
30 April 1997/Vol. 40, No. 4 COMMUNICATIONS OF THE ACM

Marc Eisenstadt

TUDIES OF THE PSYCHOLOGY OF COMPUTER PROGRAM-

ming and debugging [1, 2, 5, 8–12], while impor-

tant in their own right, have generally overlooked

the potential benefit of self-reports by programmers

that reflect the phenomenology of debugging, that

is, what it’s really like out there from the program-

mer’s perspective. However, two exceptions to this

observation are the detailed account by Knuth of

using a logbook to document all the errors he

encountered over a 10-year development period working on TeX [6]

and a logbook of the development efforts of a team implementing the

S
Smalltalk-80 virtual machine [7]. Such self-reports
and logs are valuable sources on the nature of software
design, development, and maintenance. The work
reported here seeks to expand the single-user-logbook
approach to investigate the phenomenology of debug-
ging across a large population of users, aiming to under-
stand and address the problems of professional
programmers working on very large programming
tasks.

Toward this end, I conducted a survey of professional
programmers, asking them to describe their most diffi-

cult bugs involving large pieces of software. The sur-
vey was conducted through email and
conferencing/bulletin board facilities with worldwide
access, including Usenet newsgroups, the BYTE Infor-
mation Exchange (BIX), CompuServe, and AppleLink.
My contribution was to gather, edit, and annotate the
stories, categorizing them in a way that may shed light
on the nature of the debugging enterprise. In particu-
lar, I looked at the lessons learned from the stories.
Here, I discuss what they tell us about what is needed
in the design of future debugging tools.

My Hairi
Bug Wa

The Trawl
In early 1992, I posted a request for debugging anec-
dotes on the BIX electronic bulletin board and fol-
lowed with similar messages posted to AppleLink,
CompuServe, various Usenet newsgroups, and the
Open University’s own conferencing system. The
original message is shown in Figure 1.

The trawl request elicited replies
from 78 “informants,” mostly in the
U.S. and the U.K., including imple-
mentors of very well known com-
mercial C compilers, members of the
ANSI C++ definition group, and
other commercial software develop-
ers. A total of 110 messages were
generated by 78 different infor-
mants. Of these, 50 specifically told
a story about nasty bugs. A few
informants provided many anec-
dotes; a total of 59 bug anecdotes
were collected. Figure 2 shows some
typical replies to the original
request. The full set of replies and
analyses is available from the author.

Analyzing the Anecdotes
Our analysis included three dimensions: “why diffi-
cult,” “how found,” and “root cause.” Although the
root cause of reported bugs is of a priori interest, in
order to fully characterize the phenomenology of the
debugging experiences, I looked at more than the
causes of the bugs. After summarizing the data sev-
eral times, it became apparent that it would be nec-

essary to say something about why a bug was diffi-
cult to find (which might or might not be related to
the underlying cause) and how it was found (which
might or might not be related to the underlying
cause and the reason for the difficulty), as well as the
root cause (what really went wrong).

We know something about each of these dimen-

sions from earlier studies. Vessey [12] attempted to
address the first dimension (why difficult) by asking
how the time to find a bug depended on its location
in a program’s structure and its level in a proposi-
tional analysis of the program; his answers were that
location in serial structure has no effect and that level
in propositional structure is inconclusive. Regarding
techniques for bug finding (the second dimension),

COMMUNICATIONS OF THE ACM April 1997/Vol. 40, No. 4 31

Despite the availability of
industrial-strength debuggers and integrated
program development environments,
professional programmers still engage in far
more detective work than they should have to.
This is their story—along with some of the
ways they might eradicate their bugs. est

r Stories

Figure 1. The original “trawl” request

Subject: Trawl for debugging anecdotes (w/emphasis on tools side)

I’m looking for some (serious) anecdotes describing debugging experiences. I
want to know about particularly thorny bugs in large pieces of software that
caused you lots of headaches. It would be handy if the software were written
in C or C++, but this is not absolutely essential. I’d like to know how you
cracked the problem—what techniques/tools you used. Did you “home in” on
the bug systematically? Did the solution suddenly come to you in your sleep?
A very brief stream-of-consciousness reply (right now) would be much much
better than a carefully crafted story. I can then get back to you with further
questions if necessary.

Thanks.
Marc

Katz and Anderson [5] reported a variety of bug-
location strategies used by experienced Lisp pro-
grammers in a laboratory setting involving small
(10-line) programs. These programmers distin-
guished among strategies that detect a heuristic
mapping between a bug’s manifestation and its ori-
gin, those that rely on a hand simulation of execu-
tion, and those that resort to some kind of causal
reasoning. Goal-driven reasoning (either heuristic
mapping or causal reasoning) predominated among
subjects debugging their own code, whereas data-
driven reasoning (typically hand simulation) pre-
dominated among subjects debugging other
programmers’ code. For the kind of programming-
in-the-large being studied here, the need for a bot-
tom-up data-gathering phase is apparent—to help
the programmer get some approximate notion of
where the bug might be located.

As far as root causes are concerned, two main
approaches to the development of bug taxonomies
have been followed: a deep plan analysis approach
(e.g., [4, 11]) and a phenomenological account (e.g.,
[6]). Johnson [4] worked on the premise that a large
number of bugs could be accounted for by analyzing
the high-level abstract plans underlying specific pro-
grams and specifying both the possible fates a plan
component could undergo (e.g., missing, spurious,
misplaced) and the nature of the program constructs
involved (e.g., inputs, outputs, initializations, con-
ditionals). Spohrer et al. [11] refined this analysis by
pointing out the critical nature of bug interdepen-
dencies and problem-dependent goals and plans. An
alternative characterization of bugs was provided by
Knuth [6], who uncovered nine problem-indepen-
dent categories:

• Algorithm awry
• Blunder or botch
• Data structure debacle
• Forgotten function
• Language liability, or the misuse or misunder-

standing of the tools/language/hardware, or
imperfectly knowing the tools

• Mismatch between modules, or imperfectly
knowing the specifications (e.g., interface errors
involving functions called with reversed argu-
ments)

• Reinforcement of robustness (e.g., handling erro-
neous input)

• Surprise scenario, or bad bugs that forced design
change or unforeseen interactions

• Trivial typo

For both approaches—plan analysis and phenom-

32 April 1997/Vol. 40, No. 4 COMMUNICATIONS OF THE ACM

(Story A)
I had a bug in a compiler for an 8086 running MS-DOS.
The compiler returned function values on the stack and
once in a while such values would be wrong. When I
looked at the assembly code, all seemed fine. The value
was getting stored at the correct location of the stack.
When I stepped through it in the assembly-level debug-
ger and got to that store, sure enough, the effective
address was correct in the stack frame, and the right
value was in the register to be stored. Here’s the weird
thing: When I stepped through the store instruction, the
value on the stack didn’t change. It seems obvious in ret-
rospect, but it took hours for me to figure out that the
effective address was below the stack pointer (stacks
grow down here), and the stored value was being wiped
out by OS interrupt handlers (which don’t switch stacks)
about 18 times a second. The stack pointer was being
decremented too late in the compiled code.

(Story B)
. . . I once had a program that worked properly only on
Wednesdays . . . The documentation claimed the day of
the week was returned in a doubleword, 8 bytes. In fact,
Wednesday is 9 characters long, and the system routine
actually expected 12 bytes of space to put the day of the
week. Since I was supplying only 8 bytes, it was writing 4
bytes on top of the storage area intended for another
purpose. As it turned out, that space was where a “y”
was supposed to be stored for comparison with the
user’s answer. Six days a week the system would wipe
out the “y” with blanks, but on Wednesdays, a “y” would
be stored in its correct place.

(Story C)
. . . The program crashed after running about 45,000 iter-
ations of the main simulation loop . . . Somewhere, some-
how, someone was walking over memory. But that
somewhere could have been anywhere—for example,
writing in one of the many global arrays . . . The bug
turned out to be a case of an array of shorts (max. value
32K) with certain elements incremented every time they
were “used”—the fastest use being about every 1.5 itera-
tions of the simulator. So, an element of an array would
be incremented past 32K, back down to -32K. This value
was then used as an array index . . . But the actual seg
fault was happening several iterations after the error—the
bogus write into memory. It took 3 hours for the pro-
gram to crash, so creating test cases took forever. I
couldn’t use any of the heavier powered debugging mal-
loc()s or watchpoints, because they slow a program down
at least 10-fold, resulting in 30 hours to track a bug.

Figure 2. Typical debugging anecdotes

enology—the “true” cause of a bug can be resolved
only by the original programmer, because it is neces-
sary to understand the programmer’s state of mind at
the time the bug was spawned to be able to assess the
cause properly. I found it informative to evolve my
own categories in a largely bottom-up fashion after
extensive inspection of the data and specific compar-
ison with those provided by Knuth. I adopted one
criterion for identifying root causes: When the pro-
grammer is essentially satisfied that several hours or
days of bewilderment have come to an end once a
particular culprit is identified, that culprit is the root
cause, even when deeper causes can be found. I
adopted this approach because it allows a possible
infinite regress to be nipped in the bud; because it is
consistent with my emphasis on the phenomenology
of debugging, that is, what is apparently taking
place as far as the front-line programmer is con-
cerned; and because it
enables me to con-
centrate on what
the programmers re-
ported and not try to
second-guess them.

Dimension 1 (Why
Difficult). The rea-
sons a bug is diffi-
cult to trap fell into
five categories:

• Cause/effect chasm. The symptom is often far
removed in space or time from the root cause,
possibly making the cause difficult to detect. Spe-
cific instances can involve timing or synchroniza-
tion problems; bugs that are intermittent,
inconsistent, or infrequent; and bugs that materi-
alize “far away” (e.g., thousands of iterations) from
the place they were spawned.

• Tools inapplicable or hampered. Most program-
mers have encountered so-called Heisenbugs,
named after the Heisenberg uncertainty principle
in physics. The bug goes away, for example, when
you switch on the debugging tools. Other varia-
tions in this category are stealth bugs, in which the
error itself consumes the evidence, and context pre-
cludes, in which some configuration or memory
constraints make it impractical or impossible to
use the debugging tool.

• WYSIPIG (what you see is probably illusory,
guv’nor). I coined this expression to reflect the
cases in which the programmer stares at some-
thing that simply is not there or that is dramati-
cally different from what it appears to be (e.g., 10

in an octal display misinterpreted as meaning 7+3
rather than 7+1).

• Faulty assumption/model or misdirected blame. If
you think stacks grow up rather than down (as
did the informant in Story A in Figure 2), you
will have difficulty detecting bugs related to this
behavior.

• Spaghetti (unstructured) code. Informants some-
times complain about “ugly” code invariably writ-
ten by “someone else.”

Here I report the frequency of occurrence of the dif-
ferent categories, not because it supports an a priori
hypothesis at some level of statistical significance,
but because it provides a convenient overview of the
nature of the problems the informants chose to share
with us. The frequency of occurrence of the different
reasons for having difficulty is shown in Table 1.

Thus, 53% of the dif-
ficulties are attribut-
able to just two
sources: large tempo-
ral or spatial chasms
between the root
cause and the symp-
tom, and bugs that
rendered debugging
tools inapplicable.
The high frequency

of reports of cause/effect chasms accords well with
the analyses of Vessey [12] and Pennington [8], who
argued that the programmer must form a robust
mental model of correct program behavior in order
to detect bugs, but the cause/effect chasm seriously
undermines the programmer’s efforts to construct a
robust mental model. The relationship of this find-
ing to the analysis of the other dimensions is
addressed in the following sections.

Dimension 2 (How Found). The informants
reported four major bug-catching techniques:

• Gather data. This technique refers to cases in
which informants decided to “find out more,” by,
say, planting print statements or breakpoints.
They reported six subtechniques:

– Step & Study. The programmer single-steps
through the code and studies the behavior, typi-
cally monitoring changes to data structures

– Wrap & Profile. Tailor-made performance, metric,
or other profiling information is collected by
“wrapping” (enclosing) a suspect function inside a
one-off variant of that function that calls for, say, a
timer or data-structure printout both before and

COMMUNICATIONS OF THE ACM April 1997/Vol. 40, No. 4 33

Cause/Effect Chasm
Tools Inapplicable or Hampered
WYSIPIG (What you see is probably illusory, guv'nor)
Faulty Assumption/Model or Misdirected Blame
Spaghetti (Unstructured) Code
??? (No Information)

15
12
7
6
3
8

Category Occurrences

Table 1. Why the bugs were difficult to track down

after the suspect function.
– Print & Peruse. Print statements are inserted at

particular points in
the code, and their
output is observed
during subsequent
runs of the program.

– Dump & Diff. Either
a true core dump or
else some variation
(e.g., extensive print
statements) is saved
to two text files cor-
responding to two different execution runs; the
two files are then compared using a source-com-
pare (“diff”) utility.

– Conditional Break & Inspect. A breakpoint is
inserted into the code, typically triggered by
some specific behavior; data values are then
inspected to determine what is happening.

– Specialist Profile Tool (e.g., MEM or Heap Scram-
ble). Several off-the-shelf tools detect memory
leaks and corrupt or illegal memory references.

• Inspeculation. This name is a hybrid of “inspec-
tion” (code inspection), “simulation” (hand simu-
lation), and “speculation,” which were among a
variety of techniques mentioned explicitly or
implicitly by informants. In other words, either
they go away and think about something else for
a while or they spend a lot of time reading
through the code and thinking about it, possibly
hand-simulating an execution run.

• Expert Recognized Clichés. These represent cases
in which the programmer called upon a cohort for
help, and the cohort was able to spot the bug rel-
atively simply. Such recognition corresponds to

the heuristic mapping reported in [5].
• Controlled Experiments. Informants resorted to

specific controlled experiments when they had a
clear idea about the root cause of a bug.

THE FREQUENCY OF OCCUR-
rence of the different debug-
ging techniques is shown in
Table 2. Techniques for bug-
finding are clearly domi-
nated by reports of

data-gathering (e.g., print statements) and hand sim-
ulation, which together account for 78% of the
reported techniques and highlight the kind of “grop-
ing” the programmer is reduced to in difficult debug-
ging situations. Here we turn to an analysis of the root
causes of the bugs before we show how the different

dimensions are
interrelated.
Dimension 3 (Root
Cause Categories).
The bug causes
reported by the
informants fell into
nine categories:

• Mem (memory
clobbered or

used up). This cause has a variety of manifesta-
tions (e.g., overwriting a reserved portion of
memory, thereby causing the system to crash) and
may even have deeper causes (e.g., array subscript
out of bounds), yet was often singled out by the
informants as the source of the difficulty. Knuth
has an analogous category he calls Data Structure
Debacle.

• Vendor (vendor’s problem, hardware or software).
Some informants report buggy compilers or faulty
logic boards for which they either need to develop
a workaround or wait for the vendor to provide
corrective measures.

• Des.logic (unanticipated case, faulty design
logic). In such cases, the algorithm itself has gone
awry because the programmer has not worked
through all the cases correctly. This category
encompasses both those Knuth labels Algorithm
Awry and those he labels Surprise Scenario.

• Init (wrong initialization, wrong type, definition
clash). A programmer sometimes makes an erro-
neous type declaration, redefines the meaning of
some system keyword, or incorrectly initializes a

34 April 1997/Vol. 40, No. 4 COMMUNICATIONS OF THE ACM

27
13
5
4
2

Gather Data
Inspeculation
Expert Recognized Cliche
Controlled Experiments
??? (No Information)

Category Occurrences

Table 2. Techniques used to track down the bugs

When the programmer

is satisfied that several hours

or days of bewilderment have

come to an end once a particular

culprit is identified, that culprit

is the root cause, even when

deeper causes can be found.

variable. I refer to all of these as “init” errors.
• Var (wrong variable or operator). The wrong term

is used. The informant may not provide enough
information to deduce whether this error is due to
faulty design logic (des.logic) or is a trivial lexical
error (lex), though in the latter case trivial typos
are normally mentioned explicitly as the root
cause.

• Lex (lexical problem, bad parse, or ambiguous syn-
tax). These are trivial problems, not due to the algo-
rithm itself or to faulty variables or declarations.
This class of errors encompasses Knuth’s Blunder
and Typo and are difficult to distinguish in the
informants’ reports.

• Unsolved (unknown
and still unsolved
to
this day). Some
informants never
solved their prob-
lems.

• Lang (language
semantics ambigu-
ous or misunder-
stood). In one case,
an informant
reported he thought
256K meant
256,000, which is incorrect and can be thought of
as semantic confusion.

• Behav (the end user’s or programmer’s subtle
behavior). In one case, the bug was caused by an
end user’s mysteriously depressing several keys on
the keyboard at once; in another case, the cause

was mischievous code inserted as a joke.
Table 3 shows the frequency of occurrence of these
nine underlying causes, identifying the biggest cul-
prits as memory overwrites and problems with ven-
dor-supplied hardware/software. Even ignoring
vendor-specific difficulties, an implication of Table 3
is that 37% of the nastiest bugs reported by profes-
sionals could be addressed by memory-analysis tools
and smarter compilers that trap initialization errors.

Relating the Dimensions
To understand how the three dimensions of analysis
are interrelated, we can place every anecdote pre-
cisely in our three-dimensional space. For expository

purposes, consider
just a single two-
dimensional com-
parison: how found
vs. why difficult.
Table 4 compares
reasons for difficulty
(row labels) against
bug-finding tech-
niques (column
labels). Cells with
large numbers are
noteworthy; indeed,
the magnitude of

certain cell entries is greater than what is predictable
by chance from the row and column totals alone
(X2,df:20, = 33.50, p. < 0.05), sug-
gesting that data-gathering activities are of special
relevance when a cause/effect chasm is involved or
when built-in debugging tools are inapplicable.

COMMUNICATIONS OF THE ACM April 1997/Vol. 40, No. 4 35

13
9
7
6
4
3
3
2
2
2

mem Memory clobbered or used up
vendor Vendor's problem (hardware or software)
des.logic Unanticipated case (faulty design logic)
init Wrong initialization; wrong type; definition clash
lex Lexical problem, bad parse, or ambiguous syntax
var Wrong variable or operator
unsolved Unknown and still unsolved to this day
lang Language semantics ambiguous or misunderstood
behav End user's (or programmer's) subtle behavior
??? (No Information)

Category Occurrences

Table 3. Underlying causes of the reported bugs

Cause/Effect Chasm

Tools Hampered

WYSIPIG

Faulty Assumption

Spaghetti

??? (No Information)

Totals

9.83

9.83

2.00

2.50

1.33

4.00

29.50

3.00

2.00

2.00

3.00

1.00

2.00

13.00

1.50

1.50

1.00

2.00

6.00

2.50

2.00

4.50

2.00

2.00

16.83

13.83

7.50

6.50

2.33

8.00

55.00

???
(No Info) TotalsGather

Data

Expert
Recognized

Cliche
Inspeculation Controlled

Experiments
Why vs. How

Table 4. Tally of why bugs were difficult (rows) vs. how they were found (columns). (Each cell entry [e.g.,
9.83]) is a tally of the number of anecdotes reporting that cell’s row label, or the bug’s root cause, and column

label, or how the bug was found. Fractional entries reflect anecdotes divided into multiple categories, so an
anecdote reporting three reasons for difficulty scores 0.33 in each of the three relevant cells.)

A niche of potential interest (and profit) to tool
vendors is highlighted by looking at the relationships
among the three dimensions; the most heavily popu-
lated cells involve data-gathering, cause/effect chasms,
and memory or initialization errors.

A side effect of our study is the realization that
complete strangers, with little prompting and no
incentive, are not only articulate in their reminis-
cences but forthcoming with details. These people
clearly enjoyed relating their debugging experiences.
Moreover, the depth of the details supplied seemed to
be independent of whether I had explicitly posted my
motivation (as I did on BIX and AppleLink) or not (as
was the case on Usenet and CompuServe). This is
clearly a self-selecting audience of email users and
conference browsers who enjoy electronically chatting
anyway; some may have even felt an inner need to tell
a good (hence boastful) war story—so much the bet-
ter. I have no reason to distrust the sources, and the
detailed stories certainly exhibit their own self-consis-
tency. It is already widely accepted that the Internet is
a gold mine of information. Our collection of anec-
dotes suggests it may also be a rich repository of will-
ing subjects ready to supply in a fairly rigorous
manner detailed knowledge that may then serve as a
resource for others. These stories, even without a
definitive taxonomy, could provide a valuable adjunct
to frequently asked question (FAQ) repositories on the
World-Wide Web and in such growing Tbyte
archives of stories and postings as those at
http://www.dejanews.com. However, while FAQ and
generic Usenet discussion-group repositories are won-
derful resources, they can be frustrating to access
when an urgent debugging need arises.

Ways Forward
It would be easy to say that what programmers really
need are more robust design approaches, plus

smarter compilers and debuggers, Fortunately, the
analyses presented here suggest we can be more pre-
cise than simply demanding “robustness” from pro-
grammers/designers and “smartness” from tool
developers. We have identified a niche that really
needs attention; the most heavily populated cell in
our three-dimensional analysis suggests that a win-
ning tool would employ some data-gathering or tra-
versal method for resolving large cause/effect chasms
in the case of memory-clobbering errors (e.g., Purify
from Atria, Inc. does precisely this). Secondly, we
can propose solutions to the “why difficult” prob-
lems by considering the specific cases brought to
light by the stories themselves. One way or another,
most of the problems in the stories are connected
with “directness” and “navigation.” For example, the
need to go through indirect steps, intermediate sub-
goals, or obtuse lines of reasoning plagues the user
encountering the most frequent problems in Table 1.
A possible way forward, described in more detail in
a comparative fine-grained analysis I undertook in
[3], involves paying heed to the following advice:
Computable relations should be computed on request rather
than deduced by the user. A software tool can perform
important and complicated deductions on the pro-
grammer’s behalf, thereby liberating the program-
mer from some tedious work.

Purify analyzes run-time memory leaks in C pro-
grams (e.g., lost memory cells, overflowed arrays) by
patching the object code at link time and pinpoints
the root cause of the leak by traversing many indi-
rect dataflow links back to the offending source
code. Thus, it already solves a much more difficult
dataflow traversal problem than that required to deal
with indirect pointer traversing, such as that
reported by several informants, and suggests a
highly promising direction for development of
future tools. Memory leaks will also be less prevalent
as programmers adopt such languages as Java that
prevent arbitrary memory access.

Other advice includes: Displayable states should be
displayed on request rather than having to be deduced by the
user. Minimizing deductive work is an important
aspect of such tools as Zstep 95, described by Ungar
et al. in this issue. And: Atomic user goals should be
mapped onto atomic actions. In other words, the tool
should try to infer the programmer’s likely inten-
tions, so requently occurring “reasonable” behaviors
on the part of the programmer can be anticipated,
yielding a concomitant reduction in wasteful “fine-
tuning” activities (e.g., those requiring the pro-

36 April 1997/Vol. 40, No. 4 COMMUNICATIONS OF THE ACM

More than 50% of the difficulties are

attributable to just two sources:

large temporal or spatial chasms between

the root cause and the symptom, and

bugs that rendered debugging

tools inapplicable.

grammer to deal with digressions and irrelevant sub-
goals just to get the tools working). As detailed in
Fry’s article in this issue, there are several key steps
in this direction:

• Allow full functionality at all times. Debugging
environments that prevent access to certain facili-
ties make matters worse. (The Kansas/Oz environ-
ment described in Smith et al.’s article in this
issue pushes this notion to its logical limits.)

• Viewers should be provided for “key players” (any
evaluable expression) rather than just for “variables.”
Several articles in this issue, particularly Baecker
et al.’s, take to heart the notion that more than
variable-watching is at issue during the debugging
process.

• Provide a variety of navigation tools at different levels
of granularity. Changing granularity is a hallmark
of the system underlying the work of Domingue et
al. described in this issue, allowing programmers
to see appropriate views at appropriate times.

These suggestions are not necessarily easy to imple-
ment, but an increasing number of tools are appear-
ing in both the research community and the
marketplace, illustrating some of their key aspects.
These suggestions indicating that specific debugging
needs can be addressed systematically and that a
detailed account of programmers’ continuing prob-
lems is an important step in facilitating the evolution
of appropriate solutions.

Conclusions
An analysis of the debugging anecdotes collected
from a worldwide email trawl revealed three primary
dimensions of interest: why the bugs were difficult to
find, how the bugs were found, and root causes of
bugs. Just over 50% of the difficulties arose from two
sources: large temporal or spatial chasms between the
root cause and the symptom, and bugs that rendered
debugging tools inapplicable. Techniques for bug-
finding were dominated by reports of data-gathering
(e.g., print statements) and hand simulation, together
accounting for almost 80% of the reported tech-
niques. The two biggest causes of bugs were memory
overwrites and faults in vendor-supplied hardware or
software, together accounting for more than 40% of
reported bugs.

The analysis also pinpoints a winning niche for
future tools: data-gathering or traversal methods to
resolve large cause/effect chasms in the case of mem-

ory-clobbering errors. Other specific suggestions
emerge by analyzing the underlying issues of “direct-
ness” and “navigation.” The investigation highlights a
potential wealth of information available on the Inter-
net and indicates it may be possible to establish an
online repository for perusal by those with an urgent
need to solve complex debugging problems. An
indexed repository could organize stories in a manner
more accessible than that found in FAQ anecdotes.

Acknowledgments
Parts of this research were funded by the U.K.
EPSRC/ESRC/MRC Joint Council Initiative on Cog-
nitive Science and Human Computer Interaction by
the Commission of the European Communities
ESPRIT-II Project 5365 (VITAL), and by Apple
Computer’s Advanced Technology Group, now
Apple Research Labs. Simon J. Masterton helped col-
lect and analyze the data.

References
1. Brooks, R.E. Studying programmer behavior experimentally: The prob-

lems of a proper methodology. Commun. ACM 23, 4 (Apr. 1980),
207–213.

2. Curtis, W. By the way, did anyone study any real programmers? In E.
Soloway, and S. Iyengar, Eds. Empirical Studies of Programmers. Ablex,
Norwood, N.J., 1986.

3. Eisenstadt, M. Why HyperTalk debugging is more painful than it ought
to be. In J. Alty, D. Diaper, and S.P. Guest, Eds. People and Computers
8th Ed. Cambridge University Press, Cambridge, England, 1993.

4. Johnson, W.L. An effective bug classification scheme must take the pro-
grammer into account. In Proceedings of the Workshop on High-Level De-
bugging (Palo Alto, Calif., 1983).

5. Katz, I.R., and Anderson, J.R. Debugging: An analysis of bug-location
strategies. Hum.–Comput. Interaction 3, 4 (Apr. 1988), 351–399.

6. Knuth, D.E. The errors of TeX. Software—Pract. Exper. 19, 7 (Jul. 1989),
607–685.

7. McCullough, P.L. Implementing the Smalltalk-80 System: The Tek-
tronix experience. In Smalltalk-80: Bits of History, Words of Advice. G.
Krasner, Ed. Addison-Wesley, Reading, Mass., 1983, pp. 59–78.

8. Pennington, N. Stimulus structures and mental representations in ex-
pert comprehension of computer programs. Cognitive Psychol. 19 (1987),
295–341.

9. Shneiderman, B. Software Psychology. Winthrop, Cambridge, Mass., 1980.
10. Soloway, E., and Iyengar, S., Eds. Empirical Studies of Programmers. Ablex,

Norwood, N.J., 1986.
11. Spohrer, J.C., Soloway, E., and Pope, E.A. Goal/plan analysis of buggy

Pascal programs. Hum.-Comput. Interaction 1, 2 (Feb. 1985), 163–207.
12. Vessey, I. Toward a theory of computer program bugs: An empirical test.

Int. J. Man-Mach. Stud. 30 (1989), 123–46.

Marc Eisenstadt (m.eisenstadt@open.ac.uk) is a professor of
Artificial Intelligence and Director of the Knowledge Media Insti-
tute at The Open University in Milton Keynes, U.K.

Permission to make digital/hard copy of part or all of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage, the copyright notice, the title of the publication and
its date appear, and notice is given that copying is by permission of ACM, Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists requires prior spe-
cific permission and/or a fee.

© ACM 0002-0782/97/0400 $3.50

c

COMMUNICATIONS OF THE ACM April 1997/Vol. 40, No. 4 37

