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Abstract We describe anumber of results from a quantitative study o faults
and failures in two releases of a mgjor commercial system. We tested a range
of basic software engineaing hypdheses relating to: the Pareto principle of
distribution d faults and failures; the use of ealy fault data to predict later
fault and failure data; metrics for fault prediction; and benchmarking fault
data. For example, we found \ery strong evidence that a small number of
modues contain most of the faults discovered in pre-release testing, and that a
very small number of modues contain most of the faults discovered in
operation. However, in neither caseisthis explained by the size or complexity
of the modues. We found noevidence to suppat previous clams relating
modue sizeto fault density, nor did we find evidence that popuar complexity
metrics are good pedictors of either fault-prone or failure-prone modues. We
confirmed that the number of faults discovered in pre-release testing is an
order of magnitude greaer than the number discovered in 12 months of
operational use. We dso dscovered fairly stable numbers of faults discovered
at correspondng testing phases. Our most surprising and important result was
strong evidence of a @unter-intuitive relationship between pre and pat
release faults: those modues which are the most fault-prone pre-relesse ae
amongthe least fault-prone post-release, while mnversely the modues which
are most fault-prone post release ae anong the least fault-prone pre-release.
This observation hes srious ramificaions for the cmmonly used fault
density measure. Not only is it mislealing to use it as a surrogate quality
measure, but its previous extensive use in metrics gudies is diown to be
flawed. Our results provide important data-points in bulding upan empiricd
picture of the software development process However, we believe that even
the very strong results we have observed are not generaly vaid as oftware
engineeaing laws because they fail to take acourt of basic explanatory data,
notably testing effort and operational usage. After al, a modue which has not
been tested or used will reved no faultsirrespedive of its $ze complexity, or
any other factor.



1 | ntroduction

Degpite some heroic df orts from asmall number of reseach centres and individuals (seg for
example [Carman et a 1999, [Kaaniche and Kanoun 199§, [Khoshgditaa et a 1994,
[Ohlson N and Alberg 1994, [Shen et al 1989) there continuesto be adeath of pulished
empirica datarelating to the quality and reliability of redistic commercia software systems.
Two o the best and most important studies [Adams 1984 and [Basili and Perricone 1984
are now over 12 yeas old. Adams study reveded that a grea propation d latent software
faults lead to very rare fallures in pradice, while the vast mgjority of observed failures are
caused by a tiny propation d the latent faults. Adams observed a remarkably similar
distribution o such fault 'sizes aadoss nine different magor commercial systems. One
concluson d the Adams study is that removing large numbers of faults may have a
negligible dfed on reliability; only when the small propation d 'large’ faults are removed
will reliability improve significantly. Basili and Pericone looked at a number of fadors
influencing the fault and fail ure pronenessof modues. One of their most natable results was
that larger modues tended to have alower fault density than smaller ones. Fault density is
the number of faults discovered (during some pre-defined phase of testing a operation)
divided by a measure of modue size (normally KLOC). While the fault density measure has
numerous weaknesss as a quality measure (see[Fenton and Pfleeger 1994 for an in-depth
discusson d these) this result is neverthelessvery surprising. It appeas to contradict the
very basic hypaheses that underpin the notions of structured and moduar programming.
Curioudly, the same result has been rediscovered in ather systems by [Moeller and Paulish
1995. Recatly Hatton provided an extensive review of similar empiricd studies and came
to the conclusion:

‘Compelling empiricd evidence from disparate sources implies that in any software
system, larger comporents are propationaly more reliable than smaller comporents
[Hatton 1997].

Thusthe various empiricd studies have thrown upresults which are ourter-intuitive to very
basic and popuiar software engineging keliefs. Such studies sioud have been a warning to
the software engineaing reseach community abou the importance of establishing a wide
empirica basis. Yet these warnings were dealy na heeded. In [Fenton et al 1994 we
commented onthe dmost total absence of empirica reseach onevauating the dfediveness
of different software development and testing methods. There dso continues to be an aimost
total absence of published benchmarking data.

In this paper we hope to provide asmall contribution to the body d empiricad knowledge by
describing a number of results from a quantitative study d faults and fail uresin two releases
of amajor commercia system. In Sedion 2we describe the badkgroundto the study and the
basic data that was colleded. In Sedion 3we provide pieces of evidence that one day (if a
reasonable number of similar studies are pulished) may help us test some of the most basic
of software engineaing hypdaheses. In particular we present a range of results and examine
the extent to which they provide evidence for or against following hypotheses:

* Hypotheses relating to the Pareto principle of distribution of faults and failures



1a) a small number of modules contain most of the faults discovered during pre-
release testing;

1b) if a smal number of modules contain most of the faults discovered during pre-
release testing then this is simply because those modules constitute most of the
codesize

2a) a small number of modules contain the faults that cause most failures

2b) if a small number of modules contain most of the operational faults then this is
simply because those modul es constitute most of the code size.

» Hypotheses relating to the use of early fault data to predict later fault and failure data (at
the module level):

3) A higher incidence of faultsin function testing implies a higher incidence of faults
In system testing

4) A higher incidence of faults in pre-release testing implies higher incidence of
failures in operation.

We tested each of these hypotheses from an absolute and normalised fault perspective.
» Hypotheses about metrics for fault prediction

5) Simple size metrics (such as LOC) are good predictors of fault and failure prone
modules.

6) Complexity metrics are better predictors than simple size metrics of fault and
failure-prone modules

» Hypotheses relating to benchmarking figures for quality in terms of defect densities

7) Fault densities at corresponding phases of testing and operation remain roughly
constant between subsequent major releases of a software system

8) Software systems produced in similar environments have broadly smilar fault
densities at similar testing and operational phases.

For the particular system studied we provide very strong evidence for and against some of
the above hypotheses and also explain how some previous studies that have looked at these
hypotheses are flawed. Hypotheses 1a and 2a are strongly supported, while 1b and 2b are
strongly rejected. Hypothesis 3 isweakly supported, while curiously hypothesis 4 is strongly
rejected. Hypothesis 5 is partly supported, but hypotheses 6 is weakly rejected for the
popular complexity metrics. However, certain complexity metrics which can be extracted
from early design specifications are shown to be reasonable fault predictors. Hypothesis 7 is
partly supported, while 8 can only be tested properly once other organisations publish
analogous results.

We discuss the results in more depth in Section 4.



2 Thebasic data

The data presented in this paper is based on two major consecutive releases of alarge legacy
project developing telecommunication switching systems. We refer to the earlier of the
releases as release n, and the later release as release n+1. For this study 140 and 246
modules respectively from release n and n+1 were selected randomly for analysis from the
set of modules that were either new or had been modified. The modules ranged in size from
approximately 1000 to 6000 LOC (as shown in Table 1). Both releases were approximately
the same total system size.

Table 1. Distribution of modules by size.

LOC Releasen Release n+1
<1000 23 26
1001-2000 58 85
2001-3000 37 73
3001-4000 15 38
4001-5000 6 16
5001-6000 0 6
>6000 1 2
Total 140 246

2.1 Dependent variable

The dependent variable in this study was number of faults. Faults are traced to unique
modules. The fault data were collected from four different phases:

» function test (FT)

* gystem test (ST)

 first 26 weeks at a number of site tests (SI)

* first year (approx) operation (OP)

Therefore, for each module we have four corresponding instances of the dependent variable.

The testing process and environment used in this project is well established within the
company. It has been developed, maintained, taught and applied for a number of years. A
team separated from the design and implementation organisation devel op the test cases based
on early function specifications.

Throughout the paper we will refer to the combination of FT and ST faults collectively as
testing faults. We will refer to the combination of SI and OP faults collectively as
operational faults. We shall aso refer at times to failures. Formally, afailure is an observed
deviation of the operational system behaviour from specified or expected behaviour. All
failures are traced back to a unique (operational) fault in a module. Observation of distinct
failuresthat are traced to the same fault are not counted separately. This means, for example,
that if 20 OP faults are recorded against module X, then these 20 unique faults caused the set
of all failures observed (and which are traced back to faultsin module x) during the first year
of operation.



The Company classified each fault found at any phase according to the following:
a) the fault had already been corrected;

b) the fault will be corrected;

c) the fault requires no action (i.e. not treated as a fault);

d) the fault was due to installation problems.

In this paper we have only considered faults clasgfied as b. Interna investigations have
shown that the documentation d faults and their classficaion acording to the @owve
caegoriesisreliable. A summary of the number of faults discovered in ead testing phase for
each system release is shown in Table 2.

pre-release faults post-release faults
Release Function test System test | Site test Operation
n (sample size 140 916 682 19 52
modules)
n+1 (sample size 246 2292 1008 238 108
modules)

Table 2. Distribution of faults per testing phase

2.2 Independent variables

Various metrics were collected for each module. These included:
* Lines of code (LOC) as the main size measure

* McCabe’s cyclomatic complexity.

» Various metrics based on communicaion (modelled with signals) between modues and
within a modue During the spedfication phese, the number of new and modified signals
(signals are similar to messages) for ead modue were spedfied. Most notably, the metric
SgFF isthe @urt of the number of new and modified signals. This metric was also used
as a measure of interphase complexity. [Ohlson and Alberg, 1999 provides full detail s
of these metrics and their computation.

The mmplexity metrics were mlleded automaticdly from the a¢ual design dauments using
a tod, ERIMET [Ohlson, 1993. This automation was possble @& eady modue was
designed using FCTOOL, atod for the formal description language FDL which is related to
SDL’s process diagrams [Turner, 1993. The metrics are extraded dred from the FDL-
graphs. The fad that the metrics were mmputed from artefads avail able & the design stage,
IS an important point. It has often been as®rted that computing metrics from design
documents is far more valuable than metrics from source ©de [Heitkoetter et a 199(.
However, there have been very few pubished attempts to do so. [Kitchenham et al, 199(Q
reported on wsing design metrics, based onHenry and Kafura s information and flow metrics



[1981and 1984, for outlier analysis. [Khashgditaa et al, 1996 used a subset of metrics that
“could be mlleded from design dacumentation”, but the metrics were extraded from the
code.

Numerous gudies, such as [Ebert and Liedtke, 1995; and [Munson and Khaoshgdtaa, 1999
have reported using metrics extraded from source ®de, but few have reported promising
prediction results based on design metrics.

3 The hypothesestested and results

Sincethe data were mlleded and analysed retrospedively there was no passhility of setting
up any controlled experiments. However, the shea extent and quality of the data was sich
that we could use it to test a number of popuar software engineaing hypdheses relating to
the distribution and prediction o faults and failures. In this ssdion we groupthe hypaheses
into four categories. In Sedion 31 we look at hypaheses relating to the Pareto principle of
distribution d faults and fail ures. It is widely believed, for example, that a small number of
modues in any system are likely to contain the majority of the total system faults. This is
often referred to as the *20-80 rul€’ in the sense that 80% of the faults are contained in 20%
of the modues. We show that there is grong evidence to suppat the two most commonly
cited Pareto principles.

The aumption d the Pareto principle for faults has led many praditioners to seek methods
for predicting the fault-prone modues at the ealiest possble development and testing
phases. These methods seem to fall into two categories:

1. use of early fault data to predict later fault and failure data;
2. use of product metrics to predict fault and failure data

Given ou evidenceto suppat the Pareto principle we therefore test a number of hypaheses
which relate to these methods of ealy prediction d fault-prone modues. In Sedion 32, we
test hypaheses concerned with 1) abowve, while in Sedion 33 we test hypaheses concerned
with 2).

Findly, in Sedion 34 we test some hypaheses relating to benchmarking fault data, and at
the same time provide data that, can themselves, be valuable in future benchmarking studies.

3.1 Hypotheses relating to the Pareto principle of distribution of faults and
failures

The main part of the total cost of quality deficiency is often foundto be caused by very few
faults or fault types [Bergman and Klefgo 199]. The Pareto principle [Juran 1964, also
cdled the 20-80 rule, summarises this nation. The Pareto principle is used to concentrate
efforts on the vital few, instead o the trivial many. There ae anumber of examples of the
Pareto principle in software engineaing. Some of these have gained widespread acceptance,
such as the nation that in any gven software system most faults lie in a small propation o
the software modues. Adams [1984 demonstrated that a small number of faults were
resporsible for a large number of falures. [Munson et al 1993 motivated their



discriminative analysis by referring to the 20-80 rule, even though their data demonstrated a
20-65 rule. [Zuse 1991] used Pareto techniques to identify the most common types of faults
found during function testing. Finally, [ Schulmeyer and MacManus 1987] described how the
principle supports defect identification, inspection and applied statistical techniques.

We investigated four related Pareto hypotheses:

Hypothesis 1a: a small number of modules contain most of the faults discovered during pre-
release testing (phases FT and ST);

Hypothesis 1b: if a small number of modules contain most of the faults discovered during
pre-release testing then this is simply because those modules constitute most of the code
Size.

Hypothesis 2a: a small number of modules contain most of the operationa faults (meaning
failures as we have defined them above observed in phases Sl and OP);

Hypothesis 2b: if a small number of modules contain most of the operational faults then this
Is simply because those modules constitute most of the code size.

We now examine each of these in turn.

311 Hypothesis 1a: a small number of modules contain most of the faults
discovered during testing (phases FT and ST)

Figure 1 illustrates that 20% of the modules were responsible for nearly 60% of the faults
found in testing for release n. An almost identical result was obtained for release n+1 but is
not shown here. This is also amost identical to the result in earlier work where the faults
from both testing and operation were considered [Ohlsson et a 1996]. This, together with
other results such as [Munson et al 1992], provides very strong support for hypothesis 1),
and even suggests a specific Pareto distribution in the area of 20-60. This 20-60 finding is
not as strong as the one observed by [Compton and Withrow, 1990] (they found that 12% of
the modules, referred to as packages, accounted for 75% of al the faults during system
integration and test), but is neverthel ess important.

100
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% of Faults

30 60 90
% of Modules

Figure 1. Pareto diagram showing per centage of modules ver sus per centage of faults
for Releasen



312 Hypothesis 1b: if a small number of modules contain most of the faults
discovered during prerelease testing then this is smply because those modules
constitute most of the code size.

Since we found strong support for hypothesis 1a, it makes sense to test hypothesis 1b. It is
popularly believed that hypothesis l1a is easily explained away by the fact that the small
proportion of modules causing all the faults actually constitute most of the system size. For
example, [Compton and Withdraw, 1990] found that the 12% of modules accounting for
75% of the faults accounted for 63% of the LOC. In our study we found no evidence to
support hypotheses 1b. For release n, the 20% of the modules which account for 60% of the
faults (discussed in hypothesis 1a) actually make up just 30% of the system size. The result
for release n+ 1 was almost identical.

313 Hypothesis 2a: a small number of modules contain most of the
operational faults (meaning failures as we have defined them above, namely phases CU
and OP)

We discovered not just support for a Pareto distribution, but a much more exaggerated one
than for hypothesis 1a. Figure 2 illustrates this Pareto effect in release n. Here 10% of the
modules were responsible for 100% of the failures found. The result for release n+1 is not so
remarkable but is nevertheless still quite striking: 10% of the modules were responsible for
80% of thefailures.

100
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% of Failures
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10 % of Modules 100
Figure 2: Pareto diagram showing per centage of modules ver sus per centage of failures

for Releasen

314 Hypothesis 2b: if a small number of modules contain most of the
operational faultsthen thisis simply because those modules constitute most of the code
size.

Aswith hypothesis 13, it is popularly believed that hypothesis 2ais easily explained away by
the fact that the small proportion of modules causing all the failures actually constitute most
of the system size. In fact, not only did we find no evidence for hypothesis 2, but we
discovered very strong evidence in favour of a converse hypothesis:

most operational faults are caused by faultsin a small proportion of the code



For release n, 100% of the operational faults are contained in modules that make up just 12%
of the entire system size. For release n+1 60% of the operationa faults were contained in
modules that make up just 6% of the entire system size, while 78% of the operational faults
were contained in modules that make up 10% of the entire system size.

3.2 Hypotheses relating to the use of early fault data to predict later fault
and failure data

Given the likelihood of hypotheses 1a and 2a there is a strong case for trying to predict the
most fault-prone modules as early as possible during development. In this and the next
subsection we test hypotheses relating to methods of doing precisely that. First we look at
the use of fault data collected early as a means of predicting subsequent faults and failures.
Specifically we test the hypotheses:

Hypothesis 3: Higher incidence of faultsin function testing (FT) implies higher incidence of
faults in systemtesting (ST)

Hypothesis 4: Higher incidence of faults in all pre-release testing (FT and ST) implies
higher incidence of faultsin post-release operation (Sl and OP).

We tested each of these hypotheses from an absolute and normalised fault perspective. We
now examine the results.

3.21 Hypothesis 3: Higher incidence of faultsin function testing (FT) implies
higher incidence of faultsin system testing (ST)

The results associated with this hypothesis are not very strong. In release n (see Figure 3),
50% of the faults in system test occurred in modules which were responsible for 37% of the
faults in function test.

100% %=
80% ¢

% of Accumalated
Faultsin ST 60% o

40%

20% ¢

0%

15% 30% 45% 60% 75% 90%

% of Modules

Figure 3: Accumulated percentage of the absolute number faultsin system test when
modules are ordered with respect to the number of faultsin system test and function
test for releasen.



From a prediction perspedive the figures indicae that the most fault-prone modues during
function test will, to some extent, also be fault-prone in system test. However, 10% of the
most fault-prone modues in system test are resporsible for 38% of the faults in system test,
but 10% of the most fault-prone moduesin function test is only resporsible for 17% of the
faults in system test. This is persistent up to 75% of the modues. This means that nealy
20% of the faults in system test need to be explained in ancther way. The same pattern was
found when usng namalised data (faultLOC) instead of absolute, even though the
percentages were general lower and the prediction a bit poorer.

The results were only slightly different for releasel, where we found:

* 50% of the faults in system test occurred in modues which were resporsible for 25% of
the faults in function test

* 10% of the most fault-prone modues in system test are resporsible for 46% of the faults
in system test, but 10% of the most fault-prone modues in function test is only
responsible for 24% of the faults in system test.

These results and also when using namalised data instead of absolute ae very smilar to the
result in releasa.

322 Hypothesis 4: Higher incidence of faults in all pre-release testing (FT
and ST) implies higher incidence of faultsin post-release operation (Sl and OP).

The rationale behind hypdhesis 4 is that the relatively small propation d modues in a
system that acourt for most of the faults are likely to be fault-prone both pre- and past
release. Such modues are somehow intrinsicadly complex, or generally poaly bult. ‘If you
want to find where the faults lie, look where you foundthem in the past’ is a very common
and popuiar maxim. For example, [Compton and Withrow, 19970 have foundas much as s$x
times greaer post delivery defed density when analysing modues with faults discovered
prior to delivery.

In many respeds the results in ou study relating to this hypahesis are the most remarkable
of al. Not only is there no evidence to suppat the hypahesis, but again there is grong
evidenceto suppat a mnverse hypahesis. In bah release n andrelease n+1 amost al of the
faults discovered in pre-release testing appea in modues which subsequently reved almost
no operation faults. Specifically, we found:

* Inreleae n (seeFigure 4), 93% of faults in pre-release testing accur in modues which
have NO subsequent operational faults (of which there were 75 in total). Thus 100% of
the 75 falures in operation accur in modues which acourt for just 7% of the faults
discovered in pre-release testing.
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Figure 4. Scatter plot of pre-release faults against post-release faultsfor version n (each
dot representsa module)

* In release n+1 we observed a much greaer number of operational faults, but a similar
phenomenonto that of release n (seeFigure 5). Some 77% of pre-release faults occur in
modues which have NO paost-release faults. Thus 100% of the 366 failures in operation
occur in modues which acourt for just 23% of the faults discovered in function and
system test.

These remarkable results are dso exciting becaise they are dosely related to the Adams
phenomenon The results have magjor ramifications for one of the most commonly used
software measures, fault density. Spedaficdly it appeas that modues with high fault density
pre-relesse ae likely to have low fault-density post-release, and vice versa. We discussthe
implications at length in Section 4.
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3.3 Hypotheses about metrics for fault prediction

In the previous subsection we were concerned with using early fault counts to predict
subsequent fault prone modules. In the absence of early fault data, it has been widely
proposed that software metrics (which can be automatically computed from module designs
or code) can be used to predict fault prone modules. In fact this is widely considered to be
the major benefit of such metrics [Fenton and Pfleeger 1997]. We therefore attempted to test
the basic hypotheses which underpin these assumptions. Specifically we tested:

Hypothesis 5: Size metrics (such as LOC) are good predictors of fault and failure prone
modules.

Hypothesis 6: Complexity metrics are better predictors than smple size metrics, especialy at
predicting fault-prone modules

331 Hypothesis 5: Size metrics (such as LOC) are good predictors of fault

and failure prone modules.

Strictly speaking, we have to test several different, but closely, related hypotheses:

Hypothesis 5a: Smaller modules are less likely to be failure prone than larger ones

Hypothesis 5b Size metrics (such as LOC) are good predictors of number of pre-release
faultsin amodule

Hypothesis 5¢: Size metrics (such as LOC) are good predictors of number of post-release
faultsin amodule



Hypothesis 5d: Size metrics (such as LOC) are good pedictors of a modue's (pre-release)
fault-density

Hypothesis 5e: Size metrics (such as LOC) are good pedictors of a modue's (post-release)
fault-density

Hypoathesis 5a underpins, in many respeds, the principles behind most modern programming
methods, such as moduar, structured, and oljeded ariented. The genera ideahas been that
smaler modues foud be eaer to develop, test, and maintain, thereby leading to fewer
operational faultsin them. On the other hand, it is aso accepted that if modues are made too
small then all the complexity is pushed into the interfacécommunicaion medanisms. Size
guidelines for deammposing a system into modues are therefore desirable for most
organisations.

It turns out that the small number of relevant empiricd studies have produced courter-
intuiti ve results abou the relationship between size and (operational) fault density. Basili and
Pericone [1984 reported that fault density appeaed to decrease with modue size Their
explanation to this was the large number of interface faults greal equaly aaoss all
modues. The relatively high popation d small modues were dso ofered as an
explanation. Other authors, such as[Moell er and Paulish 1993 who olserved a similar trend,
suggested that larger modues tended to be under better configuration management than
smaller ones which tended to be produced ‘on the fly’. In fad our study dd nd reved any
smilar trend, and we believe the strong results of the previous gudies may be due to
inappropriate analyses.

We begin ou results with a replicaion d the key part of the [Basili and Pericone 1984
study. Table 3 (which compare with Basili and Perricone’s Table IIl) shows the number of
modues that had a cetain number of faults. The table dso dsplays the figures for the
different types of modues and the percentages. The data set analysed in this paper has, in
comparison with [Baslli and Pericone 1984 a lower propation d modues with few faults
and the propation d new modues is lower. In subsequent analysis all new modues have
been excluded. The modues are dso generally larger than those in [Basli and Pericone
1984], but we do not believe this introduces any bias.



Release n Release n+1

Percent Percent

Fault Mod New modified modules Mod New Splitted modified modules
0 9 0 7 15 3 0 7

1 5 3 4 16 1 0 7

2 12 0 9 18 2 0 8

3 10 0 8 13 0 0 6

4 8 0 6 12 1 0 5

5 12 1 9 7 0 0 3

6 3 1 2 14 1 0 6

7 4 0 3 5 0 0 2

8 7 0 5 5 0 1 2

9 8 2 6 13 0 1 6

10 5 0 4 6 2 0 3

11to 15 17 1 13 24 1 0 11
160 20 4 0 3 14 2 3 6

21t0 25 3 0 2 21 0 0 9

2610 30 7 0 5 9 0 1 4

31t0 35 5 0 4 8 0 1 4

36t0 40 2 0 2 6 0 0 3

>40 9 2 7 18 0 2 8

Table 3. Number of Modules Affected by a fault for Release n (140 modules,
1815 Faults) and Release n+1 (246 modules, 3795 faults).

The scatter plots Figure 6, for lines of code versus the number of pre- and post-release faults
does not reveal any strong evidence of trends for release n+1. Neither could any strong
trends be observed when line of code versus the total number of faults were graphed, Figure
7. Theresults for release n were reasonably similar.
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Figure 6: Scatterplotsof LOC against pre- and post-release faults for
release n+1 (each dot representsa module).
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Figure 7: Scatterplotsof LOC against all faultsfor release n+1 (each dot
representsa module).

When Basili and Pericone could not see any trend they calculated the number of faults per
1000 executable lines of code. Table 4 (which compares with table VII in [Basli and
Pericone 1984]) shows these results for our study.

Releasen Release n+1

Module size Frequency Faults/1000 Lines Frequency Faults/1000 Lines
500 3 1.45 6 13

1000 15 477 17 6

1500 32 5.24 35 5

2000 24 6.32 41 7

2500 14 5.88 34 5

3000 22 5.74 37 5

3500 11 7.83 18 7

>3500 9 7.38 42 8

Table 4. Faults/1000 Lines of coderelease n and n+1.

Superficially, the resultsin table 4 for release n+ 1 appear to support the Basili and Pericone
finding. In release n+1 it is clear that the smallest modules have the highest fault density.
However, the fault density is very similar for the other groups. For release n the result is the
opposite of what was reported by Basili and Perricone. The approach to grouping data as
donein [Basili and Perricone 1984] is highly misleading. What Basili and Pericone failed to
show was a ssmple plot of fault density against module size, as we have done in Figure 9 for
release n+ 1. Even though the grouped data for this release appeared to support the Basili and
Pericone findings, this graph shows only a very high variation for the small modules and no
evidence that module size has a significant impact on fault-density. Clearly other explanatory
factors, such as design, inspection and testing effort per module, will be more important.
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Figure 8: Scatter plot of module fault density against size for release n+1

The scatter plots assumes that the data belongto an interval or ratio scde. From a prediction
perspedive it is not dways necessry. In fad, a number of studies are built on the Pareto
principle, which often orly require that we have ordinal data. In the tests of hypahesis above
we have used atechnique that is based on adinal data, caled Alberg dagrams [Ohlsson and
Alberg 1994, to evauate the independent variables ability to rank the dependent variable.
The LOC ranking ahility is assessd in Figure 9. The diagram reveds that, even though
previous analysis did na indicae any predictability, LOC is quite goodat ranking the most
fault-prone modues, and for the most fault prone-modues (the 20 percent) much better than
any previous ones.
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Figure 9. Accumulated per centage of the absolute number of all faults when modules
areordered with respect to LOC for release n+1.



3.3.2 Hypothesis 6: Complexity metrics are better predictors than smple size
metrics of fault and failure-prone modules

‘Complexity metrics is the rather miseading term used to describe a ¢assof measures that
can be extraded dredly from source @de (or some structural modd of it, like aflowgraph
representation). Occasionaly (and more beneficially) complexity metrics can be extraded
before cde is produced, such as when the detailed designs are represented in a graphicd
language like SDL (as was the cae for the system in this gudy). The achetypa complexity
metric is McCabe's cyclomatic number [McCabe, 1974, but there have in fad been many
dozens that have been pubished [Zuse 199]]. The details, and aso the limitations of
complexity metrics, have been extensively documented (see[Fenton and Pfleeger 1994) and
we do nd wish to re-vigit those isuues here. What we ae oncerned with here is the
underlying assumption that complexity metrics are useful becaise they are (easy to extrad)
indicators of where the faults lie in a system. For example, Munson and Khosghdtaa
asserted:

‘There is a dea intuitive basis for believing that complex programs have more faults in
them than simple programs’, [Munson and Khosghoftaar, 1992]

An implicit assumptionis that complexity metrics are better than smple sizemeasures in this
resped (for if not there is little motivation to use them). We have drealy seen, in sedion
3.3.1, that sizeis a reasonable predictor of number of faults (although no of fault density).
We now investigate the case of complexity metrics such as the cyclomatic number.

We demonstrated in testing the last hypahesis the problem with comparing average figures
for different sizeintervals. Instead o replicating the relevant analysisin [Basili and Pericone
1984 by cdculating the arerage g/clomatic number for ead modue size dass and than
plotting the results we just generated scatter plots and Alberg diagrams.

When the cyclomatic complexity and the pre- and past-release faults were graphed for
release n+1 (Figure 10) we observed a number of interesting trends. The most complex
modues appea to be more fault-prone in pre-release, but appea to have nealy nofaults in
post-release. The most fault-prone modues in pcst-relesse gopea to be the less complex
modues. This could be explained by haw test effort is distributed over the modues: modues
that appea to be complex are treded with extra cae than smpler ones. Analysing in
retrospect the earlier graphs for size versus faults reveal a similar pattern.
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Figure 10: Scatter plots of cyclomatic complexity against number of pre-and
post-release faultsfor release n+1 (each dot represents a module).

The scatter plot for the cyclomatic complexity and the total number of faults (Figure 11)
shows again some small indication of correlation. The Alberg diagrams were similar as when
Size was used.
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Figure 11: Scatterplot of cyclomatic complexity against all faultsfor release n+1 (each
dot represents a module).

To explore the relations further the scatter plots were aso graphed with normalised data
(Figure 12). The result showed even more clearly that the most-fault prone modules in pre-
release have nearly no post-release faults.
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Figure 12: Scatter plots of cyclomatic complexity against fault density (pre-and
post-release) for release n+1 (each dot represents a module).

In order to determine whether or not large modules were less dense or complex than smaller
modules [Basili and Perricone, 1984] plotted the cyclomatic complexity versus module size.
Following the same pattern in earlier analysis they failed to see any trends, and therefore
they analysed the relation by grouping modules according to size. As illustrated above this
can be very mideading. Instead we graphed scatter plots of the relation and calculated the
correlation (Figure 13).
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Figure 13: Complexity versus Module Size

The relation may not be linear. However, there is a good linear correlation between
cyclomatic complexity and LOC”.

Earlier studies [Ohlsson and Alberg, 1996] have suggested that other design metrics could be
used in combination or on their own to explain fault-proneness. Therefore, we did the same
analysis using the SgFF measure instead of cyclomatic complexity.



Pre-rdease Post-release

160

140

120

Faults 100
80

60

40

20

0

* . Faults

200 300 400 0 100 200 300 400

Interphase complexity Interphase complexity

Figure 14: Scatterplotsof SigFF against number of pre-and post-
release faultsfor release n+1 (each dot represents a module).

The scatterplots using absolute numbers (Figure 14), or normalised deta did na indicae any
new trends. In ealier work the product of cyclomatic complexity and SgFF was iown to
be agood pedictor of fault-proneness To evaluate CC*SgFF predictability the Alberg
diagram was graphed (Figure 15). The combined metrics appea to be better than bah SigFF
and Cyclomatic Complexity on there own, and also better than the size metric.
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Figure 15. Accumulated per centage of the absolute number of all faults when modules
areordered with respect to LOC for release n+1.

The dowveresultsdo nd paint avery glowing report of the usefulnessof complexity metrics,
but it can be agued that ‘being a good pedictor of fault density’ is not an appropriate
validation criteria for complexity metrics. This is discussed in sedion 4 Neverthelessthere
are some paositive agpeds. The combined metric CC* SgFF is again shown to be areasonable
predictor of fault-prone modues. Also, measures like SgFF are, unlike LOC, available & a
very ealy stage in the software development. The fad that it correlates © closely with the
final LOC, and is a good predictor of total number of faults, is a major benefit.

3.4 Hypothesesrelating to benchmarking

One of the major benefits of colleding and pubicising the kind d data discussd in this
paper is to enable both intra- and inter-company comparisons. Despite the incredibly vast



volumes of software in operation throughou the world there is no consensus abou what
constitutes, for example, a good bad, or average fault density under certain fixed condtions
of measurement. It does not sean unreasonable to assume that such information might be
known, for example, for commercia C programs where faults are defined as operational
faults (in the sense of this paper) during the first 12 months of use by a typicd user.
Althoughindividual companies may know this kind d data for their own systems, amost
nothing hes ever been published. The ‘grey’ literature (as referenced, for example, in
[Pfleeger and Hatton 1997 seams to suggest some aude (but unsubstantiated gudelines)
such as the following for fault density in first 12 months of typical operational use:

» lessthat 1 fault per KLOC is very good(and typicdly only achieved by companies using
state-of-the-art development and testing methods)

* between 4 to 8 faults per KLOC is typical
» greater than 12 faults per KLOC is bad

When pre-release faults only are cnsidered there is sme nation that 10-30 faults per KLOC
is typicd for function, system and integration testing combined. For reasons discussed
already high values of pre-release fault density is not indicaive of poa quality (and may in
fad suggest the oppasite). Therefore it would be churlish to talk in terms of ‘good and * bad’
fault dengities because, as we have dready stressed, these figures may be explained by key
factors such as the effort spent on testing.

In this study we can consider the following hypothesis

Hypothesis 7: Fault densties at correspondng plases of testing and operation remain
roughly constant between subsequent major releases of a software system

since we have data on successve releases. The results we present, being besed only on ore
system, represents just a single data-point, but nevertheless we believe it may aso be
valuable for other researchers.

In a similar vein we consider:

Hypothesis 8: software systems produced in similar environments have broadly smilar fault
densities at similar testing and operational phases.

Redly we ae hopngto buld upan ideaof the range of fault densities that can reasonably
be expected. We compare our results with some other published data.

34.1 Fault densities at corresponding phases of testing and operation remain
roughly constant between subsequent major releases of a software system

FT ST S oP

Rel n 3.49 2.60 0.07 0.20
Rel n+1 4.15 1.82 0.43 0.20

Table 5: Fault densities at the four phases of testing and operation



As table 5 shows, there is ome suppat for the hypahess that the fault-density remains
rougHy the same between subsequent releases. The only exceptional phase is SI. Aswell as
providing some suppat for the hypathesis the result suggests that the development processis
stable and repeaable with resped to the fault-density. This has interesting implicaions for
the software process improvement movement, as epitomised by the Capability Maturity
Model CMM.

A genera asuumption d CMM is that a stable and repedable processis a necessry pre-
requisite for continuous processimprovement. For an immature organisation (below level 3)
it is assumed to take many yeas to read such alevel. In CMM’s termindogy companies do
not have the kind d stable and repeaable processindicaed in the éowve figures urtil they
are d level 3. Yet, like dmost every software producing aganisation in the world, the
organisation in this case study projed is not at level 3. The results refleds a stability and
repedability that acerdingto CMM shoud na be the cae. At such we question the CMM’s
underlying assumption abou what constitutes an organisation that shoud have astable and
repeatable process.

34.2 Softwar e systems produced in similar environments have broadly similar
fault densitiesat similar testing and oper ational phases.

To test this hypahesis we compared the results of this case study with ather puldished data.
For smplicity we restricted ou analysis to the two distinct phases. 1) pre-release fault
density; and 2 post-release fault density. First, we can compare the two results of the two
separate releases in the cases study (Table 6).

Prerelease Post-release  All

Rel n 6.09 0.27 6.36
Rel n+1 5.97 0.63 6.60

Table 6: Fault densities pre-and post-release for the case study system

The overall fault densties are smilar to those reported for a range of systems in [Hatton
1999, while [Agresti and Evanco, 1997 reported similar ball-park figuresin astudy o Ada
programs, 3.0 to 55 faultKLOC. The post-release fault densities em to be roughy in line
of those reported studies lodst practice.

More interesting is the difference between the pre- and pt-release fault densties. In bah
versions the pre-release fault dengity is an order of magnitude higher than the post-release
fault density.

Of the few puMlished studies that reved the difference between pre- and pct-release fault
density, [Pfleeger and Hatton, 1997 also report 10 times as many faults in pre-release
(athoughthe overal fault density islower. [Kitchenham et al 198 reports a higher ratio of
pre-release to past-release. Their study was an investigation into the impad of inspedions;
combining the inspeded and nonrinspeded code together reveds a pre-release fault density



of approx 16 per KLOC and a post-release fault density of approximately 0.3 per KLOC.
However, it is likely that the operational time here was not as long.

Thus, from the small amourt of evidencewe @nclude that there gppeasto be 10-30times as
many faults pre-release as post release.

4 Discussion and conclusions

Apart from the usual quality control angle, a very important perceived benefit of colleding
fault data & different testing phreses isto be @le to move toward statistica process control
for software development. For example, this is the basis for the software fadory approad
propcsed by Japanese wmpanies sich as Hitadchi [Yasuda and Koga 1995 in which they
build fault profiles that enable them to clam acaurate fault and failure prediction. Ancther
important motivation for colleding the various fault data is to enable us to evaluate the
effedivenessof different testing strategies. In this paper we have used an extensive example
of fault and failure data to test a range of popuar software engineging hypdheses. The
results we have presented come from just two releases of a mgor system developed by a
single organisation. It may therefore be tempting for observers to dsmisstheir relevance for
the broader software engineaing community. Such an attitude would be dangerous given the
rigou and extensiveness of the data-colledion, and also the strength of some of the
observations.

The evidence we found in suppat of the two Pareto principles 1a) and 23) is the least
surprising. It does san to be inevitable that a small number of the modues in a system will
contain alarge propation d the pre-release faults and that a small propartion d the modues
will contain a large propation d the post-release faults. However, the popuarly believed
explanations for these two phenomena appear to be quite wrong:

* It is not the cae that size eplains in any significant way the number of faults. Many
people seem to believe (hypaheses 1b and 2b) that the reason why a small propation d
modues acourt for most faults is smply becaise those fault-prone modues are
dispropationately large and therefore acourt for most of the system size We have
shown this assumption to be false for this system.

* Nor isit the cae that ‘complexity’ (or at least complexity as measured by ‘complexity
metrics) explains the fault-prone behaviour (hypahesis 6). In fad complexity is not
significantly better at predicting fault and failure prone modues than smple size
measures.

* It isaso not the cae that the set of modues which are espedally fault-prone pre-release
are going to be roughy the same set of modues that are espedally fault-prone post-
release (hypahesis 4). Yet this view seans to be widely accepted, partly on the
asumption that certain modues are ‘intrinscaly’ difficult and will be so throughou their
testing and operational life.

Our strongregjedion d hypahesis 4 is a very important observation. Many believe that the
first placeto look for modues likely to be fault-prone in operation is in those modues
which were fault prone during testing. In fad our results relating to hypdhesis 4 suggest



exadly the oppaite testing strategy as the most effedive. If you want to find the modues
likely to be fault-prone in operation then you shoud ignae dl the modues which were
fault-prone in testing! In redity, the danger here is in assuming that the given data provides
evidence of a causal relationship. The data we observed can be explained by the fad that the
modues in which few faults are discovered duing testing may simply nat have been tested
properly. Those modues which reved large numbers of faults during testing may genuinely
be very well tested in the sense that all the faults redly are 'tested ou of them'. The key
missing explanatory data in this case is, of coueseng effort.

The results of hypahesis 4 aso bring into question the entire rationale for the way software
complexity metrics are used and \alidated. The ultimate am of complexity metrics is to
predict modues which are fault-prone post-release. Yet we have found that there is no
relationship between the modues which are fault-prone pre-release and the modues which
are fault-prone post-releasse. Most previous ‘vaidation' studies of complexity metrics have
deamed a metric ‘valid' if it correlates with the (pre-relesse) fault density. Our results
suggest that ‘valid’ metrics may therefore be inherently poa at predicting what they are
suppcsed to predict. The results of hypahesis 4 also highlight the dangers of using fault
density as a de-fado measure of user percaved software quality. If fault density is measured
in terms of pre-release faults (asis very common), then at the modue level this measure tell s
us worse than nahing abou the quality of the modue; a high value is more likely to be an
indicator of extensive testing than of poa quality. Our analysis of the value of ‘ complexity’
metrics is mixed. We @nfirmed some previous gudies results that popuar complexity
metrics are dosely correlated to size metrics like LOC. While LOC (and hence aso the
complexity metrics) are reasonable predictors of absolute number of faults, they are very
poa predictors of fault density (which is what we ae redly after). However, some
complexity metrics like SigFF are, unlike LOC, available & a very ealy stage in the
software development process The fad that it correlates © closely with the final LOC, is
therefore very useful. Moreover, we agued [Fenton and Pfleegger 1994, that being a good
predictor of fault-proneness may na be the most appropriate test of ‘validity’ of a
complexity metric. It is more reasonable to exped complexity metrics to be good pedictors
of module attributes such as comprehensibility or maintainability.

We investigated the extent to which benchmarking type data wuld provide insights into
software quality. In testing hypdheses 7 and 8 we showed that the fault densties are
rougHy constant between subsequent major releases and ou data indicaes that there ae 10-
30 times as many pre-release faults as post-release faults. Even if realers are uninterested in
the software engineaing hypdheses (1-6) they will surely value the puldicaion d these
figures for future comparisons and benchmarking.

We believe that there ae no software engineaing laws as such, becaiseit is aways possble
to construct a system in an environment which contradicts the law. For example, the studies
summarised in [Hatton 1997 suggest that larger modues have alower fault density than
smaller ones. Apart from the fad that we found no clea evidence of this ourselves
(hypathesis 5) and also foundwegknesss in the studies, it would be very dangerous to state
thisas alaw of software engineging. You orly neal to change the anourt of testing you do
to 'buck’ thislaw. If you do na test or use amodue you will not observe faults or fail ures
asociated with it. Again thisis becaise the ssociation between size and fault density is not



a caisa ore. It is for this kind o reason that we recommend more mmplete models that
enable us to augment the empiricd observations with ather explanatory fadors, most
notably, testing effort and operational usage. In this ®nse our results justify the recent work
on bulding causal models of software quality using Bayesian Belief Networks, rather than
traditional statisticd methods which are patently inappropriate for defeds prediction.[Nell
and Fenton 1996].

In the cae study system described in this paper, the data-coll edion adivity is considered to
be apart of routine configuration management and quality asuurance We have used this data
to shed light on a number of issues that are central to the software engineging dscipline. If
more wmpanies $ared this kind d data, the software engineaing dscipline could quckly
establish the empirical and scientific basis that it so sorely lacks.
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