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Abstract 

Defects play a crucial role in software development. This is because on one 
hand, defects, when detected, should be corrected so that the final version of 
the developed software artifact is of higher quality. On the other hand, defects 
carry a lot of information that can be analyzed in order to characterize the 
quality of processes and products, to track the progress of a project and con-
trol it, and to improve the process. 

Therefore, defect measurement plays a crucial role in many software meas-
urement programs. Consequently, in many measurement programs defect 
data are collected. Generally there are several pieces of information that can be 
collected about defects. The most often used pieces of information relate to 
the quantity of defects (i.e., their number) and their type. For the latter one, 
defect classification schemes are used to quickly characterize the nature of de-
fects. 

Two important questions arise, when using defect classification: “How can a 
defect classification be designed?” and “How can defect classification data be 
analyzed?” 

In order to answer the first question, this report presents the aspects of a de-
fect that have been measured in the literature and it presents the possible 
structures of a defect classification scheme. Finally, examples of frequently 
used defect classification schemes are presented. 

In order to answer the second question, this report presents general methods 
to analyze defect classification as reported in the literature as well as concrete 
analyses for a variety of purposes. 

This report is a result of the project “Integrierte Qualitätssicherung und Anfor-
derungsanalyse zur Softwareentwicklung im Umfeld Fahrzeug (QUASAR)“, 
which is funded by the German BMBF under the grant VFG0004A. 
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1 Introduction 

Defects play a crucial role in software development. This is because on one 
hand, defects, when detected, should be corrected so that the final version of 
the developed software artifact is of higher quality. On the other hand, defects 
carry a lot of information that can be analyzed in order to characterize the 
quality of processes and products, to track the progress of a project and con-
trol it, and to improve the process. 

Therefore, defect measurement plays a crucial role in many software meas-
urement programs. Consequently, in many measurement programs defect 
data are collected. Generally there are several pieces of information that can be 
collected about defects. The most often used pieces of information relate to 
the quantity of defects (i.e., their number) and their type. For the latter one, 
defect classification schemes are used to quickly characterize the nature of de-
fects. 

Defect classification schemes are used by organizations of low and high matur-
ity. For example, [Paulk et al., 2000] report that many high maturity organiza-
tions (CMM level 4 and 5) use defect classification (esp. orthogonal defect clas-
sification) for their quantitative management. But also when implementing 
measurement programs in companies with smaller CMM-levels, defect classifi-
cation is used very frequently (e.g., [Briand et al.,1998]) 

Two important questions arise, when using defect classification. The first ques-
tion is how a “good” defect classification scheme can be defined. This ques-
tion is of practical relevance as many companies want to define and use their 
own classification scheme, which is specifically tailored to their needs and 
goals. However, in practice such self-defined classification schemes often im-
pose problems due to ambiguous or overlapping attribute types, or by captur-
ing different aspects of a defect in the same attribute, as also reported by [Os-
trand and Weyuker, 1984], [Hirsh et al., 1999]. Thus, a systematic approach to 
define defect classification schemes would be useful. 

The second question is, for what purposes defect classification data can be 
analyzed and how this analysis can be performed. This question is on one hand 
interesting because in the set-up of a measurement program the potential for 
measurement goals answerable with defect classification should be known. On 
the other hand, knowing methods to analyze defect classification data allows 
to fully exploit the information and address the measurement goals. 
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To address these two questions, this report presents the results of a literature 
survey on defect classification schemes.  

The basis of this survey were papers identified by means of a query in the lit-
erature database INSPEC with the keywords “defect” and “classification”. 
Moreover the internet was searched with various search engines using the 
keywords “defect classification” and “software”. 

The literature search, however, proved difficult as only few papers specifically 
deal with defect classification schemes. Often defect classification schemes are 
used as a tool for investigating other aspects (e.g., in the domain of software 
inspections). These reports could therefore not be systematically included in 
this report. 

In contrast to existing surveys on that topic ([Fredericks and Basili, 1998], 
[Kuhröber, 1997]), which focus more on an in-depth discussion of single defect 
classification schemes, this survey aims at providing a more aggregate discus-
sion on the definition and usage of defect classification schemes. 
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2 Terminology 

This section introduces the terminology used throughout this report. 

A failure is a departure of the system behavior from its required behavior. Fail-
ures can be observed when the system is executed such as in testing or during 
field usage. 

A fault is uncovered when either a failure of the program occurs or an internal 
error (e.g., an incorrect state) is detected within the program. The cause of the 
failure or internal error is said to be a fault. 

An error is a human action resulting in software with a fault. 

The term defect is used in a generic manner referring to either a fault or a fail-
ure, provided the distinction is non-critical. 

An Attribute is a feature or property of a defect that we are interested in [Fen-
ton and Pfleeger, 1996]. Using defect classification, this attribute is measured 
on a nominal or ordinal scale with a set of pre-defined values. These values are 
called Attribute Values. 
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3 Defect Classification Schemes 

3.1 Scope of classification: what can be classified 

There are many aspects of a defect that might be relevant for analysis. Defects 
are inserted due to a particular reason into a particular piece of software at a 
particular point in time. The defects are detected at a specific time and occa-
sion by noting some sort of symptom and they are corrected in specific way. 
Each of these aspects (and more) might be relevant for a specific measurement 
and analysis purpose. 

[Mellor, 1992] and [Fenton and Pfleeger, 1996] proposed a framework1 of de-
fect key elements that capture on a high-level different aspects of a defect. 
These key elements of a defect have been chosen to be (as far as possible) mu-
tually independent (i.e., orthogonal). 

Each of the framework’s key elements can be refined leading to many attrib-
utes of a defect that can be captured by means of measurement in the form of 
defect classification. In order to give the reader an idea on what might be pos-
sible to measure, explain the key elements and illustrate them with concrete 
attributes from of existing, common defect classification schemes2. 

Location The location of a defect describes where in the documentation the defect was 
detected. This information can be very detailed and capture a within-system 
identifier (e.g., document name or module identifier). However, the attribute 
can also contain attribute values describing different high-level entities of the 
entire system (e.g., Specification/Requirements, Design, Code, Documentation, 
etc.) or describe the faulty document in more detail such as its age or history. 

Timing The timing of a defects refers to phases when the defect was created, de-
tected, and corrected.  

An attribute like Detection Phase can capture the phase during which the de-
fect was detected. Another aspect of timing beside the detection of a defect is 
the question of when the defect was created and first introduced in the sys-
tem. This information is usually captured in an attribute Origin that contains 
process phases as attribute values. 

                                                
1 The framework can be instantiated differently for faults and failures. In this context we instantiate it in 

terms of faults. 
2 In several instances the mapping was hard to perform (e.g., for symptom and end result). Therefore, the 

mapping of attributes to key elements is considered to be subjective. 
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Symptom Symptom captures what was observed when the defect surfaced or the activity 
revealing the defect. For example, the ODC attribute Trigger captures the 
mechanism that allows a defect to surface. For instance, during inspections the 
inspector classifies a defect according to what he was thinking when detecting 
the defect while a tester classifies according to the purpose of the test case re-
vealing the defect. 

Under symptom it is also possible to classify what is observed during diagnosis 
or inspection. For example, the attribute Type of the IEEE classification scheme 
provides a very detailed classification of the symptom. 

End result End result describes the failure caused by the fault. For example, the ODC at-
tribute Impact captures the impact of a fault (or resulting failure) on the cus-
tomer. This attribute contains values such as Performance, Usability, Installabil-
ity, etc. 

Mechanism Mechanism describes how the defect was created, detected, and corrected3. 
Creation captures the activity that inserted the defect into the system. The Ac-
tivity captured the activity that was performed when the defect was detected 
(e.g., inspection, unit test, system test, operation). Finally, the correction refers 
to the steps taken to remove the defect. For example, the ODC attribute Type 
is explicitly defined in terms of activities performed when correcting defects. 

Many defect classification schemes contain attributes that describe the creation 
or correction of defects in terms of omission and commission. (e.g., schemes 
for inspections, HP scheme and attribute mode, and ODC scheme defect quali-
fier.) These can also be seen as describing how a defect was created and cor-
rected. 

Cause Cause describes the error leading to a fault. For example [Mays et al., 1990] 
uses attribute values like Education, Oversight, Communication, Tools, and 
Transcription for an attribute Cause. [Leszak et al., 2000] uses different attrib-
utes capturing different kind of causes: Human-Related Causes (e.g., lack of 
knowledge, communication problems, etc), Project Causes such as time pres-
sure or management mistake. Finally, Review Causes describe why the defect 
slipped potentially through an inspection (e.g., no or incomplete inspection, in-
adequate participation, etc)4. 

Severity Severity describes the severity of a resulting or potential failure. For example, it 
might capture whether a fault can actually be evidenced as a failure. 

                                                
3 In contrast to the key element Timing, which captures process phases, the element mechanism captures 

activities. 
4 In addition to the presented three attributes, Leszak et al. use the attribute Phase Causes to capture the 

phase in which the defect was introduced (thus, being equivalent to the Origin attribute described earlier). 
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Cost Cost capture the time or effort to locate/isolate a fault and correct it. Typically, 
such information is captured not by means of a classification but by means of a 
ratio-scale. However, it is also possible to capture time or effort data on an or-
dinal scale (thus, being able to use classification). 

Table 1 summarizes this information by mapping attributes of the schemes 
presented in Section 3.2 to the key elements. The attributes are organized ac-
cording to contain the defect classification schemes in which the attribute is 
defined (ODC, IEEE, HP, other). 

Attributes of existing schemes Framework Key Element 
ODC HP IEEE other 

Location of a defect describes where 
in the system the defect was detected 

Target, Age, 
History 

Origin Source   

Timing of a defects refers to phases 
when the defect was created, de-
tected, and corrected 

  Project Phase Origin5,  

Symptom captures what was ob-
served when the defect surfaced or 
the activity revealed the defect 

Trigger Type Type, Product 
Status, Symptom 

 

End result describes the failure caused 
by the fault 

Impact  Repeatability, 
Impact Attributes, 
Product Status 

 

Mechanism describes the how the 
defect was created, detected, and 
corrected 

Type, Activ-
ity, Defect 
Qualifier 

Mode Project Activity, 
Corrective Action 

 

Cause describes the error leading to a 
fault 

  Suspected Cause , 
Actual Cause 

Cause6, 
Causes7  

Severity describes the severity of a 
resulting or potential failure 

    

Cost capture the time or effort to 
locate/isolate a fault and correct it 

    

Table 1 Mapping of framework’s key elements to attributes of existing defect classification schemes 

3.2 Existing Schemes 

In this section examples of common defect classification systems are presented. 
The purpose of the presentation is to give the reader who want to re-use exist-
ing or develop new defect classification schemes appropriate references and to 
introduce appropriate examples for the subsequent sections. 

The rationale of selecting the schemes was to take common schemes that have 
been often used and reported. In particular, we present one defect classifica-

                                                
5 [Freimut et al., 1998] 
6 [Mays et al., 1990] 
7 [Leszak et al., 2000] 
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tion scheme proposed by an IEEE standard and two industrial schemes for 
which several types of analyses have been published and that have been refer-
enced in general software engineering books (e.g. [Pfleeger, 1998]). Addition-
ally, two defect classification schemes specifically for inspections are presented. 

In particular, we present the IEEE Standard Classification for Software Anoma-
lies [IEEE,1994], the Hewlett-Packard Scheme [Grady, 1992], and the Orthogo-
nal Defect Classification Scheme [Chillarege, 1992],[IBM]. 

3.2.1 IEEE Standard Classification for Software Anomalies 

The IEEE scheme is aimed for audiences who want to implement a defect clas-
sification scheme compliant to a standard or who want to expand a defect 
tracking or defect classification scheme and are looking for proven methodolo-
gies supporting that effort [IEEE,1994]. 

The different attributes of the scheme are organized according to a general de-
fect classification process consisting of four steps. 

The first step Recognition occurs when the defect is found. In the second step, 
Investigation, the defect is investigated in sufficient depth either to identify all 
unknown issues and propose solutions or indicate that the defect requires no 
action. In the third step, Action, a plan of action is established to resolve the 
defect and prevent it from occurring. The last step, Disposition, is performed 
when all required resolution actions are completed or at least identification of 
long-term corrective actions have been completed. 

Table 2 shows the attributes of the entire scheme. The table contains the steps 
of the defect classification process, the attribute names as well as their mean-
ing. Finally it is indicated, whether the attributes are mandatory (m) or optional 
(o) in order to be IEEE standard compliant. 

Defect Process Attribute Name Attribute Meaning mandatory
Project Activity What were you doing when the defect oc-

curred? 
m 

Project Phase In which life-cycle phase is the product? m 
Suspected Cause What du you think might be the cause? o 
Repeatability Could you make the defect appear more then 

once? 
o 

Symptom How did the defect manifest itself? m 

Recognition 

Product Status What is the usability of the product with no 
changes? 

o 

Actual Cause What caused the anomaly to occur? m Investigation 
Source Where (part of the system and its documenta-

tion) was the origin of the defect? 
m 
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Defect Process Attribute Name Attribute Meaning mandatory
 Type What type of defect/enhancement at the 

code level? 
m 

Resolution What to do to prevent the defect from hap-
pening again? 

m Action 

Corrective Ac-
tion 

What action to take to resolve the defect? m 

Severity How bad was the defect in more objective 
engineering terms? 

m 

Priority Rank the importance of resolving the defect 
(taking subjectively into account all other 
Impact attributes)? 

o 

Customer Value How important is a fix to the customer? o 
Mission Safety How bad was the defect wrt. Project objec-

tives or human well-being? 
o 

Project Schedule Relative effect on the project schedule to fix? m 
Project Cost Relative effect on the project budget to fix? m 
Project Risk Risk associated with implementing a fix? o 
Project Quality/ 
Reliability 

Impact to the product quality or reliability to 
make a fix? 

o 

Impact Identi-
fication 

Societal Impact of society of implementing the fix? o 
Dispostion Disposition What actually happened to close the anom-

aly? 
m 

Table 2 Attributes of IEEE scheme 

The attribute values for the attributes are not shown here but can be referred 
to in [IEEE,1994] 

3.2.2 Hewlett-Packard Scheme 

The HP scheme was developed by HP’s Software Metrics Council in 1986 
[Grady, 1992]. The purpose of the entire scheme is to improve the develop-
ment process by reducing the number of defects over time [Pfleeger, 1998]. 

The developers use this scheme by selecting three descriptors for each defect: 
the Origin (i.e., where was the defect injected in the system), the type of de-
fect, and the mode (i.e., whether information was missing, unclear, wrong, 
changed, or done in a better way). 

The entire scheme with attributes and attribute values is shown in Figure 1. 
The bold lines in this picture denote the possible selection of attribute values. 
As it will be described in Section 3.3, the choice of an attribute value for the 
attribute Origin defines the possible set of attributes available (and reasonable) 
for the attribute Type. 
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Specifications/
Requirements Design Code Environment/

Support Documentation other

Requirements/
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Functionality

Origin

HW Interface

SW Interface
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(Inter-) Process
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Data Definition

Module Design
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Standards

Logic
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Module Interface/
Implementation

Standards

Test HW

Test SW

Integration SW

Developmental
Tools

Type

Missing    Unclear    Wrong    Changed    Better Way

Mode

 
Figure 1 HP Defect Classification Scheme. 

3.2.3 Orthogonal Defect Classification 

Orthogonal Defect Classification has been developed by IBM [Chillarege, 
1992]. This defect classification scheme can also be used to improve the entire 
development process by reducing the number of defects over time [Pfleeger, 
1998]. However, the original, and most often reported purpose is to give pro-
ject teams feedback on the progress of the current project. 

Since its definition in [Chillarege, 1992] this classification scheme has been 
adopted by more and more organizations, as shown by an increasing number 
of experience reports ([Sreenivasan, 1999], [Silberman, 1998], [Schultz, 1999], 
[Hirsh et. al, 1999], [Dalal et. al., 1999], [Bridge and Miller, 1997], [Amezquita 
and Siewiorek, 1996], [Rentschler, 1995], [Humphrey, 1995]). In the survey 
performed by [Paulk et al., 2000], 14 out of 37 high-maturity organizations 
(i.e., being of CMM level 4 or 5) used this scheme as quantitative analysis prac-
tice. 

Table 3 shows the attributes of the ODC scheme for design and code defects, 
their meaning, and the corresponding attribute values. Extensions of the ODC 
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scheme exist for information development, graphic user interface, the build 
process, and national language support. These extensions introduce additional 
sets of attribute values for Defect Type and Trigger that are available depend-
ing on the attribute value of the attribute Target. These extensions, however, 
are not discussed here. 

The attributes are organized according to the two process steps, in which the 
defect classification data are collected. The process step Open is performed 
when a defect has been detected and a new defect report is opened in the de-
fect tracking system. The process step close is performed when the defect has 
been corrected and the defect report is closed. 

Proc-
ess 

Attribute 
Name 

Attribute Meaning Attribute values 

Activity When did you detect 
the defect? 

design inspection, code inspection, unit test, 
integration test, system test 
Design Conformance, Logic/ Flow, Backward 
Compatibility, Lateral Compatibility, Concur-
rency, Internal Document, Language De-
pendency, Side Effect, Rare Situations 
Simple Path, Complex Path, Coverage, Varia-
tion, Sequencing, Interaction 

Trigger How did you detect the 
defect?  

Workload/Stress, Recovery/Exception, 
Startup/Restart, Hardware Configuration, 
Software Configuration, Blocked Test 

Open 

Impact What would have cus-
tomer noticed if defect 
had escaped into the 
field? 

Installability, Serviceability, Standards, Integ-
rity/Security, Migration, Reliability, Perform-
ance, Documentation, Requirements, Main-
tenance, Usability, Accessibility, Capability  

Target What high level entity 
was fixed?  

requirements, design, code8, 
build/package/merge, information, user-
interface 

Source Who developed the 
target?  

in-house, library, out-sourced, ported 

Age What is the history of 
the target?  

base, new, rewritten, re-fixed 

Defect 
Type 

What had to be fixed?  assignment, checking, algorithm, function, 
timing, interface, relationship 

Close 

Defect 
Qualifier 

 missing, incorrect, extraneous 
 

Table 3 ODC Scheme (for Design and Code) 

While all these attributes capture the semantics of a defect [Chillarege, 1992] 
and are useful to analyze, the attributes defect type and trigger play a crucial 
role in the scheme. 

                                                
8 For targets Natural Language, Build/Package/Merge a set of own defect types exist. For target Interface an 

own set of triggers exist 
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The attribute Defect Type captures the fix that was made to resolve the defect. 
One interesting aspect was taken into account when developing the set of at-
tribute values: For each defect type an expectation exists, in which detection 
activity (e.g., unit test, function test, system test) that defect type should be 
detected. If an analysis of the defects reveals that the activities are not finding 
the right types of defects, obviously, these processes need to be improved [Kel-
sey, 1997] and within the project it has to be reacted upon this result. 

For example, defects of type Function are those that require a formal design 
change. It can be expected that the number of Function-defects decreases over 
time. This profile of an attribute value over time (i.e., different detection activi-
ties) is called a signature. 

Based on such a signature, deviations from the expected trend can be identi-
fied. For example, if the number of Function-defects is increasing with testing 
time, then a problem might exist that should be investigated. 

Since each attribute value has a signature of its own, each detection activity 
has a specific distribution of attribute values that is expected. The progress of 
the project can be measured against these expected distributions, as shown in 
Figure 2. 

Start
Development Release

Development process

Defects

Design Inspections Unit Test Integration Test System Test

Function

Assignment

Interface

Timing

Defect Types

%

10

20

30

40

Distribution determines “where we are” in the process

Expected 
distributions
over time

Actual 
distribution for
one point in time

 

Figure 2 Signatures of ODC Attribute Defect Type 

The second attribute special to ODC is the attribute Trigger. This attribute cap-
tures the reason why a particular piece of software was executed when the 
fault caused a failure. This illustrated in Figure 3. 
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Fault Failure

Trigger1

Trigger3

Trigger2

 

Figure 3 Concept of trigger. 

At first, a defect is dormant in the system. Then the code is activated (e.g., 
automatically via test cases or mentally in inspections) and the fault turns into a 
failure. The facilitator activating dormant software faults into failures is called 
the trigger and there can be several facilitators why the code is executed 
(physically or mentally). 

In practice, the data collector assigns an attribute value according to the ques-
tion “What were you thinking about when you detected the defect?” (for in-
spections) and “What was the purpose of the test case?” (for testing). 

Thus, the attribute trigger gives feedback to the defect detection process as it 
captures how defects are revealed. 

3.2.4 Defect Classification for Inspections 

While the schemes presented above aim to be used for several life-cycle 
phases, there are also defect classification schemes specifically developed for 
investigating inspections. These classifications can be more detailed than 
schemes supporting several life cycle phases as they can be tailored to the type 
of document being inspected and to the environment. 

To give the reader a flavor of schemes used, we present one scheme for re-
quirements documents and one for design documents. 

As an example for a defect classification scheme for requirements we present 
the scheme proposed in [Porter et al., 1995] 

1st level name 2nd level name Definition 
Missing Functionality Information describing the desired internal opera-

tional behavior of the system has been omitted. 
Omission 

Missing Performance Information describing the desired performance 
specification has either been omitted or described 
in a way that is unacceptable for acceptance test-
ing. 
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1st level name 2nd level name Definition 
Missing Environment Information describing the required hardware, 

software, database, or personnel environment in 
which the system will run has been omitted. 

 

Missing Interface Information describing how the proposed system 
will interface and communicate with objects out-
side the scope of the system has been omitted. 

Ambiguous Information An important term, phrase or sentence essential to 
the understanding of the system has either been 
left undefined or defined in a way that can cause 
confusion and misunderstanding. 

Inconsistent Information  Two sentences directly contradict each other or 
express actions that cannot both be correct or 
cannot both be carried out. 

Incorrect or Extra 
Functionality 

Some sentence asserts a fact that cannot be true 
under the specified conditions. 

Commission 

Wrong Section Essential information is misplaced within the docu-
ment. 

For design inspections little information is currently available in terms of defect 
classification. [Shull et al., 1999] proposed a scheme, by adapting a scheme 
proposed by [Baslili et al, 1996] for requirements for design documents. 

Attribute 
Value 

Definition 

Omission One or more design diagrams that should contain some concept from the gen-
eral requirements or from the requirements document do not contain a repre-
sentation for that concept. 

Incorrect Fact A design diagram contains a misrepresentation of a concept described in the 
general requirements or the requirements document. 

Inconsistency A representation of a concept in one design diagram disagrees with a represen-
tation of the same concept in either the same or another diagram. 

Ambiguity A representation of a concept in the design is unclear, and could cause a user 
of the document (developer, low-level designer, etc.) to misinterpret or misun-
derstand the meaning of the concept. 

Extraneous 
Information 

The design contains information that, while perhaps true, does not apply to this 
domain and should not be included in the design. 

 

When comparing the attribute values for design inspections that have been 
proposed to classify defects with the attributes proposed by other defect 
classification schemes it becomes obvious that the attribute values are similar 
to the concepts captured from the ODC attribute Defect Qualifier. 

Those defect classification schemes specifically developed for code inspections 
often either capture an ODC-Defect Type-like information, or capture the 
structure of the code that contained the defect, similar to the ODC Defect 
Type and the IEEE defect type 
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3.3 Structure of defect classification schemes 

Measurement via classification is performed by assigning a measurement 
variable (i.e., an attribute) a discrete value, which is selected based from a pre-
defined set of values (i.e., attribute values). 

Defect classification schemes can differ in the way different attributes or 
attribute values relate to each other. 

One early approach to structure defect classification schemes was to place a 
given defect in an appropriate node in a tree of categories. The primary 
characteristic of such a tree scheme is the requirement to place each error in a 
unique category that simultaneously represent all its features [Ostrand and 
Weyuker, 1984]. However, the many features of a defect and the resulting 
large number of categories make such schemes difficult to use. 

While tree-based classification schemes aim at organizing different attribute in 
a tree-structure, it is also possible to organize the attribute values of one at-
tribute in a hierarchical way. Thus, the attribute values on one level of the hier-
archy are refined by the attribute values on the next level of the hierarchy. An 
example of this structure is for example given by the scheme in [IEEE, 1994] as 
shown in an excerpt in Table 4. 

Attribute Attribute Value 
Logic   
 Forgotten cases or steps  
 Duplicate logic  
 Extreme Conditions neglected  
 …  
Computation 
Problem 

  

 Equation insufficient or incorrect  
  Missing computation 
  Operand in equation 

incorrect 
  … 
 Precision Loss  
  Rounding or trunca-

tion fault 
  Mixed modes 
 Sign convention fault  

Type 

…   

Table 4 Example of hierarchically organized attribute values [IEEE, 1994] 

Finally, a derivate of tree-based classification schemes are those defect classifi-
cation schemes where the attributes are not independent but the selection of 
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attribute values in one attribute influences the selection of attributes in a sec-
ond attribute. 

An example of such a scheme is the scheme used at Hewlett-Packard [Grady, 
1992] as shown in Figure 4 
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Integration SW

Developmental
Tools
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Mode

 
Figure 4 Scheme in which attributes are not independent 

Based on the selection of an attribute value for the attribute Origin, different 
sets of attribute values for the attribute Type are possible. 

A somewhat different approach is an attribute categorization scheme [Ostrand 
and Weyuker, 1994]. In such a scheme the various attributes whose values de-
scribe a defect are similar to the attributes of a relation in a relational data-
base. Thus, the attribute values are assigned independently for each attribute. 
The ODC scheme for design and code [Chillarege et al., 1992] or the IEEE 
scheme are examples of such a scheme as shown in Figure 5. 
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Impact Defect Type Qualifier Target 
Installability  Assignment/ Initialization  Missing X Code X 
Integrity/ Security  Checking  Incorrect  GUI  
Performance X Algorithm/ Method X Extraneous  
Maintenance  Function/ Class/ Object  
Serviceability  Timing/ Serialization  
Migration  Interface/ O-O Messages  
Documentation  Relationship  
Usability  
Standards  
Reliability  
Requirements  
Accessibility  
Capability  

 

 
 

Figure 5 Attribute categorization scheme (ODC excerpt) 

The advantage of such a scheme is that new attributes (i.e., aspects of a 
defect) can be easily added. 

3.4 Properties of defect classification schemes 

As reported in [Ostrand and Weyuker, 1984], defect classification scheme 
often have problems including incomplete, ambiguous, and overlapping 
attribute types, too many attribute types, and a mixture of causes, symptoms, 
and actual faults for one attribute. Such problems make it difficult to correctly 
and reliably classify a specific defect resulting in poor quality data, which also 
question the results obtained from defect data analysis. 

To prevent such problems, a defect classification scheme should possess several 
quality features as described below. These features should allow for an easy 
classification process, which is the prerequisite for high-quality data and 
analyses. 

Orthogonal  The set of attribute values for a specific attribute should be orthogonal. This 
attributes and  means that for a particular defect only one attribute value is appropriate. 
Orthogonal  If the attribute values are not orthogonal, it may happen that two or more 
attribute values attribute values may fit so that the data collector has arbitrarily to decide which 

value to assign. This, of course, leads to inconsistent and unreliable data. 

An example of such problems is shown below according to [Fenton and Pflee-
ger, 1996]. Often organizations try to provide a single attribute for defects 
rather than using several attributes as depicted in Section 3.1. Consider the fol-
lowing classification for defects based on severity: 
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{major, minor, negligible, documentation, unknown} 

This classification is not orthogonal as, for example, a documentation problem 
could also be a major problem. Consequently, there is more than one attribute 
value appropriate. The reason stems from mixing two different aspects of the 
defect, in this case Severity and Location. 

To prevent this, orthogonal attributes should be developed. As described in 
Section 3.1, a defect has many aspects. Orthogonal attributes ensure that dif-
ferent aspects of a defect are captured in different attributes.  
If one attribute contains two or more different aspects of a defect, the attrib-
ute values for that attribute can not be orthogonal. The problem most often 
occurring in practice is that cause, type, and impact are mixed. Thus, for a de-
fect several attribute values (e.g., one for the cause, one for the impact) can be 
appropriate. 

Complete 
attribute values The set of attribute values should be complete so that for all defects an 

appropriate attribute value can be selected. 
If the set of values is not complete, data collectors may decide not to classify 
the defect or select “the nearest” possible value resulting in inconsistent or 
incomplete data. 
This problem can be easily prevented by using an attribute value “Other”, for 
which the data collector has to textually describe the attribute value missing 
attribute values. This information can then be used to check whether the set of 
attribute values is actually incomplete and how to modify it. 

Small number of  
attribute values The number of attribute values should not be too large. If the number of 

attribute values is small, there is a greater chance that the human mind can 
accurately resolve between them. Having a small set to choose from makes the 
classification process easier and less error prone [Chillarege, 1992].  
The number of attribute values depends on the purpose of the scheme. If the 
scheme is to be used by developers in their daily work, classification should be 
able to  be performed easily and quickly. Consequently, only few attribute 
values are possible. If, on the other hand, the scheme is used by researchers, 
who have usually more time for a more careful analysis, a larger number of 
attribute values are possible. 

Description of 
attribute values The attribute values should be well-defined by means of a textual description. 

Often it can be seen in practice that the “definition” consists only of the title 
of the attribute value (e.g., logic). Therefore, it is easily possible to confuse or 
differently interpret different attribute values, which results in inconsistent and 
unreliable data. Therefore, each attribute value should be well-defined and 
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augmented with example defects [Freimut et al, 2000]. An example of such 
definition is given in the ODC Standard [IBM] as shown below. 

Attribute Value: Checking 
Errors caused by missing or incorrect validation of parameters or data in con-
ditional statements. It might be expected that a consequence of checking for 
a value would require additional code such as a do while loop or branch. If 
the missing or incorrect check is the critical error, checking would still be the 
type chosen. 

Examples: 
 1) Value greater than 100 is not valid, but the check to make sure that the 
value was less than 100 was missing. 
 2) The conditional loop should have stopped on the ninth iteration. But it 
kept looping while the counter was <= 10. 

All these properties of a classification scheme (i.e., orthogonal, complete, well-
defined, not too many attribute values for orthogonal attributes) are to make 
the classification process easy and therefore, improve the reliability of the data. 
Under reliability of a defect classification system it is understood that different 
people assign the same attribute value to the same defect. [El Emam and 
Wieczorek, 1999] propose a procedure to systematically and quantitatively 
assess the reliability of defect classification schemes. 

In addition to these necessary properties, there are additional properties. For 
example, [Chillarege et al., 1992] asks for consistent defect classification 
schemes across process phases and products. 

Consistency across phases means that the same classification scheme is used 
throughout all development phases. This feature eases classification as people 
have only to memorize one scheme for a project or product. If different 
schemes are applied for different phases, people might confuse the schemes 
used, especially when process stages of subsequent releases overlap. 
Moreover, consistency across phases allows also to look at trends across 
stages. 
Consistency across products and projects means that the same scheme is used 
in different projects. This also eases classification for developers working in 
several projects since they only need to memorize one scheme. Moreover, it is 
then possible to analyze the data in order to identify process-independent de-
fect patterns and obtain useful relationships and models [Chillarege et al., 
1992]. 
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4 How to develop Defect Classification Schemes 

4.1 Strategies in Developing Defect Classification Schemes 

If an organization wants to introduce a new classification scheme there are 
generally two strategies. The first one is to employ an existing defect 
classification scheme and tailor it to the organization’s context. The second one 
is to develop a new scheme based on the objectives and needs of the 
organization. 
Re-use of an existing scheme 

Employing an existing classification schemes is particularly interesting for 
companies who start with defect measurement and simply want to 
characterize the defects found or do not want to invest effort in the 
development of a company-tailored scheme. 

Schemes often adopted are the IEEE standard classification scheme [IEEE. 1994] 
and the Orthogonal Defect Classification scheme [Chillarege, 1992]. Especially 
for the latter more and more experience reports from organizations adopting 
ODC are being published ([Sreenivasan, 1999], [Silberman, 1998], [Schultz, 
1999], [Hirsh et. al, 1999], [Dalal et. al., 1999], [Bridge and Miller, 1997], 
[Rentschler, 1995], [Humphrey, 1995]. 

Also the work of [Florac, 1992] aims at providing a re-usable defect 
classification scheme. In this report a principal set of measurable, orthogonal 
attributes are described. Checklists are provided supporting the construction of 
defect classification schemes by simply checking off attributes and values that 
are to be included for a specific context. 

However, when re-using existing defect classification schemes they have 
nevertheless to be tailored to the organization. For example, the IEEE standard 
classification scheme explicitly assumes that for all attribute values 
organization-specific definitions have to be provided, a fact that is sometimes 
overlooked in practice. And also the ODC scheme (attribute defect type, 
trigger) employed, for example, at Tandem [Rentschler, 1995] has been 
modified against the original IBM scheme [Chillarege, 1992]. In addition, 
[Silberman, 1998] provides a very detailed study on transferring ODC into a 
different context. 
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Define new scheme based on measurement goals 

In order to define a new classification scheme, rather than re-using and adapt-
ing existing schemes, the aspect to be captured in an attribute has to be se-
lected and appropriate attribute values have to be defined. 

The attributes to be included and their appropriate values are to be selected so 
that useful analyses are possible and the underlying measurement goals are 
achieved. 

Typically, to select the attribute to be measured the framework developed by 
[Mellor, 1992] and presented in Section 3.1 can give guidance or apply “who, 
what, why, when, where, and how” questions [Fenton, 1991]. 

In order to define the attribute values generally two approaches are possible. 
Either based on supposition or based on empirical evidence.  

Using supposition the attribute values are designed following pre-defined 
rationales. For example, in the design of the attribute defect type in the ODC 
scheme the attribute values were selected according to the activities performed 
when correcting a defect. Using empirical evidence the descriptions of actual 
defects are used to define the attribute values. For example, in [Ostrand and 
Weyuker, 1984] data collection captured textual descriptions of defects and 
their symptoms and used these descriptions as a basis for the definition of the 
classification scheme. 

A helpful strategy to define attribute values is to use a rationale for selecting 
the attributes and their values. First, it should be clear what aspect of the 
defect the attribute is to capture. Once this aspect has been clearly defined, it 
will also be less likely that different aspects are mixed into one attribute 
violating the orthogonality of the scheme. 

For example, in the ODC scheme, [Chillarege et al., 1992] the attribute defect 
type is to describe how to fix a (design and code) defect. The attribute values 
were then selected according to the activities the developers typically perform 
when fixing a defect.  

[Chillarege et al, 1992] state that such a classification that is performed 
according to the activities the developers perform, ease the task of assigning 
attribute values (as the assignment is based on that task just performed) and 
therefore increase the quality and reliability of the defect classification data. 

However, once an initial design for a defect classification scheme exists, 
modifications based on experiences have to be expected [Chaar et al, 1993]. 
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4.2 A Process for Re-Using and Introducing Defect Classification Schemes 

A process for the re-use of a defect classification scheme is presented in [IEEE, 
1994]. This process is intended for organizations that want to implement the 
IEEE Standard Classification for Defect Anomalies on their projects or that want 
to expand an existing defect tracking system and are looking for proven 
methodologies supporting that effort.  

Although this process is described in the context of re-using existing defect 
classification schemes, it can also be used as a basis for developing an entirely 
new scheme. 

We briefly summarize this process in the following. 

1. Select the attributes to be considered based on an intended standard 
compliance, based on the potential usage of the data, and based on the 
value for the organization’s business. 

2. For each attribute, determine the list of attribute values to be used. In this 
step first, attribute values are selected and an actual set of defects is 
classified according to them to check whether the attribute values make 
sense. If necessary, new attribute values have to be defined for special 
cases not considered in the proposed set of attribute values. 

3. Document the attributes. Describe what is meant by each attribute using 
the organization’s terminology and references. 

4. Document the attribute values. Write sentences or paragraphs that exactly 
describe what the attribute values mean. 

5. For each attribute value, determine, who is going to collect it and when. 

6. Determine how the data can be collected by means of an existing defect 
tracking system. 

7. Plan the kind of analyses you want to perform and when. 

8. Provide training on the classification scheme to users and management. 
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5 How to analyze defect classification data 

Already during the development of a defect classification scheme, the required 
and potential analyses are to be taken into account. For this purpose this 
section describes how defect classification data can be analyzed. The focus is 
on examples that have been reported in the literature. 

5.1 General methods to analyze defect classification data 

Charts The most common form to analyze defect data is to determine their absolute 
and relative frequency. To visualize this distribution data often pie charts, his-
tograms, or Pareto charts are used, for example as shown in Figure 6. 
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Figure 6 Pareto Chart to analyze defect data. 

The appeal of such graphs is that they can be easily understood by developers 
[Silberman, 1998]. 

Comparison with 
Hypotheses In order to control defect detection activities (i.e., inspections, testing), the 

distributions can be compared to expected distributions [Chillarege et 
al.,1992], [Chaar et al, 1993], [Bassin et al, 1998]. These expected distributions 
either stem from qualitative expectations on what attribute values should have 
a low or high number of occurrences or they can stem from historical 
baselines. 

Data Mining While it is relatively straightforward to compare the actual distribution of one 
attribute with its expected distribution, this is more difficult if several attribute 
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or even cross-products of two or more attributes are to be analyzed. To sup-
port this kind of analyses [Bhandari et al., 1994], [Bhandari, 1993] proposed an 
automatic procedure based on data exploration techniques. This so-called At-
tribute Focusing Method aims at comparing automatically the actual relative 
frequencies of attribute values or attribute value pairs with expected relative 
frequencies and selecting those deviations that seem to be most interesting. 

An illustration, taken from [Bandhari et al., 1994], is shown in Table 5 and 
Table 6. 

Attribute  
Qualifier 

Observed Frequency (%) Expected Distribution (%) Difference (%) 

Incorrect 37 50 -13 

Missing  63 50 13 

Table 5 Illustration of Attribute Focusing (one attribute) 

In Table 5 attribute focusing with one attribute is illustrated. For each attribute 
value the actual relative frequency is determined. Next, the expected relative 
frequency is computed by assuming a uniform distribution of all attribute val-
ues of a given attribute. Then the difference between the actual and expected 
distribution is computed. Finally, all attribute values are listed in decreasing or-
der of the differences. A so-called filtering function selects then from top the 
attribute values (and hence the attributes) to be displayed in a chart. This filter-
ing is performed in order to keep the number of analyses manageable. 

Attribute 
Defect Type 

Observed 
Frequency  
Defect Type
(%) 

Attribute 
Origin 

Observed 
Frequency  
Origin 
(%) 

Observed 
Frequency 
Type AND 
Origin (%) 

Expected 
Frequency 
Type AND 
Origin (%)9  

Difference 
(%) 

Document 14 CLD 16 5 2 3 

Document 14 MLD 84 8 11 -3 

Assignment 16 MLD 84 16 14 3 

Assignment 16 CLD 16 0 3 -3 

Table 6 Illustration of Attribute Focusing (Two Attributes) 

In Table 6 the computations are shown for two attributes. Again, for each at-
tribute value the actual relative frequency is determined. Then, also for the at-
tribute value pairs the relative frequency is determined. Next, the expected 
relative frequency of the attribute value pair is computed assuming statistical 
independence between the attribute values. Thus, the expected frequency of 
the attribute value pair is computed by multiplying the relative frequencies of 

                                                
9 Computes as “Observed Frequency  Defect Type” x “Observed Frequency  Trigger” 



How to analyze defect 
classification data 

Copyright © Fraunhofer IESE 2001 24

each attribute value. Similarly for the case of one attribute, the differences are 
then computed. Finally, all attribute value pairs are listed in decreasing order of 
the differences and can be selected by the above-mentioned filtering function. 

Statistical Tests Another way of analyzing defect classification data is to perform statistical 
analyses as proposed in [IEEE, 1994]. In this standard it is shown, for example, 
how to apply chi-square tests in order to test statistically, whether the attribute 
values of a given attribute are distributed uniformly. A second application is to 
test statistically, whether two attributes are statistically independent. However, 
in the literature considered in this survey none of these statistical analyses have 
been performed. 

5.2 Interpretation of Analyses 

One very important aspect of a defect data analysis is the interpretation of the 
analysis results by the data providers and the project team in the context of 
which the data were collected. While the methods described above merely to 
interesting situations in the project or process, only people with sufficient 
background and context information can relate the analysis results to causes of 
the detected patterns. 

Two explicit processes of interpreting analysis results have been reported by 
[Bhandari, Halliday, et al., 1994] and [Matthews, 1999]. 

The interpretation process of [Bhandari, Halliday, et al., 1994] consists of the 
following steps: 

Result: What is the observation made by means of the analyses? 
Cause: What situations in the project might have yielded the observed results?’ 
Implication: What is going to happen, if no action is initiated? 
Action: What is to be done to prevent negative consequences? 
Validation: The action has been performed, check whether it produced the 
expected results. 

The interpretation process of [Matthews, 1999] looks similar: 

Result: Describe each unusual result briefly in words. Collect the facts from 
several results together and make a summary in plain, understandable words. 
Cause: Elaborate on the summary to identify the story that explains the results. 
Try to confirm the story or decide alternative interpretations. Talk to key people 
involved in the project. 
Action: When the story seems solid, propose specific actions to address any 
issues. 
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5.3 Specific Analyses 

While the previous section discussed several techniques to analyze defect 
classification data in general, this section presents actual measurement goals 
that have been achieved by analyzing defect classification data.  

The purpose of the section is on one hand to give the reader an idea what 
possible measurement goals can be achieved using defect classification. On the 
other hand, when the reader has a concrete measurement goal in mind, the 
corresponding section presents attributes that can be defined and also analyses 
that can be performed. 

The measurement goals presented in the following are not intended to be 
orthogonal. Rather, they are organized according to the intention of the source 
describing the analysis. 

5.3.1 Characterization of the defects found 

The simplest purpose of analyzing defect classification data is to characterize 
the defects found. Characterization in this context means that the number and 
proportion for each attribute value is known. 

This type of analysis goal is often employed by companies starting 
measurement program who want to obtain a first overview of the defects. For 
example, in [Briand et al., 1998] the defects found in newly introduced 
inspections were classified according to the ODC-impact in order to 
characterize the defect found in terms of their visibility to the user. 
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Figure 7 Simple characterization of defects with bar chart 
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Typically, some sort of improvement (see Section 5.3.2) or some sort of evalua-
tion of the employed technologies [Briand et al., 1998] can then be initiated 
based upon the results. 

5.3.2 Defect Prevention 

One important purpose of analyzing defect data is to learn what kind of 
defects are made and to use this knowledge to prevent similar defects in the 
future. The technique for analyzing the data is called Defect Causal Analysis 
[Card, 1998] or Defect Prevention Process [Mays et al., 1990]. 

The idea of Defect Causal Analysis (DCA) is to analyze defect data in order to 
find a systematic error. In this context, a systematic error is an error that is 
committed repeatedly and therefore causes many faults and failures. Once the 
systematic error is identified, its underlying cause can be identified and 
appropriate process changes can be performed to prevent the systematic error 
and the resulting faults and failures. Overall, this techniques aims to prevent 
defects or at least enable an earlier detection. 

One important part of this technique is the identification of the systematic 
error. For this purpose, the analysis of defect classification data is used. Based 
on a Pareto-Chart, the type(s) of defects occurring most often are identified. 
These types of defects typically hint to the systematic error. 

Depending on the actual implementation of DCA in an organization either 
defect reports of a sample of the corresponding defects are analyzed in a 
qualitative manner [Card, 1998] to identify the systematic error or directly the 
identified types are used for reasoning about the systematic error [Grady, 
1992]. 
According to [Chillarege et al., 1992], [Matthews, 1999] the advantage of the 
latter approach is, that it is supposed to take less time. The disadvantage of a 
qualitative analysis is that few defects have to be discussed in detail in a team 
of developers, whereas an analysis of defect classification data can take into 
account all defects and provide results in short time. 

In the following, an example from [Grady, 1992] is shown for illustrating 
purposes. The defect data were collected during maintenance in a Hewlett-
Packard division developing systems software (using the language C, SA/SD 
design, informal and sporadic code inspections, branch coverage testing, 
regression testing). 

The defects were classified according to the HP scheme presented in Section 4. 
Figure 8 shows the defect classification data. 
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Figure 8 Defect data (type what) 

This picture shows that the majority of defects, as indicated by the striped 
wedges, have their origin in the design phase. Therefore, one potential 
systematic error could be in that phase. However, [Grady, 1992] not only takes 
into account the number or proportion of an attribute value to make a decision 
about systemic errors, but also the value obtained by normalizing with the 
average effort to find and fix a defect. 

To do so, for all defects of a given attribute value the effort to find and fix the 
defects is determined. This overall effort is then divided by the number of 
defects with the given attribute value to obtain the average effort to find and 
fix a defect of the given attribute value. The cost of the given attribute value is 
then the number of defects with that attribute value multiplied by the average 
effort to find and fix those defects. 

In Figure 9 such data is shown for the example. 
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Figure 9 Normalized defect data 
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This figure shows that specification defects make a large proportion and 
therefore offer much improvement potential, especially for new products. 
Consequently, it was decided to prevent specification-defects in the future.  

Since from the type of defects (i.e., specification) the systematic error was not 
obvious, a brainstorming was performed in the course of which a Fishbone-
Diagram, as shown in Figure 10, was developed. 

 

Figure 10 Fishbone-Diagram to identify root cause 

As root causes from Figure 10 were identified: an unclear understanding of 
customer segments, a lack of clearly assigned responsibilities, the absence of 
document standards, and several changes in the hardware. 

To improve the process (and prevent future defects) it was decided to have the 
marketing department to set up customer visits in order to learn about 
customer needs, to assign the configuration management responsibility to one 
person who is to select a tool for version control, and to set up task force for 
developing a new specification documentation format. 
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This example is narrated in a straightforward manner. In practice, however, 
typically several attributes are investigated in an explorative manner to investi-
gate a meaningful subset of data. 

Often, the crucial attribute(s) used in the course of a DCA is the attribute or 
attributes capturing the cause of a defect. Such a classification (e.g., [Mays et 
al., 1990] or [Leszak et al., 2000] aims at more directly pinpointing to the root 
causes. 

5.3.3 Control Inspections 

Defect classification can be used to assess the effectiveness of software 
inspections and use the gained knowledge to control inspections. The 
approach followed in [Chaar et al., 1993] is to analyze the actual kinds of 
defects found and compare them with the expected kinds of defects. 

An important attribute for this type of analysis is the ODC attribute trigger. For 
inspections this attribute captures the way the defect was detected (i.e., the 
classification in performed based on the question: What were you thinking 
about when you detected the defect?). 

An example of this type of analysis is given in [Chaar et al., 1993] and shown 
in Figure 11. This figure shows data obtained from a high-level design inspec-
tion of a middleware component.  

The attribute shown is the ODC-trigger. Two particular attribute values for this 
attribute are Lateral Compatibility and Backward Compatibility. A defect is 
assigned the value Backward Compatibility when the inspector uses extensive 
product/component experience to identify an incompatibility between the 
function described by the design document or the code, and that of earlier 
versions of the same product or component. From a field perspective, the 
customer's application, which ran successfully on the prior release, fails on the 
current release. A defect is assigned the value Lateral Compatibility when the 
inspector with broad-based experience, detects an incompatibility between the 
function described by the design document or the code, and the other 
systems, products, services, components, or modules with which it must 
interface. 
It is clear from the description of the attribute values that different skills are 
necessary to detect defects with both triggers. To detect Lateral Compatibility 
defects, the inspector needs broad-based experience with the systems the 
inspected system has to interface with. On the other hand, to detect Backward 
Compatibility defects, the inspector needs experience within the inspected 
system across several releases. 
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As it can be seen in Figure 11, only a small proportion of defects was found 
with the Lateral Compatibility trigger. For the data analysts this was surprising 
as they expected beforehand many more defects of Lateral Compatibility as 
the inspected system was a middleware component, which, naturally, has to 
interface with other systems. 
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Figure 11 Data for ODC-trigger from High-Level-Design Inspections of middleware component 

The interpretation of this deviation given by the project team was that mainly 
inexperienced inspectors inspected the document. Therefore, there was 
potential that many more defects addressing compatibility issues were still 
undetected. 

Consequently the project team decided to re-inspect the system using experts 
who specifically concentrated on compatibility issues. The result of the re-
inspection is shown in Figure 12. 
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Figure 12 Data from second high-level-design inspection 
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This picture shows that many more defects have been found due to the second 
inspection, especially in the suspected compatibility areas. Moreover, defects 
covering more ODC defect types have been found indicating a more thorough 
inspection. 

5.3.4 Evaluate and Improve Technologies 

Defects can be used to evaluate technologies. Defect detection activities like 
inspections and testing can be evaluated and improved by investigating the 
kind of defects they find and do not find. Constructive activities can be 
evaluated and improved by investigating the defects that are typically 
generated by these technologies. 

For example, in order to investigate reading techniques in the framework of 
inspections, the defects found by the reading technique and not found by the 
reading technique can be classified.  

Defect classifications for such purposes can either be of a more general nature 
as presented in Section 3.2, or specifically tailored to the technology under 
study. 

For example, in [Briand et al., 1998] it was the purpose to assess whether the 
introduction of inspections was beneficial to the project. One aspect of the 
benefit is that important defects are detected and not only clerical issues. For 
this purpose the severity of defects was classified with an ordinal scale (A being 
highest severity, C being lowest severity). The corresponding statistics are 
shown in Figure 13. Although the measurement goal was just to characterize 
the defects found, this result could be used to evaluate inspections since it 
showed that inspections reveal serious defects and not only clerical issues. 

distribution of findings by severity 

28%

50%

22% severity A
severity B
severity C

 

Figure 13 Severity of defects found during inspections 

Another example of evaluating technologies with defect classification comes 
from the same source. Inspections are supposed to find defects before these 
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can leak into subsequent development activities. For this purpose, in Figure 14 
the defect origin is shown for each defect detection activity. 
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Figure 14 Defect Origin per Defect Detection Activity 

This chart shows for each defect detection activity (analysis inspection, design 
inspection, integration test, acceptance test, field) the number of detected 
defects. In addition the number of defects is subdivided according to the 
different defect origins (Origin: Analysis, Design, Code). 

This chart indeed demonstrates that many defects are detected much earlier in 
the life-cycle than without inspections. For example, without inspections, 95 
defects more would have been necessary to be removed in testing. 

5.3.5 Control Testing  

As described in Section 3.2.3, the attribute Defect Type of ODC was designed 
to yield different signatures as the product passes through the life cycle so that 
each defect detection activity has its own characteristic expected distribution. 
Deviations of the actual distribution from the expected one can hint to poten-
tial problems in the project. 

A typical example for this analysis is shown in Figure 15. 
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Figure 15 Defect type data  

This figure shows the distribution of defects found in integration test. Expected 
to be found (in the environment under study) were Interface- and Function-
defects. However, as it can be seen, only a small number of Function-defects 
have been found. On the other hand a large proportion of Assignment- and 
Checking-defects have been found. These are defects, however, are associated 
with unit test and should therefore have already been found. The 
interpretation of the development team here was that the product was 
prematurely in integration test. Thus, the defects that should have already 
been found hampered the integration test in finding Function-defects. 

Such an analysis can be performed as regular entry criterion for test activities, 
as reported in [Hirsh et al., 1999]. 

5.3.6 Plan Testing  

[Schultz99] describes a method to plan and control testing by using the ODC 
scheme. The rationale of this method is to map the number of defects found 
to the number of test cases and to analyze whether the defect space has been 
sufficiently exercised. 

Using two attributes, namely Impact and Trigger, the defects detected during 
testing are classified and their cross-product determined as shown in Figure 16.  
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Figure 16 Defects detected in testing classified by Impact and Trigger 

As the ODC attribute trigger represented the reason, why a test case was writ-
ten, the test cases can be also classified according to the trigger definitions. In 
addition, the test case is classified according to the impact that is most af-
fected by the test. With these data from the classified test cases it is also possi-
ble to generate the cross-products as for the defects. Such a table is shown in 
Figure 17. 
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Figure 17 Test cases classified by Impact and Trigger 

Such a table can show, whether the entire defect space spanned by Impact 
and Trigger is exercised with test cases or whether only a part of the space is 
exercised. 

In order to improve the test case planning, both tables can be combined as 
shown in Figure 18. In order to represent both sets of data in the same table, 
the number of test cases is coded by means of shading. 
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Figure 18 Combination of defects found and number of test cases 

Based on the combination it is now possible to identify areas of potential 
improvement. 

1. Areas with no tests and a low or high number of defects indicate the 
presence of defects that are not targeted by test cases. Here new test cases 
should be defined. 

2. Areas with high numbers of tests and no defects indicate that you might 
spend too much effort on testing issues where no defects are. Here it 
should be checked whether it is from an economical more reasonable to 
spend some portion of this testing effort elsewhere. 

3. Areas with a low number of test cases uncovering a large number of 
defects indicate a problem area. More testing should be done here or even 
to perform a further analysis of this part of the system (e.g., code 
inspections) 

5.3.7 Reduce field defects 

Defects are not only detected during development (i.e., by means of 
inspections and testing) but also after release to the customer. Analyzing these 
customer-found defects, which are here referred to as field defects, enable to 
find out why they were not detected during development. This knowledge can 
be used for improving the development and test process, and preventing 
similar field defects from occurring and slipping through to the customer 
again, thus increasing the quality of the system as perceived by the customer. 

Therefore, the reduction of field defects is a special case of defect prevention 
as described in Section 5.3.2. For example, by means of histograms it is deter-
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mined, what kind of defects are most bothering for the customer. These de-
fects are the analyzed further. 

One suitable way of focusing on customer-relevant defects is to use an attrib-
ute describing the defects’ impact on the customer, such as the ODC attribute 
Impact. Such a distribution is shown in Figure 19. 
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Figure 19 Impact distribution for field defects 

In this example, process improvement efforts should focus on removing capa-
bility defects. A more detailed analysis of these defects is then to be per-
formed. 

One potential additional analysis is to compare the Impact of those defects de-
tected in field with those detected during development (esp. testing). For ex-
ample, the acceptance test or system test (depending on the concrete defini-
tions of the test) should simulate the usage of the system from the users’ point 
of view. Consequently the kind of defects detected in acceptance test should 
be similar to the kind of defects detected in field.  

Thus, it should be analyzed whether the distributions are similar [Schultz99]. If 
necessary, a process change could be made to plan the test cases in order to 
cover the appropriate Impact-types for each function.  



How to analyze defect 
classification data 

Copyright © Fraunhofer IESE 2001 37

A second way to analyze field defect data is to use the ODC attribute Trigger 
[Bassin99]. This attribute describes for defects detected during development 
the catalysator that forces the defect to surface (e.g., the purpose of the test 
case). For defects detected in field the attribute value for the attribute Trigger 
is selected from the entire list of triggers which most closely matches the 
environment, special conditions, or catalyst which was required for the defect 
to surface. A trigger to activity mapping is then applied to determine – based 
on the Trigger-value – the activity in which the defect should have been 
detected. 
An example of such data is shown in Figure 20. 
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Figure 20 Trigger distribution for field defects 

In such a graph it is visible, through which defect detection activity most of the 
field defects slip. This activity then has the largest potential for improvement. In 
addition, the Trigger-information offers a more detailed analysis: The defect 
detection activity can be specifically improved by paying more attention to 
those triggers that escaped into field. 

For example, in Figure 20 the integration test can be improved by adding more 
test cases addressing Coverage and Variation. Thus, the rationale for the ana-
lyzed attribute Trigger can be used to obtain directly information on appropri-
ate changes in the process. 

A third way, how defect data has been analyzed within ODC are trigger pro-
files for field defects. For each set of triggers (i.e., system test triggers, etc.) the 
number and proportion of attribute values is plotted over time as shown in 
Figure 21. 
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Figure 21 Trigger profile of system test triggers 

Such a distribution is supposed to show how the customer used the software 
product. On one hand, this information can be used to plan testing activities. 
Those defects that are to be found early by the customer should consequently 
be also found early in test. 

According to [Bassin and Santhanam, 1997], these profiles tend to be stable 
over multiple releases of the same product (not in terms of absolute numbers 
but in terms of proportions.). Therefore, these profiles can be used to predict 
to predict the number of field defects in the future. Such information can, for 
example, be used to estimate the required resources for service and support 
demands. 

5.3.8 Monitor process changes 

Often the distribution of defects tends to be fairly stable, especially when 
subsequent releases of the same product are developed. In these cases, the 
defect distribution can be used to monitor the impact of process changes.  

For example, if a stable proportion of code defects (i.e., those to be found by 
code inspections) is found in system test, measures can be taken to find those 
defects already by means of code inspections (e.g., be developing a specific 
checklist). As a verification of the success of the process change “new 
checklist” can be verified as the proportion of code defects found in system 
test should decrease. 

Such process changes can, for example, result as a basis from a defect preven-
tion process as described in Section 5.3.2. For example, if in one release a sys-
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tematic error has been found among Interface defects, and an effective action 
for preventing this error had been implemented, then the proportion of de-
fects in this class should diminish over time [Card, 1998], [Messmore, 1999]. 

One example for such a baseline are the trigger profiles presented in Section 
5.3.7. Since these profiles are stable over multiple releases, a successful process 
change should be visible after the first quarters after the next release [Bassin 
and Santhanam, 1997]. 
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6 Summary and Open Issues 

This report is based on a survey of papers and reports on defect classification. 
The main questions to be answered were “How can a defect classification be 
designed?” and “How can defect classification data be analyzed?” 

In order to answer the first question, this report presented the aspects of a de-
fect that have been measured in the literature, it presented the possible struc-
tures of a defect classification scheme, and it gave examples of frequently used 
defect classification schemes. 

In order to answer the second question, this report presented general methods 
to analyze defect classification as reported in the literature as well as concrete 
analyses for a variety of measurement goals. 

Yet, several questions are still open for defect classification: 

One case study used defect classification (with ODC) to assess the effectiveness 
of inspections and control them appropriately. Although this approach has a 
large potential of enhancing inspections, few reports are available that report 
on replications of this type of analysis. Thus, to demonstrate whether this type 
of analysis is useful for analyzing inspection data in other environments, addi-
tional case studies should be performed (e.g., [Bridge and Miller, 1997])  

A second point useful to analyze further is whether inspections and testing can 
be coordinated using defect classification data. When characterizing the de-
fects found in inspections it should be possible to analyze the effectiveness of 
the inspection and make inferences about the required effectiveness of the 
testing process. 

A third point is the relationship between measurement goals and defect classi-
fication attributes. The practitioner often wants to know what defect classifica-
tion attributes have at least to be implemented in a given context to achieve a 
specific measurement goal. Although this report tried to address this issue by 
mapping attributes and analysis methods to measurement goals based on the 
existing literature, a more systematic and comprehensive approach is desirable. 
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