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A Critique of Software Defect Prediction Models 
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Abstract—Many organizations want to predict the number of defects (faults) in software systems, before they are deployed, to 
gauge the likely delivered quality and maintenance effort. To help in this numerous software metrics and statistical models have been 
developed, with a correspondingly large literature. We provide a critical review of this literature and the state-of-the-art. Most of the 
wide range of prediction models use size and complexity metrics to predict defects. Others are based on testing data, the “quality” of 
the development process, or take a multivariate approach. The authors of the models have often made heroic contributions to a 
subject otherwise bereft of empirical studies. However, there are a number of serious theoretical and practical problems in many 
studies. The models are weak because of their inability to cope with the, as yet, unknown relationship between defects and failures. 
There are fundamental statistical and data quality problems that undermine model validity. More significantly many prediction models 
tend to model only part of the underlying problem and seriously misspecify it. To illustrate these points the “Goldilock’s Conjecture,” 
that there is an optimum module size, is used to show the considerable problems inherent in current defect prediction approaches. 
Careful and considered analysis of past and new results shows that the conjecture lacks support and that some models are 
misleading. We recommend holistic models for software defect prediction, using Bayesian Belief Networks, as alternative 
approaches to the single-issue models used at present. We also argue for research into a theory of “software decomposition” in 
order to test hypotheses about defect introduction and help construct a better science of software engineering. 

Index Terms—Software faults and failures, defects, complexity metrics, fault-density, Bayesian Belief Networks. 
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1 INTRODUCTION

RGANIZATIONS are still asking how they can predict the 
quality of their software before it is used despite the 

substantial research effort spent attempting to find an answer 
to this question over the last 30 years. There are many papers 
advocating statistical models and metrics which purport to 
answer the quality question. Defects, like quality, can be de-
fined in many different ways but are more commonly de-
fined as deviations from specifications or expectations which 
might lead to failures in operation. 

Generally, efforts have tended to concentrate on the fol-
lowing three problem perspectives [1], [2], [3]: 

1) predicting the number of defects in the system;  
2) estimating the reliability of the system in terms of 

time to failure;  
3) understanding the impact of design and testing pro- 

cesses on defect counts and failure densities. 
A wide range of prediction models have been proposed. 

Complexity and size metrics have been used in an attempt 
to predict the number of defects a system will reveal in op-
eration or testing. Reliability models have been developed 
to predict failure rates based on the expected operational 
usage profile of the system. Information from defect detec-
tion and the testing process has been used to predict de-
fects. The maturity of design and testing processes have 
been advanced as ways of reducing defects. Recently large 
complex multivariate statistical models have been pro-
duced in an attempt to find a single complexity metric that 
will account for defects. 

This paper provides a critical review of this literature 
with the purpose of identifying future avenues of research. 
We cover complexity and size metrics (Section 2), the test-
ing process (Section 3), the design and development process 
(Section 4), and recent multivariate studies (Section 5). For a 
comprehensive discussion of reliability models, see [4]. We 
uncover a number of theoretical and practical problems in 
these studies in Section 6, in particular the so-called “Goldi-
lock’s Conjecture.” 

Despite the many efforts to predict defects, there appears 
to be little consensus on what the constituent elements of the 
problem really are. In Section 7, we suggest a way to improve 
the defect prediction situation by describing a prototype, 
Bayesian Belief Network (BBN) based, model which we feel 
can at least partly solve the problems identified. Finally, in 
Section 8 we record our conclusions. 

2 PREDICTION USING SIZE AND COMPLEXITY 
METRICS 

Most defect prediction studies are based on size and com-
plexity metrics. The earliest such study appears to have been 
Akiyama’s, [5], which was based on a system developed at 
Fujitsu, Japan. It is typical of many regression based “data 
fitting” models which became common place in the litera-
ture. The study showed that linear models of some simple 
metrics provide reasonable estimates for the total number of 
defects D (the dependent variable) which is actually defined 
as the sum of the defects found during testing and the de-
fects found during two months after release. Akiyama com-
puted four regression equations. 

Akiyama’s first Equation (1) predicted defects from lines 
of code (LOC). From (1) it can be calculated that a 1,000 
LOC (i.e., 1 KLOC) module is expected to have approxi-
mately 23 defects. 
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D L= +4 86 0 018. .                                    (1) 

Other equations had the following dependent metrics: 
number of decisions C; number of subroutine calls J; and a 
composite metric C + J. 

Another early study by Ferdinand, [6], argued that the 
expected number of defects increases with the number n of 
code segments; a code segment is a sequence of executable 
statements which, once entered, must all be executed. Spe-
cifically the theory asserts that for smaller numbers of seg-
ments, the number of defects is proportional to a power of n; 
for larger numbers of segments, the number of defects in-
creases as a constant to the power n. 

Halstead, [7], proposed a number of size metrics, which 
have been interpreted as “complexity” metrics, and used 
these as predictors of program defects. Most notably, Hal-
stead asserted that the number of defects D in a program P 
is predicted by (2): 

D
V

= 3 000,                                        (2) 

where V is the (language dependent) volume metric (which 
like all the Halstead metrics is defined in terms of number 
of unique operators and unique operands in P; for details 
see [8]). The divisor 3,000 represents the mean number of 
mental discriminations between decisions made by the 
programmer. Each such decision possibly results in error 
and thereby a residual defect. Thus, Halstead’s model was, 
unlike Akiyama’s, based on some kind of theory. Interest-
ingly, Halstead himself “validated” (1) using Akiyama’s 
data. Ottenstein, [9], obtained similar results to Halstead. 

Lipow, [10] went much further, because he got round the 
problem of computing V directly in (3), by using lines of ex-
ecutable code L instead. Specifically, he used the Halstead 
theory to compute a series of equations of the form: 

D
L A A L A L= + +0 1 2

2ln ln                          (3) 

where each of the Ai are dependent on the average number 
of usages of operators and operands per LOC for a particu-
lar language. For example, for Fortran A0 = 0.0047; A1 = 
0.0023; A2 = 0.000043. For an assembly language A0 = 0.0012; 
A1 = 0.0001; A2 = 0.000002. 

Gaffney, [11], argued that the relationship between D 
and L was not language dependent. He used Lipow’s own 
data to deduce the prediction (4): 

D L= +4 0 0015 4 3.2 . ( ) /                              (4) 

An interesting ramification of this was that there was an 
optimal size for individual modules with respect to defect 
density. For (4) this optimum module size is 877 LOC. 
Numerous other researchers have since reported on opti-
mal module sizes. For example, Compton and Withrow of 
UNISYS derived the following polynomial equation, [12]: 

D L L= + +0 069 0 00156 0 00000047 2. . . ( )                (5) 

Based on (5) and further analysis Compton and Withrow 
concluded that the optimum size for an Ada module, with 
respect to minimizing error density is 83 source statements. 
They dubbed this the “Goldilocks Principle” with the idea 
that there is an optimum module size that is “not too big 
nor too small.” 

The phenomenon that larger modules can have lower 
defect densities was confirmed in [13], [14], [15]. Basili and 
Perricone argued that this may be explained by the fact 
that there are a large number of interface defects distrib-
uted evenly across modules. Moller and Paulish suggested 
that larger modules tend to be developed more carefully; 
they discovered that modules consisting of greater than 70 
lines of code have similar defect densities. For modules of 
size less than 70 lines of code, the defect density increases 
significantly. 

Similar experiences are reported by [16], [17]. Hatton ex-
amined a number of data sets, [15], [18] and concluded that 
there was evidence of “macroscopic behavior” common to 
all data sets despite the massive internal complexity of each 
system studied, [19]. This behavior was likened to “mole-
cules” in a gas and used to conjecture an entropy model for 
defects which also borrowed from ideas in cognitive psy-
chology. Assuming the short-term memory affects the rate 
of human error he developed a logarithmic model, made 
up of two parts, and fitted it to the data sets.1 The first part 
modeled the effects of small modules on short-term mem-
ory, while the second modeled the effects of large modules. 
He asserted that, for module sizes above 200-400 lines of 
code, the human “memory cache” overflows and mistakes 
are made leading to defects. For systems decomposed into 
smaller pieces than this cache limit the human memory 
cache is used inefficiently storing “links” between the 
modules thus also leading to more defects. He concluded 
that larger components are proportionally more reliable 
than smaller components. Clearly this would, if true, cast 
serious doubt over the theory of program decomposition 
which is so central to software engineering. 

The realization that size-based metrics alone are poor 
general predictors of defect density spurred on much re-
search into more discriminating complexity metrics. 
McCabe’s cyclomatic complexity, [20], has been used in 
many studies, but it too is essentially a size measure (being 
equal to the number of decisions plus one in most pro-
grams). Kitchenham et al. [21], examined the relationship 
between the changes experienced by two subsystems and a 
number of metrics, including McCabe’s metric. Two differ-
ent regression equations resulted (6), (7): 

C MCI N HE= - +0 042 0 075 0 00001. . .                 (6) 

C MCI DI VG= - +0 0 53 0 09.25 . .                     (7) 

For the first subsystem changes, C, was found to be rea-
sonably dependent on machine code instructions, MCI, op-
erator and operand totals, N, and Halstead’s effort metric, 
HE. For the other subsystem McCabe’s complexity metric, 
VG was found to partially explain C along with machine 
code instructions, MCI and data items, DI. 

All of the metrics discussed so far are defined on code. 
There are now a large number of metrics available earlier 
in the life-cycle, most of which have been claimed by their 
proponents to have some predictive powers with respect 

 
1. There is nothing new here since Halstead [3] was one of the first to apply 

Miller’s finding that people can only effectively recall seven plus or minus two 
items from their short-term memory. Likewise the construction of a partitioned 
model contrasting “small” module effects on faults and “large” module effects 
on faults was done by Compton and Withrow in 1990 [7]. 
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to residual defect density. For example, there have been 
numerous attempts to define metrics which can be ex-
tracted from design documents using counts of “between 
module complexity” such as call statements and data 
flows; the most well known are the metrics in [22]. Ohls-
son and Alberg, [23], reported on a study at Ericsson 
where metrics derived automatically from design docu-
ments were used to predict especially fault-prone modules 
prior to testing. Recently, there have been several at-
tempts, such as [24], [25], to define metrics on object-
oriented designs. 

The advent and widespread use of Albrecht Function 
Points (FPs) raises the possibility of defect density predic-
tions based on a metric which can be extracted at the speci-
fication stage. There is widespread belief that FPs are a bet-
ter (one-dimensional) size metric than LOC; in theory at 
least they get round the problems of lack of uniformity and 
they are also language independent. We already see defect 
density defined in terms of defects per FP, and empirical 
studies are emerging that seem likely to be the basis for 
predictive models. For example, in Table 1, [26] reports the 
following bench-marking study, reportedly based on large 
amounts of data from different commercial sources.  

3 PREDICTION USING TESTING METRICS 
Some of the most promising local models for predicting 
residual defects involve very careful collection of data 
about defects discovered during early inspection and test-
ing phases. The idea is very simple: you have n predefined 
phases at which you collect data dn (the defect rate. Sup-
pose phase n represents the period of the first six months of 
the product in the field, so that dn is the rate of defects 
found within that period. To predict dn at phase n – 1 
(which might be integration testing) you look at the actual 
sequence d1, ..., dn–1 and compare this with profiles of simi-
lar, previous products, and use statistical extrapolation 
techniques. With enough data it is possible to get accurate 
predictions of dn based on observed d1, ..., dm where m is less 
than n – 1. This method is an important feature of the Japa-
nese software factory approach [27], [28], [29]. Extremely 
accurate predictions are claimed (usually within 95 percent 
confidence limits) due to stability of the development and 
testing environment and the extent of data collection. It 
appears that the IBM NASA Space shuttle team is achieving 
similarly accurate predictions based on the same kind of 
approach [18]. 

In the absence of an extensive local database it may be 
possible to use published bench-marking data to help with 
this kind of prediction. Dyer, [30], and Humphrey, [31], con-
tain a lot of this kind of data. Buck and Robbins, [32], report 
on some remarkably consistent defect density values during 
different review and testing stages across different types of 
software projects at IBM. For example, for new code devel-
oped the number of defects per KLOC discovered with Fa-
gan inspections settles to a number between 8 and 12. There 
is no such consistency for old code. Also the number of man-
hours spent on the inspection process per major defect is 
always between three and five. The authors speculate that, 
despite being unsubstantiated with data, these values form 
“natural numbers of programming,” believing that they are 

“inherent to the programming process itself.” Also useful 
(providing you are aware of the kind of limitations discussed 
in [33]) is the kind of data published by [34] in Table 2. 

One class of testing metrics that appear to be quite prom-
ising for predicting defects are the so called test coverage 
measures. A structural testing strategy specifies that we 
have to select enough test cases so that each of a set of “ob-
jects” in a program lie on some path (i.e., are “covered”) in 
at least on test case. For example, statement coverage is a 
structural testing strategy in which the “objects” are the 
statements. For a given strategy and a given set of test cases 
we can ask what proportion of coverage has been achieved. 
The resulting metric is defined as the Test Effectiveness Ra-
tio (TER) with respect to that strategy. For example, TER1 is 
the TER for statement coverage; TER2 is the TER for branch 
coverage; and TER3 is the TER for linear code sequence and 
jump coverage. Clearly we might expect the number of dis-
covered defects to approach the number of defects actually 
in the program as the values of these TER metrics increases. 
Veevers and Marshall, [35], report on some defect and reli-
ability prediction models using these metrics which give 
quite promising results. Interestingly Neil, [36], reported 
that the modules with high structural complexity metric 
values had a significantly lower TER than smaller modules. 
This supports our intuition that testing larger modules is 
more difficult and that such modules would appear more 
likely to contain undetected defects. 

Voas and Miller use static analysis of programs to conjec-
ture the presence or absence of defects before testing has 
taken place, [37]. Their method relies on a notion of program 
testability, which seeks to determine how likely a program 
will fail assuming it contains defects. Some programs will 
contain defects that may be difficult to discover by testing by 
virtue of their structure and organization. Such programs 
have a low defect revealing potential and may, therefore, 
hide defects until they show themselves as failures during 
operation. Voas and Miller use program mutation analysis to 
simulate the conditions that would cause a defect to reveal 
itself as a failure if a defect was indeed present. Essentially if 
program testability could be estimated before testing takes 
place the estimates could help predict those programs that 
would reveal less defects during testing even if they contained 

TABLE 1 
DEFECTS PER LIFE-CYCLE PHASE PREDICTION  

USING TESTING METRICS 

Defect Origins Defects per Function Point 

Requirements 1.00 
Design 1.25 
Coding 1.75 
Documentation 0.60 
Bad fixes 0.40 
    Total 5.00 

TABLE 2 
DEFECTS FOUND PER TESTING APPROACH 

Testing Type Defects Found/hr 

Regular use 0.210 
Black box 0.282 
White box 0.322 
Reading/inspections 1.057 
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defects. Bertolino and Strigini, [38], provide an alternative 
exposition of testability measurement and its relation to test-
ing, debugging, and reliability assessment.  

4 PREDICTION USING PROCESS QUALITY DATA 
There are many experts who argue that the “quality” of the 
development process is the best predictor of product quality 
(and hence, by default, of residual defect density). This issue, 
and the problems surrounding it, is discussed extensively in 
[33]. There is a dearth of empirical evidence linking process 
quality to product quality. The simplest metric of process 
quality is the five-level ordinal scale SEI Capability Maturity 
Model (CMM) ranking. Despite its widespread popularity, 
there was until recently no evidence to show that level (n + 1) 
companies generally deliver products with lower residual 
defect density than level (n) companies. The Diaz and Sligo 
study, [39], provides the first promising empirical support for 
this widely held assumption. 

Clearly the strict 1–5 ranking, as prescribed by the SEI-
CMM, is too coarse to be used directly for defect prediction 
since not all of the processes covered by the CMM will relate 
to software quality. The best available evidence relating par-
ticular process methods to defect density concerns the Clean-
room method [30]. There is independent validation that, for 
relatively small projects (less than 30 KLOC), the use of 
Cleanroom results in approximately three errors per KLOC 
during statistical testing, compared with traditional devel-
opment postdelivery defect densities of between five to 10 
defects per KLOC. Also, Capers Jones hypothesizes quality 
targets expressed in “defect potentials” and “delivered de-
fects” for different CMM levels, as shown in Table 3 [40]. 

5 MULTIVARIATE APPROACHES 
There have been many attempts to develop multilinear re-
gression models based on multiple metrics. If there is a con-
sensus of sorts about such approaches it is that the accuracy 
of the predictions is never significantly worse when the 
metrics set is reduced to a handful (say 3-6 rather than 30), 
[41]; a major reason for this is that many of the metrics are 
colinear; that is they capture the same underlying attribute 
(so the reduced set of metrics has the same information con-
tent, [42]). Thus, much work has concentrated on how to 
select those small number of metrics which are somehow 
the most powerful and/or representative. Principal Com-
ponent Analysis (see [43]) is used in some of the studies to 
reduce the dimensionality of many related metrics to a 
smaller set of “principal components,” while retaining most 
of the variation observed in the original metrics. 

For example, [42] discovered that 38 metrics, collected on 
around 1,000 modules, could be reduced to six orthogonal 
dimensions that account for 90 percent of the variability. The 
most important dimensions; size, nesting, and prime were 
then used to develop an equation to discriminate between 
low and high maintainability modules. 

Munson and Khoshgoftaar in various papers, [41], [43], 
[44] use a similar technique, factor analysis, to reduce the 
dimensionality to a number of “independent” factors. 
These factors are then labeled so as to represent the “true” 

underlying dimension being measured, such as control, 
volume and modularity. In [43] they used factor analytic 
variables to help fit regression models to a number of error 
data sets, including Akiyama’s [5]. This helped to get over 
the inherent regression analysis problems presented by 
multicolinearity in metrics data. 

Munson and Khoshgoftaar have advanced the multi-
variate approach to calculate a “relative complexity metric.” 
This metric is calculated using the magnitude of variability 
from each of the factor analysis dimensions as the input 
weights in a weighted sum. In this way a single metric in-
tegrates all of the information contained in a large number 
of metrics. This is seen to offer many advantages of using a 
univariate decision criterion such as McCabe’s metric [44]. 

6 A CRITIQUE OF CURRENT APPROACHES TO 
DEFECT PREDICTION 

Despite the heroic contributions made by the authors of 
previous empirical studies, serious flaws remain and have 
detrimentally influenced our models for defect prediction. 
Of course, such weaknesses exist in all scientific endeav-
ours but if we are to improve scientific enquiry in software 
engineering we must first recognize past mistakes before 
suggesting ways forward. 

The key issues affecting the software engineering com-
munity’s historical research direction, with respect to defect 
prediction, are: 

� the unknown relationship between defects and fail-
ures (Section 6.1); 

� problems with the “multivariate” statistical approach 
(Section 6.2); 

� problems of using size and complexity metrics as sole 
“predictors” of defects (Section 6.3); 

� problems in statistical methodology and data quality 
(Section 6.4); 

� false claims about software decomposition and the 
“Goldilock’s Conjecture” (Section 6.5). 

6.1 The Unknown Relationship between Defects and 
Failures 

There is considerable disagreement about the definitions of 
defects, errors, faults, and failures. In different studies de-
fect counts refer to: 

� postrelease defects;  
� the total of “known” defects; 
� the set of defects discovered after some arbitrary fixed 

point in the software life cycle (e.g., after unit testing). 

TABLE 3 
RELATIONSHIP BETWEEN CMM LEVELS AND DELIVERED  

DEFECTS MULTIVARIATE APPROACHES 

SEI CMM  
Levels 

Defect  
Potentials 

Removal  
Efficiency (%) 

Delivered  
Defects 

1 5 85 0.75 
2 4 89 0.44 
3 3 91 0.27 
4 2 93 0.14 
5 1 95 0.05 
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The terminology differs widely between studies; defect 
rate, defect density, and failure rate are used almost inter-
changeably. It can also be difficult to tell whether a model is 
predicting discovered defects or residual defects. Because of 
these problems (which are discussed extensively in [45]) we 
have to be extremely careful about the way we interpret 
published predictive models. 

Apart from these problems of terminology and defini-
tion the most serious weakness of any prediction of residual 
defects or defect density concerns the weakness of defect 
count itself as a measure of software reliability.2 Even if we 
knew exactly the number of residual defects in our system 
we have to be extremely wary about making definitive 
statements about how the system will operate in practice. 
The reasons for this appear to be: 

� difficulty of determining in advance the seriousness 
of a defect; few of the empirical studies attempt to 
distinguish different classes of defects;  

� great variability in the way systems are used by dif-
ferent users, resulting in wide variations of opera-
tional profiles. It is thus difficult to predict which de-
fects are likely to lead to failures (or to commonly oc-
curring failures). 

The latter point is particularly serious and has been high-
lighted dramatically by [46]. Adams examined data from 
nine large software products, each with many thousands of 
years of logged use world wide. He charted the relationship 
between detected defects and their manifestation as fail-
ures. For example, 33 percent of all defects led to failures 
with a mean time to failure greater than 5,000 years. In 
practical terms, this means that such defects will almost 
never manifest themselves as failures. Conversely, the pro-
portion of defects which led to a mean time to failure of less 
than 50 years was very small (around 2 percent). However, 
it is these defects which are the important ones to find, 
since these are the ones which eventually exhibit them-
selves as failures to a significant number of users. Thus, 
Adams’ data demonstrates the Pareto principle: a very small 
proportion of the defects in a system will lead to almost all 
the observed failures in a given period of time; conversely, 
most defects in a system are benign in the sense that in the 
same given period of time they will not lead to failures. 

It follows that finding (and removing) large numbers of 
defects may not necessarily lead to improved reliability. It 
also follows that a very accurate residual defect density pre-
diction may be a very poor predictor of operational reliabil-
ity, as has been observed in practice [47]. This means we 
should be very wary of attempts to equate fault densities 
with failure rates, as proposed for example by Capers Jones 
(Table 4 [48]). Although highly attractive in principle, such a 
model does not stand up to empirical validation.  

Defect counts cannot be used to predict reliability because, 
despite its usefulness from a system developer’s point of 
view, it does not measure the quality of the system as the 
user is likely to experience it. The promotion of defect counts 
as a measure of “general quality” is, therefore, misleading. 

 
2. Here we use the “technical” concept of reliability, defined as mean time 

to failure or probability of failure on demand, in contrast to the “looser” 
concept of reliability with its emphasis on defects. 

Reliability prediction should, therefore, be viewed as com-
plementary to defect density prediction. 

6.2 Problems with the Multivariate Approach 
Applying multivariate techniques, like factor analysis, pro-
duces metrics which cannot be easily or directly interpret-
able in terms of program features. For example, in [43] a 
factor dimension metric, control, was calculated by the 
weighted sum (8): 

control a HNK a PRC a E a VG a MMC

a Error a HNP a LOC

= + + + +
+ + +

1 2 3 4 5

6 7 8
      (8) 

where the ai s are derived from factor analysis. HNK was 
Henry and Kafura’s information flow complexity metric, 
PRC is a count of the number of procedures, E is Halstead’s 
effort metric, VG is McCabe’s complexity metric, MMC is 
Harrison’s complexity metric, and LOC is lines of code. Al-
though this equation might help to avoid multicolinearity it 
is hard to see how you might advise a programmer or de-
signer on how to redesign the programs to achieve a “bet-
ter” control metric value for a given module. Likewise the 
effects of such a change in module control on defects is less 
than clear. 

These problems are compounded in the search for an ul-
timate or relative complexity metric [43]. The simplicity of 
such a single number seems deceptively appealing but the 
principles of measurement are based on identifying differing 
well-defined attributes with single standard measures [45]. 
Although there is a clear role for data reduction and analysis 
techniques, such as factor analysis, this should not be con-
fused or used instead of measurement theory. For example, 
statement count and lines of code are highly correlated be-
cause programs with more lines of code typically have a 
higher number of statements. This does not mean that the 
true size of programs is some combination of the two metrics. 
A more suitable explanation would be that both are alterna-
tive measures of the same attribute. After all centigrade and 
fahrenheit are highly correlated measures of temperature. 
Meteorologists have agreed a convention to use one of these 
as a standard in weather forecasts. In the United States tem-
perature is most often quoted as fahrenheit, while in the 
United Kingdom it is quoted as centigrade. They do not take 
a weighted sum of both temperature measures. This point 
lends support to the need to define meaningful and standard 
measures for specific attributes rather than searching for a 
single metric using the multivariate approach. 

6.3 Problems in Using Size and Complexity Metrics 
to Predict Defects 

A discussion of the theoretical and empirical problems with 
many of the individual metrics discussed above may be 

TABLE 4 
DEFECTS DENSITY (F/KLOC) VS. MTTF 

F/KLOC MTTF 

> 30 1 min 
20–30 4-5 min 
5–10 1 hr 
2–5 several hours 
1–2 24 hr 
0.5–1 1 month 
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found in [45]. There are as many empirical studies (see, for 
example, [49], [50], [51]) refuting the models based on Hal-
stead, and McCabe as there are studies “validating” them. 
Moreover, some of the latter are seriously flawed. Here we 
concentrate entirely on their use within models used to 
predict defects. 

The majority of size and complexity models assume a 
straightforward relationship with defects—defects are a 
function of size or defects are caused by program complex-
ity. Despite the reported high correlations between design 
complexity and defects the relationship is clearly not a 
straightforward one. It is clear that it is not entirely causal 
because if it were we couldn’t explain the presence of de-
fects introduced when the requirements are defined. It is 
wrong to mistake correlation for causation. An analogy 
would be the significant positive correlation between IQ 
and height in children. It would be dangerous to predict IQ 
from height because height doesn’t cause high IQ; the un-
derlying causal factor is physical and mental maturation. 
There are a number of interesting observations about the 
way complexity metrics are used to predict defect counts: 

� the models ignore the causal effects of programmers 
and designers. After all it is they who introduce the 
defects so any attribution for faulty code must finally 
rest with individual(s);  

� overly complex programs are themselves a conse-
quence of poor design ability or problem difficulty. 
Difficult problems might demand complex solutions 
and novice programmers might produce “spaghetti 
code”; 

� defects may be introduced at the design stage because 
of the overcomplexity of the designs already pro-
duced. Clerical errors and mistakes will be committed 
because the existing design is difficult to comprehend. 
Defects of this type are “inconsistencies” between de-
sign modules and can be thought of as quite distinct 
from requirements defects. 

6.4 Problems in Data Quality and Statistical 
Methodology 

The weight given to knowledge obtained by empirical 
means rests on the quality of the data collected and the de-
gree of rigor employed in analyzing this data. Problems in 
either data quality or analysis may be enough to make the 
resulting conclusions invalid. Unfortunately some defect 
prediction studies have suffered from such problems. These 
problems are caused, in the main, by a lack of attention to 
the assumptions necessary for successful use of a particular 
statistical technique. Other serious problems include the 
lack of distinction made between model fitting and model 
prediction and the unjustified removal of data points or 
misuse of averaged data. 

The ability to replicate results is a key component of any 
empirical discipline. In software development different find-
ings from diverse experiments could be explained by the fact 
that different, perhaps uncontrolled, processes were used on 
different projects. Comparability over case studies might be 
better achieved if the processes used during development 
were documented, along with estimates of the extent to 
which they were actually followed.  

6.4.1 Multicolinearity 
Multicolinearity is the most common methodological prob-
lem encountered in the literature. Multicolinearity is pre-
sent when a number of predictor variables are highly posi-
tively or negatively correlated. Linear regression depends 
on the assumption of zero correlation between predictor 
variables, [52]. The consequences of multicolinearity are 
many fold; it causes unstable coefficients, misleading statis-
tical tests, and unexpected coefficient signs. For example, 
one of the equations in [21] (9): 

C MCI N HE= - +0 042 0 075 0 00001. . .             (9) 

shows clear signs of multicolinearity. If we examine the 
equation coefficients we can see that an increase in the op-
erator and operand total, N, should result in an increase in 
changes, c, all things being equal. This is clearly counter-
intuitive. In fact analysis of the data reveals that machine 
code instructions, MCI, operand, and operator count, N, 
and Halstead’s Effort metric, HE, are all highly correlated 
[42]. This type of problem appears to be common in the 
software metrics literature and some recent studies appear to 
have fallen victim to the multicolinearity problem [12], [53]. 

Colinearity between variables has also been detected in a 
number of studies that reported a negative correlation be-
tween defect density and module size. Rosenberg reports 
that, since there must be a negative correlation between X, 
size, and 1/X it follows that the correlation between X and 
Y/X (defects/size) must be negative whenever defects are 
growing at most linearly with size [54]. Studies which have 
postulated such a linear relationship are more than likely to 
have detected negative correlation, and therefore concluded 
that large modules have smaller defect densities, because of 
this property of arithmetic.  

6.4.2 Factor Analysis vs. Principal Components Analysis 
The use of factor analysis and principal components analysis 
solves the multicolinearity problem by creating new or-
thogonal factors or principal component dimensions, [43]. 
Unfortunately the application of factor analysis assumes the 
errors are Gaussian, whereas [55] notes that most software 
metrics data is non-Gaussian. Principal components analysis 
can be used instead of factor analysis because it does not rely 
on any distributional assumptions, but will on many occa-
sions produce results broadly in agreement with factor 
analysis. This makes the distinction a minor one, but one that 
needs to be considered.  

6.4.3 Fitting Models vs. Predicting Data 
Regression modeling approaches are typically concerned 
with fitting models to data rather than predicting data. Re-
gression analysis typically finds the least-squares fit to the 
data and the goodness of this fit demonstrates how well the 
model explains historical data. However a truly successful 
model is one which can predict the number of defects dis-
covered in an unknown module. Furthermore, this must be a 
module not used in the derivation of the model. Unfortu-
nately, perhaps because of the shortage of data, some re-
searchers have tended to use their data to fit the model 
without being able to test the resultant model out on a new 
data set. See, for example, [5], [12], [16]. 
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6.4.4 Removing Data Points 
In standard statistical practice there should normally be 
strong theoretical or practical justification for removing 
data points during analysis. Recording and transcription 
errors are often an acceptable reason. Unfortunately, it is 
often difficult to tell from published papers whether any 
data points have been removed before analysis, and if they 
have, the reasons why. One notable case is Compton and 
Withrow, [12], who reported removing a large number of 
data points from the analysis because they represented 
modules that had experienced zero defects. Such action is 
surprising in view of the conjecture they wished to test; that 
defects were minimised around an optimum size for Ada. If 
the majority of smaller modules had zero defects, as it ap-
pears, then we cannot accept Compton and Withrow’s con-
clusions about the “Goldilock’s Conjecture.” 

6.4.5 Using “Averaged” Data 
We believe that the use of “averaged” data in analysis 
rather than the original data prejudices many studies. The 
study in [19] uses graphs, apparently derived from the 
original NASA-Goddard data, plotting “average size in 
statements” against “number of defects” or “defect den-
sity.” Analysis of averages are one step removed from the 
original data and it raises a number of issues. Using aver-
ages reduces the amount of information available to test the 
conjecture under study and any conclusions will be corre-
spondingly weaker. The classic study in [13] used average 
fault density of grouped data in a way that suggested a 
trend that was not supported by the raw data. The use of 
averages may be a practical way around the common prob-
lem where defect data is collected at a higher level, perhaps 
at the system or subsystem level, than is ideal; defects re-
corded against individual modules or procedures. As a con-
sequence data analysis must match defect data on systems 
against statement counts automatically collected at the 
module level. There may be some modules within a subsys-
tem that are over penalized when others keep the average 
high because the other modules in that subsystem have 
more defects or vice versa. Thus, we cannot completely 
trust any defect data collected in this way. 

Misuse of averages has occurred in one other form. In 
Gaffney’s paper, [11], the rule for optimal module size was 
derived on the assumption that to calculate the total num-
ber of defects in a system we could use the same model as 
had been derived using module defect counts. The model 
derived at the module level is shown by (4) and can be ex-
tended to count the total defects in a system, DT, based on 
Li, (9). The total number of modules in the system is de-
noted by N. 

D D N LT i
i

N

i
i

N

= = +
= =
Ê Ê

1

4 3

1

4 0 0015.2 . ( ) /                (9) 

Gaffney assumes that the average module size can be 
used to calculate the total defect count and also the opti-
mum module size for any system, using (10): 
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However we can see that (9) and (10) are not equivalent. 
The use of (10) mistakenly assumes the power of a sum is 
equal to a sum of powers. 

6.5 The “Goldilock’s Conjecture” 
The results of inaccurate modeling and inference is perhaps 
most evident in the debate that surrounds the “Goldilock’s 
Conjecture” discussed in Section 2—the idea that there is an 
optimum module size that is “not too big nor too small.” 
Hatton, [19], claims that there is  

“compelling empirical evidence from disparate sources to sug-
gest that in any software system, larger components are propor-
tionally more reliable than smaller components.” 

If these results were generally true the implications for 
software engineering would be very serious indeed. It 
would mean that program decomposition as a way of solv-
ing problems simply did not work. Virtually all of the work 
done in software engineering extending from fundamental 
concepts, like modularity and information-hiding, to meth-
ods, like object-oriented and structured design would be 
suspect because all of them rely on some notion of decom-
position. If decomposition doesn’t work then there would 
be no good reason for doing it. 

Claims with such serious consequences as these deserve 
special attention. We must ask whether the data and 
knowledge exists to support them. These are clear criteria 
—if the data exist to refute the conjecture that large mod-
ules are “better” and if we have a sensible explanation for 
this result then a claim will stand. Our analysis shows that, 
using these criteria, these claims cannot currently stand. In 
the studies that support the conjecture we found the follow-
ing problems: 

� none define “module” in such a way as to make com-
parison across data sets possible;  

� none explicitly compare different approaches to struc-
turing and decomposing designs;  

� the data analysis or quality of the data used could not 
support the results claimed;  

� a number of factors exist that could partly explain the re-
sults which these studies have neglected to examine. 

Additionally, there are other data sets which do not show 
any clear relationships between module size and defect 
density. 

If we examine the various results we can divide them into 
three main classes. The first class contains models, exempli-
fied by graph Fig. 1a, that shows how defect density falls as 
module size increases. Models such as these have been pro-
duced by Akiyama, Gaffney, and Basili and Pericone. The 
second class of models, exemplified by Fig. 1b, differ from 
the first because they show the Goldilock’s principle at work. 
Here defect density rises as modules get bigger in size. The 
third class, exemplified by Fig. 1c, shows no discernible pat-
tern whatsoever. Here the relationship between defect den-
sity and module size appears random (no meaningful curvi-
linear models could be fitted to the data at all. 

The third class of results show the typical data pattern 
from a number of very large industrial systems. One data set 
was collected at the Tandem Corporation and was reported 
in, [56]. The Tandem data was subsequently analyzed by Neil 
[42], using the principal components technique to produce a 
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“combined measure” of different size measures, such as deci-
sion counts. This principal component statistic was then plot-
ted against the number of changes made to the system mod-
ules (these were predominantly changes made to fix defects). 
This defect data was standardized according to normal statis-
tical practice. A polynomial regression curve was fitted to the 
data in order to determine whether there was significant 
nonlinear effects of size on defect density. The results were 
published and are reproduced here in Fig. 2. 

Despite some parameters of the polynomial curve being 
statistically significant it is obvious that there is no discerni-
ble relationship between defect counts and module size in 
the Tandem data set. Many small modules experienced no 
defects at all and the fitted polynomial curve would be use-
less for prediction. This data clearly refutes the simplistic 
assumptions typified by class Fig. 1a and 1b models (these 
models couldn’t explain the Tandem data) nor accurately 
predict the defect density values of these Tandem modules. A 
similar analysis and result is presented in [47]. 

We conclude that the relationship between defects and 
module size is too complex, in general, to admit to straight-
forward curve fitting models. These results, therefore, con-
tradict the idea that there is a general law linking defect 
density and software component size as suggested by the 
“Goldilock’s Conjecture.” 

7 PREDICTING DEFECTS USING BBNS 
It follows from our analysis in Section 6 that the suggestion 
that defects can be predicted by complexity or size meas-
ures alone presents only a skewed picture. The number of 
defects discovered is clearly related to the amount of testing 
performed, as discussed above. A program which has never 
been tested, or used for that matter, will have a zero defect 
count, even though its complexity may be very high. More-
over, we can assume the test effectiveness of complex pro-
grams is relatively low, [37], and such programs could be 
expected to exhibit a lower number of defects per line of 
code during testing because they “hide” defects more effec-
tively. This could explain many of the empirical results that 
larger modules have lower defect densities. Therefore, from 
what we know of testability, we could conclude that large 
modules contained many residual defects, rather than con-
cluding that large modules were more reliable (and by im-
plication that software decomposition is wrong). 

Clearly all of the problems described in Section 6 are not 
going to be solved easily. However, we believe that model-
ing the complexities of software development using new 
probabilistic techniques presents a positive way forward. 
These methods, called Bayesian Belief Networks (BBNs), 
allow us to express complex interrelations within the model 

 

Fig. 2. Tandem data defects counts vs. size “principal component.” 

 

Fig. 1. Three classes of defect density results. (a) Akiyama (1971), Basili and Perricome (1984), and Gaffney (1984); (b) Moeller and Paulish (1993), 
Compton and Withrow (1990), and Hatton (1997); (c) Neil (1992) and Fenton and Ohlsson (1997). 
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at a level of uncertainty commensurate with the problem. 
In this section, we first provide an overview of BBNs (Sec-
tion 7.1) and describe the motivation for the particular BBN 
example used in defects prediction (Section 7.2). In Section 
7.3, we describe the actual BBN.  

7.1 An Overview of BBNs 
Bayesian Belief Networks (also known as Belief Networks, 
Causal Probabilistic Networks, Causal Nets, Graphical 
Probability Networks, Probabilistic Cause-Effect Models, 
and Probabilistic Influence Diagrams) have attracted much 
recent attention as a possible solution for the problems of 
decision support under uncertainty. Although the underly-
ing theory (Bayesian probability) has been around for a 
long time, the possibility of building and executing realistic 
models has only been made possible because of recent algo-
rithms and software tools that implement them [57]. To date 
BBNs have proven useful in practical applications such as 
medical diagnosis and diagnosis of mechanical failures. 
Their most celebrated recent use has been by Microsoft 
where BBNs underlie the help wizards in Microsoft Office; 
also the “intelligent” printer fault diagnostic system which 
you can run when you log onto Microsoft’s web site is in 
fact a BBN which, as a result of the problem symptoms you 
enter, identifies the most likely fault. 

A BBN is a graphical network that represents probabilis-
tic relationships among variables. BBNs enable reasoning 
under uncertainty and combine the advantages of an intui-
tive visual representation with a sound mathematical basis 
in Bayesian probability. With BBNs, it is possible to articu-
late expert beliefs about the dependencies between different 
variables and to propagate consistently the impact of evi-
dence on the probabilities of uncertain outcomes, such as 
“future system reliability.” BBNs allow an injection of scien-
tific rigor when the probability distributions associated 
with individual nodes are simply “expert opinions.” 

A BBN is a special type of diagram (called a graph) to-
gether with an associated set of probability tables. The graph 
is made up of nodes and arcs where the nodes represent un-
certain variables and the arcs the causal/relevance relation-
ships between the variables. Fig. 3 shows a BBN for an exam-
ple “reliability prediction” problem. The nodes represent 
discrete or continuous variables, for example, the node “use 
of IEC 1508” (the standard) is discrete having two values 
“yes” and “no,” whereas the node “reliability” might be con-
tinuous (such as the probability of failure). The arcs represent 
causal/influential relationships between variables. For ex-
ample, software reliability is defined by the number of (la-
tent) faults and the operational usage (frequency with which 
faults may be triggered). Hence, we model this relationship 
by drawing arcs from the nodes “number of latent faults and 
“operational usage” to “reliability.” 

For the node “reliability” the node probability table (NPT) 
might, therefore, look like that shown in Table 5 (for ultra-
simplicity we have made all nodes discrete so that here reli-
ability takes on just three discrete values low, medium, and 
high). The NPTs capture the conditional probabilities of a 
node given the state of its parent nodes. For nodes without 
parents (such as “use of IEC 1508” in Fig. 3.) the NPTs are 
simply the marginal probabilities. 

There may be several ways of determining the probabili-

ties for the NPTs. One of the benefits of BBNs stems from the 
fact that we are able to accommodate both subjective prob-
abilities (elicited from domain experts) and probabilities 
based on objective data. Recent tool developments, notably 
on the SERENE project [58], mean that it is now possible to 
build very large BBNs with very large probability tables (in-
cluding continuous node variables). In three separate indus-
trial applications we have built BBNs with several hundred 
nodes and several millions of probability values [59]. 

There are many advantages of using BBNs, the most im-
portant being the ability to represent and manipulate com-
plex models that might never be implemented using conven-
tional methods. Another advantage is that the model can 
predict events based on partial or uncertain data. Because 
BBNs have a rigorous, mathematical meaning there are soft-
ware tools that can interpret them and perform the complex 
calculations needed in their use [58]. 

The benefits of using BBNs include: 

� specification of complex relationships using condi-
tional probability statements;  

� use of “what-if? analysis and forecasting of effects of 
process changes;  

� easier understanding of chains of complex and seem-
ingly contradictory reasoning via the graphical for-
mat;  

� explicit modeling of “ignorance” and uncertainty in 
estimates;  

� use of subjectively or objectively derived probability 
distributions;  

� forecasting with missing data. 

7.2 Motivation for BBN Approach 
Clearly defects are not directly caused by program complex-
ity alone. In reality the propensity to introduce defects will be 
influenced by many factors unrelated to code or design com-
plexity. There are a number of causal factors at play when we 
want to explain the presence of defects in a program: 

� Difficulty of the problem  
� Complexity of designed solution  
� Programmer/analyst skill  
� Design methods and procedures used 

Eliciting requirements is a notoriously difficult process 
and is widely recognized as being error prone. Defects intro-
duced at the requirements stage are claimed to be the most 
expensive to remedy if they are not discovered early enough. 
Difficulty depends on the individual trying to understand 
and describe the nature of the problem as well as the prob-
lem itself. A “sorting” problem may appear difficult to a nov-
ice programmer but not to an expert. It also seems that the 
difficulty of the problem is partly influenced by the number 
of failed attempts at solutions there have been and whether a 
“ready made” solution can be reused. Thus, novel problems 
have the highest potential to be difficult and “known” prob-
lems tend to be simple because known solutions can be iden-
tified and reused. Any software development project will 
have a mix of “simple” and “difficult” problems depending 
on what intellectual resources are available to tackle them. 
Good managers know this and attempt to prevent defects by 
pairing up people and problems; easier problems to novices 
and difficult problems to experts. 
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When assessing a defect it is useful to determine when it 
was introduced. Broadly speaking there are two types of 
defect; those that are introduced in the requirements and 
those introduced during design (including coding/ imple-
mentation which can be treated as design). Useful defect 
models need to explain why a module has a high or low 
defect count if we are to learn from its use, otherwise we 
could never intervene and improve matters. Models using 
size and complexity metrics are structurally limited to as-
suming that defects are solely caused by the internal or-
ganization of the software design. They cannot explain de-
fects introduced because: 

� the “problem” is “hard”;  
� problem descriptions are inconsistent;  
� the wrong “solution” is chosen and does not fulfill the 

requirements. 

We have long recognized in software engineering that 
program quality can be potentially improved through the use 
of proper project procedures and good design methods. Basic 
project procedures like configuration management, incident 
logging, documentation and standards should help reduce 
the likelihood of defects. Such practices may not help the 
unique genius you need to work on the really difficult prob-
lems but they should raise the standards of the mediocre. 

Central to software design method is the notion that prob-
lems and designs can be decomposed into meaningful chunks 
where each can be readily understood alone and finally re-
composed to form the final system. Loose coupling between 
design components is supposed to help ensure that defects are 
localized and that consistency is maintained. What we have 
lacked as a community is a theory of program composition 
and decomposition, instead we have fairly ill-defined ideas on 
coupling, modularity and cohesiveness. However, despite not 
having such a theory every day experience tells us that these 
ideas help reduce defects and improve comprehension. It is 
indeed hard to think of any other scientific or engineering dis-
cipline that has not benefited from this approach. 

Surprisingly, much of the defect prediction work has 
been pursued without reference to testing or testability. Ac-
cording to [37], [38] the testability of a program will dictate 
its propensity to reveal failures under test conditions and 
use. Also, at a superficial level the amount of testing per-
formed will determine how many defects will be discov-
ered, assuming there are defects there to discover. Clearly, if 
no testing is done then no defects will be found. By exten-
sion we might argue that difficult problems, with complex 
solutions, might be difficult to test and so might demand 
more test effort. If such testing effort is not forthcoming (as 
is typical in many commercial projects when deadlines 

 

Fig. 3. “Reliability prediction” BBN example. 

TABLE 5 
NODE PROBABILITY TABLE (NPT) FOR THE NODE “RELIABILITY” 

operational usage low med high 

faults low med high low med high low med high 
 low 0.10 0.20 0.33 0.20 0.33 0.50 0.20 0.33 0.70 

reliability med 0.20 0.30 0.33 0.30 0.33 0.30 0.30 0.33 0.20 
 high 0.70 0.50 0.33 0.50 0.33 0.20 0.50 0.33 0.10 
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loom) then less defects will be discovered, thus giving an 
over estimate of the quality achieved and a false sense of 
security. Thus, any model to predict defects must include 
testing and testability as crucial factors.  

7.3 A Prototype BBN 
While there is insufficient space here to fully describe the 
development and execution of a BBN model here we have 
developed a prototype BBN to show the potential of BBNs 
and illustrate their useful properties. This prototype does not 
exhaustively model all of the issues described in Section 7.2 
nor does it solve all of the problems described in Section 6. 
Rather, it shows the possibility of combining the different 
software engineering schools of thought on defect prediction 
into a single model. With this model we should be able to 
show how predictions might be made and explain historical 
results more clearly. 

The majority of the nodes have the following states: 
“very-high,” “high,” “medium,” “low,” “very low,” except 
for the design size node and defect count nodes which have 
integer values or ranges and the defect density nodes which 
have real values. The probabilities attached to each of these 
states are fictitious but are determined from an analysis of 
the literature or common-sense assumptions about the di-
rection and strength of relations between variables. 

The defect prediction BBN can be explained in two stages. 
The first stage covers the life-cycle processes of specification, 
design or coding and the second stage covers testing. In Fig. 4 
problem complexity represents the degree of complexity inher-
ent in the set of problems to be solved by development. We 
can think of these problems as being discrete functional re-
quirements in the specification. Solving these problems ac-
crues benefits to the user. Any mismatch between the prob-
lem complexity and design effort is likely to cause the intro-
duction of defects, defects introduced, and a greater design size. 
Hence the arrows between design effort, problem complexity, 
introduced defects, and design size. The testing stage follows the 
design stage and in practice the testing effort actually allo-
cated may be much less than that required. The mismatch 
between testing effort and design size will influence the num-
ber of defects detected, which is bounded by the number of 
defects introduced. The difference between the defects detected 
and defects introduced is the residual defects count. The defect 
density at testing is a function of the design size and defects 
detected (defects/size). Similarly, the residual defect density is 
residual defects divided by design size. 

Fig. 5 shows the execution of the defect density BBN 
model under the “Goldilock’s Conjecture” using the Hugin 
Explorer tool [58]. Each of the nodes is shown as a window 
with a histogram of the predictions made based on the facts 
entered (facts are represented by histogram bars with 100 
percent probability). The scenario runs as follows. A very 
complex problem is represented as a fact set at “very high” 
and a “high” amount of design effort is allocated, rather than 
“very high” commensurate with the problem complexity. The 
design size is between 1.0–2.0 KLOC. The model then 
propagates these “facts” and predicts the introduced defects, 
detected defects and the defect density statistics. The distribu-
tion for defects introduced peaks at two with 33 percent 

probability but, because less testing effort was allocated 
than required, the distribution of defects detected peaks 
around zero with probability 62 percent. The distribution 
for defect density at testing contrasts sharply with the residual 
defect density distribution in that the defect density at testing 
appears very favourable. This is of course misleading be-
cause the residual defect density distribution shows a much 
higher probability of higher defect density levels. 

From the model we can see a credible explanation for 
observing large “modules” with lower defect densities. 
Underallocation of design effort for complex problems 
results in more introduced defects and higher design size. 
Higher design size requires more testing effort, which if 
unavailable, leads to less defects being discovered than 
are actually there. Dividing the small detected defect 
counts with large design size values will result in small 
defect densities at the testing stage. The model explains 
the “Goldilock’s Conjecture” without ad hoc explanation. 

Clearly the ability to use BBNs to predict defects will 
depend largely on the stability and maturity of the devel-
opment processes. Organizations that do not collect metrics 
data, do not follow defined life-cycles or do not perform 
any forms of systematic testing will find it hard to build or 
apply such models. This does not mean to say that less ma-
ture organizations cannot build reliable software, rather it 
implies that they cannot do so predictably and controllably. 
Achieving predictability of output, for any process, de-
mands a degree of stability rare in software development 
organizations. Similarly, replication of experimental results 
can only be predicated on software processes that are de-
fined and repeatable. This clearly implies some notion of 
Statistical Process Control (SPC) for software development. 

8 CONCLUSIONS 
Much of the published empirical work in the defect predic-
tion area is well in advance of the unfounded rhetoric sadly 
typical of much of what passes for software engineering 
research. However every discipline must learn as much, if 
not more, from its failures as its successes. In this spirit we 
have reviewed the literature critically with a view to better 
understand past failures and outline possible avenues for 
future success. 

Our critical review of state-of-the-art of models for pre-
dicting software defects has shown that many methodo-
logical and theoretical mistakes have been made. Many past 
studies have suffered from a variety of flaws ranging from 
model misspecification to use of inappropriate data. The 
issues and problems surrounding the “Goldilock’s Conjec-
ture” illustrate how difficult defect prediction is and how 
easy it is to commit serious modeling mistakes. Specifically, 
we conclude that the existing models are incapable of pre-
dicting defects accurately using size and complexity metrics 
alone. Furthermore, these models offer no coherent expla-
nation of how defect introduction and detection variables 
affect defect counts. Likewise any conclusions that large 
modules are more reliable and that software decomposition 
doesn’t work are premature. 
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Fig. 4. BBN topology for defect prediction.

 

Fig. 5. A demonstration of the “Goldilock’s Conjecture.” 
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Each of the different “schools of thought” have their 
own view of the prediction problem despite the interactions 
and subtle overlaps between process and product identified 
here. Furthermore each of these views model a part of the 
problem rather than the whole. Perhaps the most critical 
issue in any scientific endeavor is agreement on the con-
stituent elements or variables of the problem under study. 
Models are developed to represent the salient features of 
the problem in a systemic fashion. This is as much the case 
in physical sciences as social sciences. Economists could not 
predict the behavior of an economy without an integrated, 
complex, macroeconomic model of all of the known, perti-
nent variables. Excluding key variables such as savings rate 
or productivity would make the whole exercise invalid. By 
taking the wider view we can construct a more accurate 
picture and explain supposedly puzzling and contradictory 
results. Our analysis of the studies surrounding the “Goldi-
lock’s Conjecture” shows how empirical results about de-
fect density can make sense if we look for alternative ex-
planations. 

Collecting data from case studies and subjecting it to iso-
lated analysis is not enough because statistics on its own 
does not provide scientific explanations. We need compel-
ling and sophisticated theories that have the power to ex-
plain the empirical observations. The isolated pursuit of 
these single issue perspectives on the quality prediction 
problem are, in the longer-term, fruitless. Part of the solu-
tion to many of the difficulties presented above is to de-
velop prediction models that unify the key elements from 
the diverse software quality prediction models. We need 
models that predict software quality by taking into account 
information from the development process, problem com-
plexity, defect detection processe, and design complexity. 
We must understand the cause and effect relations between 
important variables in order to explain why certain design 
processes are more successful than others in terms of the 
products they produce. 

It seems that successful engineers already operate in a 
way that tacitly acknowledges these cause-effect relations. 
After all if they didn’t how else could they control and de-
liver quality products? Project managers make decisions 
about software quality using best guesses; it seems to us 
that will always be the case and the best that researchers 
can do is  

1) recognize this fact and 
2) improve the “guessing” process. 

We, therefore, need to model the subjectivity and uncer-
tainty that is pervasive in software development. Likewise, 
the challenge for researchers is in transforming this uncer-
tain knowledge, which is already evident in elements of the 
various quality models already discussed, into a prediction 
model that other engineers can learn from and apply. We 
are already working on a number of projects using Bayesian 
Belief Networks as a method for creating more sophisti-
cated models for prediction, [59], [60], [61], and have de-
scribed one of the prototype BBNs to outline the approach. 
Ultimately, this research is aiming to produce a method for 
the statistical process control (SPC) of software production 
implied by the SEI’s Capability Maturity Model. 

All of the defect prediction models reviewed in this paper 
operate without the use of any formal theory of program/ 
problem decomposition. The literature is however replete 
with acknowledgments to cognitive explanations of short-
comings in human information processing. While providing 
useful explanations of why designers employ decomposi-
tion as a design tactic they do not, and perhaps cannot, al-
low us to determine objectively the optimum level of de-
composition within a system (be it a requiremen’s specifica-
tion or a program). The literature recognizes the two struc-
tural3 aspects of software, “within” component structural 
complexity and “between” component structural complex-
ity, but we lack the way to crucially integrate these two 
views in a way that would allow us to say whether one de-
sign was more or less structurally complex than another. 
Such a theory might also allow us to compare different de-
compositions of the same solution to the same problem re-
quirement, thus explaining why different approaches to 
problem or design decomposition might have caused a de-
signer to commit more or less defects. As things currently 
stand without such a theory we cannot compare different 
decompositions and, therefore, cannot carry out experi-
ments comparing different decomposition tactics. This 
leaves a gap in any evolving science of software engineer-
ing that cannot be bridged using current case study based 
approaches, despite their empirical flavor. 
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