger profile of system test triggers

Such a distribution is supposed to show how the customer used the software
product. On one hand, this information can be used to plan testing activities.
Those defects that are to be found early by the customer should consequently
be also found early in test.

According to [Bassin and Santhanam, 1997], these profiles tend to be stable
over multiple releases of the same product (not in terms of absolute numbers
but in terms of proportions.). Therefore, these profiles can be used to predict
to predict the number of field defects in the future. Such information can, for
example, be used to estimate the required resources for service and support
demands.

5.3.8 Monitor process changes

Often the distribution of defects tends to be fairly stable, especially when
subsequent releases of the same product are developed. In these cases, the
defect distribution can be used to monitor the impact of process changes.

For example, if a stable proportion of code defects (i.e., those to be found by
code inspections) is found in system test, measures can be taken to find those
defects already by means of code inspections (e.g., be developing a specific
checklist). As a verification of the success of the process change “new
checklist” can be verified as the proportion of code defects found in system
test should decrease.

Such process changes can, for example, result as a basis from a defect preven-
tion process as described in Section 5.3.2. For example, if in one release a sys-

How to analyze defect
classification data

Copyright © Fraunhofer IESE 2001 39

tematic error has been found among Interface defects, and an effective action
for preventing this error had been implemented, then the proportion of de-
fects in this class should diminish over time [Card, 1998], [Messmore, 1999].

One example for such a baseline are the trigger profiles presented in Section
5.3.7. Since these profiles are stable over multiple releases, a successful process
change should be visible after the first quarters after the next release [Bassin
and Santhanam, 1997].

Summary and Open Issues

Copyright © Fraunhofer IESE 2001 40

6 Summary and Open Issues

This report is based on a survey of papers and reports on defect classification.
The main questions to be answered were “How can a defect classification be
designed?” and “How can defect classification data be analyzed?”

In order to answer the first question, this report presented the aspects of a de-
fect that have been measured in the literature, it presented the possible struc-
tures of a defect classification scheme, and it gave examples of frequently used
defect classification schemes.

In order to answer the second question, this report presented general methods
to analyze defect classification as reported in the literature as well as concrete
analyses for a variety of measurement goals.

Yet, several questions are still open for defect classification:

One case study used defect classification (with ODC) to assess the effectiveness
of inspections and control them appropriately. Although this approach has a
large potential of enhancing inspections, few reports are available that report
on replications of this type of analysis. Thus, to demonstrate whether this type
of analysis is useful for analyzing inspection data in other environments, addi-
tional case studies should be performed (e.g., [Bridge and Miller, 1997])

A second point useful to analyze further is whether inspections and testing can
be coordinated using defect classification data. When characterizing the de-
fects found in inspections it should be possible to analyze the effectiveness of
the inspection and make inferences about the required effectiveness of the
testing process.

A third point is the relationship between measurement goals and defect classi-
fication attributes. The practitioner often wants to know what defect classifica-
tion attributes have at least to be implemented in a given context to achieve a
specific measurement goal. Although this report tried to address this issue by
mapping attributes and analysis methods to measurement goals based on the
existing literature, a more systematic and comprehensive approach is desirable.

References

Copyright © Fraunhofer IESE 2001 41

7 References

Alexander Amezquita and Daniel P. Siewiorek, Orthogonal Defect Classification
Applied to a Multidisciplinary Design, Tech. Rep. EDRC 05-100-96, Engineering
Design Research Center, Carnegie Mellon University, 1996.

Basili, V. R., Green, S. ,Laitenberger, O., Lanubile, F., Shull, F., Sorumgard, S.,
Zelkowitz, M.V., “The Empirical Investigation of Perspective-Based Reading”;
Empirical Software Engineering – An International Journal, vol. 1, no. 2, 1996.

Kathryn A. Bassin and P. Santhanam, Use of Software Triggers to Evaluate
Software Process Effectiveness and Capture Customer Usage Profiles, in Pro-
ceedings of the the Eighth International Symposium on Software Reliability En-
gineering - Case Studies, pp. 103--114, 1997.

Kathryn A. Bassin, Theresa Kratschmer, and Padmanabhan Santhanam, Evalu-
ating software development objectively, IEEE Software, vol. 15, pp. 66--74,
Nov. 1998.

Inderpal Bhandari, Attribute focusing: machine-assisted knowledge discovery
applied to software production process control, in Knowledge Discovery in Da-
tabases Workshop, pp. 61--69, 1993.

Inderpal Bhandari, Michael Halliday, Eric Tarver, David Brown, Jarir Chaar, and
Ram Chillarege, A case study of software process improvement during devel-
opment, IEEE Transactions on Software Engineering, vol. 19, pp. 1157--1170,
Dec. 1993.

Inderpal Bhandari, Bonnie Ray, Man-Yuen Wong, David Choi, Akemi Wata-
nabe, Ram Chillarege, Michael Halliday, Alan Dooley, and Jarir Chaar, An infer-
ence structure for process feedback: technique and implemenation, Software
Quality Journal, pp. 167--189, 1994.

Inderpal Bhandari, Michael J. Halliday, Jarir Chaar, Ram Chillarege, Kevin Jones,
Janette S. Atkinson, Clotilde Lepori-Costello, Pamela Y. Jasper, Eric D. Tarver,
Cecilla C. Lewis, and Masato Yonezawa, In-process improvement through de-
fect data interpretation, IBM Systems Journal, vol. 33, no. 1, pp. 182--214,
1994.

Lionel C. Briand, Bernd Freimut, Oliver Laitenberger, Guenther Ruhe, and
Brigitte Klein, Quality Assurance Technologies for the EURO Conversion - Indus-
trial Experience at Allianz Life Assurance, in Proceedings of the 2nd Interna-
tional Software Quality Week Europe, 1998.

References

Copyright © Fraunhofer IESE 2001 42

Norm Bridge and Corinne Miller, Orthogonal Defect Classification -- Using De-
fect Data to Improve Software Development, in Proceedings of the 7th Interna-
tional Conference on Software Quality (7ICSQ), 1997.

Harald Buczilowski, Defect Reduction in VSE -- Methodology and Results, in
Proceedings of Sixth International Symposium on Software Reliability Engineer-
ing, pp. 274--277, Oct. 1995.

David N. Card, Learning from our Mistakes with Defect Causal Analysis, IEEE
Software, pp. 56--63, Jan. 1998.

Jarir K. Chaar, Michael J. Halliday, Inderpal S. Bhandari, and Ram Chillarege,
On the Evalutation of Software Inspections and Tests, in Proceedings Interna-
tional Test Conference, pp. 180--189, 1993.

Yuri Chernak, A Statistical Approach to the Inspection Checklist Formal Synthe-
sis and Improvement, IEEE Transactions on Software Engineering, vol. 22, pp.
866--874, Dec. 1996.

Ram Chillarege, Inderpal S. Bhandari, Jarir K. Chaar, Michael J. Halliday, Diane
S. Moebus, Bonnie K. Ray, and Man-Yuen Wong, Orthogonal defect classifica-
tion -- A concept for in-process measurements, IEEE Transactions on Software
Engineering, vol. 18, pp. 943--956, Nov. 1992.

Jarir K. Chaar, Michael J. Halliday, Inderpal S. Bhandari, and Ram Chillarege, In-
Process Evaluation for Software Inspection and Test, IEEE Transactions on
Software Engineering, vol. 19, pp. 1055--1070, Nov. 1993.

Ram Chillarege and Kathryn A. Bassin, Software Triggers as a function of time
-- ODC on field faults, in Fifth IFIP Working Conference on Dependable Com-
puting for Crititical Applications, 1995.

Siddhartha Dalal, Michael Hamada, Paul Matthews, and Gardner Patton, Using
Defect Patterns to Uncover Opportunities for Improvement, in Proceedings of
the International Conference on Applications of Software Measurement, 1999.

Khaled El Emam and Isabella Wieczorek, The repeatability of code defect classi-
fications, in Proceedings of the Ninth International Symposium on Software Re-
liability Engineering, pp. 322-333, 1998.

Norman E. Fenton, Software Metrics - A Rigorous Approach. Van Nostrand
Reinhold, 1991.

Norman E. Fenton and Shari Lawrence Pfleeger, Software Metrics - A Practical
and Rigorous Approach. International Thomson Computer Press, 2nd edition
ed., 1996.

William A. Florac, Software Quality Measurement: A Framework for Counting

References

Copyright © Fraunhofer IESE 2001 43

Problems and Defects, Tech. Rep. CMU/SEI-TR-22, Software Engineering Insti-
tute, Sept. 1992.

Michael Fredericks and Victor Basili, Using Defect Tracking and Analysis to Im-
prove Software Quality, Tech. Rep. DACS-SOAR-98-2, DoD Data Analysis Cen-
ter for Software (DACS), 1998.

Bernd Freimut, Brigitte Klein, Oliver Laitenberger, and Günther Ruhe, Experi-
ence Package from the ESSI Process Improvement Experiment HYPER, Tech.
Rep. IESE-Report 015.00/E, Fraunhofer Institut für Experimentelles Software
Engineering, 2000.

Robert B. Grady, Practical Software Metrics for Project Management and Proc-
ess Improvement. Prentice Hall, 1992.

Michael Halliday, Inderpal Bhandari, Jarir Chaar, and Ram Chillarege, Experi-
ences in Transferring a Software Process Improvement Methodology to Produc-
tion Laboratories, Journal of Systems and Software, vol. 26, no. 1, pp. 61--68,
1994.

Barbara Hirsh, Robert Bleck, and Steven Wood, A Comprehensive Defect Pre-
vention Program Using the ODC Methodology, in Proceedings of the 10th In-
ternational Symposium on Software Reliability Engineering (Fast Abstracts and
Industrial Practices), pp. 61--81, 1999.

Jon T. Huber, Software Defect Analysis: Real World Testing Implications A Sim-
ple Model for Test Process Defect Analysis, in Proceedings of the 2nd Interna-
tional Quality Week Europe, (625 Third Street, San Francisco, CA 94107-1997,
USA), Software Research Institute, 1998.

Watts S. Humphrey, A Discipline for Software Engineering. SEI Series in Soft-
ware Engineering, Addison-Wesley Publishing Company, 1995.

IBM, Center for Software Engineering
http://www.research.ibm.com/softeng/ODC/ODC.HTM

Institute of Electrical and Electronics Engineers, IEEE Standard Classification for
Software Anomalies, IEEE Std. 1044-1993, 1994.

Robert Bruce Kelsey, Integrating a Defect Typology with Containment Metrics,
ACM Software Engineering Notes, vol. 22, pp. 64--67, Mar. 1997.

Christian Kuhröber, Isabellea Wieczorek (supervisor), Dieter Rombach (supervi-
sor) ``Literature Survey on Defect Classification.'' Project Thesis, Fraunhofer
IESE, Sauerwiesen 6, D-67661 Kaiserslautern, Germany, 1997.

Marek Leszak, Dewayne E. Perry, and Dieter Stoll, A case study in root cause
defect analysis, in Proceedings of the 22nd International Conference on Soft-

References

Copyright © Fraunhofer IESE 2001 44

ware Engineering, pp. 428-437, 2000.

R.G. Mays, C.L. Jones, G.J. Holloway, and D.P. Studinski, Experiences with de-
fect prevention, IBM Systems Journal, vol. 29, no. 1, pp. 4--32, 1990.

Peter Mellor, Failures, faults and changes in dependability measurement, In-
formation and Software Technology, vol. 34, pp. 640--654, Oct. 1992.

James Miller, Marc Roper, and Murray Wood, Defect Classification for Object-
Oriented Maintenance, in Proceedings of the 2nd International Workshop on
Empirical Studies of Software Maintenance, 1997, pp. 15--19, 1997.

Thomas J. Ostrand and Elaine J. Weyuker, Collecting and Categorizing Soft-
ware Error Data in an Industrial Environment, Journal of Systems and Software,
vol. 4, pp. 289--300, 1984.

Mark C. Paulk, Dennis Goldenson, and David M. White, The 1999 Survey of
High Maturity Organisations, Tech. Rep. CMU/SEI-2000-SR-002, Software En-
gineering Institute, Feb. 2000.

Shari Lawrence Pfleeger, Software Engineering: Theory and Practice. Prentice-
Hall,Inc, 1998.

Adam Porter, Larry G. Votta, Victor R. Basili, Comparing Detection Methods for
Software Requirements Inspections: A Replicated Experiment, IEEE Transactions
on Software Engineering, 1996, pp 563-575.

David Rentschler, Implementing Orthogonal Defect Classification , Transactions
from the Fifth International Conference on Software Quality, October 1995,
pages 277-279.

Charles P. Schultz, Orthogonal Defect Classification (ODC) Based Test Planning
and Development, in Proceedings of the International Conference on Applica-
tions of Software Measurement, 1999.

Shull, F. Travassos, G.H., Carver, J., and Basili, V.R. “Evolving a Set of Tech-
niques for OO Inspections.” University of Maryland Technical Report CS-TR-
4070, October 1999.

Jack Silberman, Robot Orthogonal Defect Classification -- Towards an In-
Process Measurement System for Mobile Robot Development. PhD thesis, Ro-
botics Institute, Carnegie Mellon University, Pittsburgh, PA, Jan. 1998.

N.B. Sreenivasan, Experiences with Orthogonal Defect Classification Technique,
in Proceedings of the 10th International Symposium on Software Reliability En-
gineering (Fast Abstracts and Industrial Practices), pp. 82--87, 1999.

Document Information

Copyright 2001, Fraunhofer IESE.
All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means includ-
ing, without limitation, photocopying, recording,
or otherwise, without the prior written permission
of the publisher. Written permission is not needed
if this publication is distributed for non-commercial
purposes.

Title: Developing and Using De-
fect Classification Schemes

Date: September 1, 2001
Report: IESE-072.01/E
Status: Final
Distribution: Public

