
IEEE TRANSACnONS ON SOFTWARE ENGINEERING, “OL 18, NO. 11, NOVEMBER 1992 943

O rthogonal Defect C lassification-A
Concept for In-Process Measurements

Ram Chillarege, Senior Member, IEEE, Inderpal S. Bhandari, Member, IEEE, Jarir K.
Chaar, Member, IEEE, Michael J. Halliday, Diane S. Moebus, Bonnie K. Ray, and Man-Yuen Wong

AL~stract-This paper describes orthogonal defect classificaGon
(ON), a concept that enables in-process feedback to developers
by extracting signatures on the development process from defects.
The ideas are evolved from an earlier finding that demonstrates
the use of semantic information from defects to extract cause-
effect relationships in the development process. This finding
is leveraged to develop a systematic framework for building
measurement and analysis methods. This paper

* defines ODC and discusses the necessary and sufficient
conditions required to provide feedback to a developer;

* illustrates the use of the defect type distribution to measure
the progress of a product through a process;

S illustrates the use of the defect trigger distribution to eval-
uate the effectiveness and eventually the completeness of
verification processes such as inspection or testing;

* provides sample results from pilot projects using ODC;
* opens the doors to a wide variety of analysis techniques for

providing effective and fast feedback based on the concepts
of ODC.

I. INTRODUCTION

I N RECENT years the emphasis on software quality has
increased due to forces from several sectors of the computer

industry. Software is one of the slowest processes in enabling
new business opportunities, solutions, or dimensions of com-
puting, and is a significant part of total cost. It has also been
found that the dominant cause of system outage has shifted to
software given that it has not kept pace, in the past few years,
with improvements in hardware or maintenance [l]. Thus
there is a resurgence of research in software topics such as
reliability, engineering, measurement, etc. [2], [3]. However,
the area of software quality measurements and quantification is
beset with undue complexity and has, in some ways, advanced
away from the developer. In an area where the processes
are so amorphous, the tangibles required for measurement
and modeling are few. With the result academic pursuits that
can’t be confined to the limitations of practice evolved and
became distanced from the developer. In this area, the need to
derive tractable measurements that are reasonable to undertake
and intuitively plausible cannot be understated. Measurement
without an underlying theme can leave the experimentalist, the
theorist and the practitioner very confused.

Manuscript received October 1, 1991; revised August 1, 1992. Recom-
mended by R. Selby and K. Torii.

R. Chillarege, I.S. Bhandari, J.K. Char, M.J. Halliday, B.K. Ray, and M.-
Y. Wang are with IBM T.J. Watson Research Center, Yorktown Heights, NY
10598.

D.S. Moebus is with IBM Mid-Hudson Valley Programming Lab, Wap-
pinger Falls, NY.

IEEE Lag Number 9203764.

The goal of this paper is to develop reasonable measure-
ments. It does this by examining the fundamental properties
of such measurements and then deriving the rationale for
analysis and models. To put the domain of software in-process
measurements and analysis in perspective, let us examine
two extremes of the spectrum: statistical defect models and
qualitative causal analysis.

1.1. Statistical Defect Models
The goal of statistical defect modeling, which includes what

is commonly referred to as software reliability growth, has
been to predict the reliability of a software product. Typically,
this may be measured in terms of the number of defects
remaining in the field, the failure rate of the product, the
short term defect detection rate, etc. [3]-[5]. Although this
may provide a good report card, it often occurs so late in the
development cycle that it is of little value to the developer.
Ideally, a developer would like to get feedback during the
process.

1.2. Causal Analysis

The goal of causal analysis is to identify the root cause
of defects and initiate actions so that the source of defects
is eliminated. To do so, defects are analyzed, one at a time,
by a team that is knowledgeable in the area. The analysis is
qualitative and only limited by the range of human investiga-
tive capabilities. To sustain such pursuit and provide a focus
for the activity a process description has been found useful.
At IBM, the Defect Prevention Process [6] and similar efforts
elsewhere have found causal analysis to be very effective in
reducing the number of errors committed in a software project.
The qualitative analysis provides feedback to developers that
eventually improves both the quality and the productivity of
the software organization [7].

Defect Prevention can provide feedback to developers at
any stage of their software development process. However, the
resources required to administer this method are significant, al-
though the rewards have proven to be well worth it. Moreover,
given the qualitative nature of the analysis, the method does
not lend itself well to measurement and quantitative analysis.
Consequently, Defect Prevention, though not a part of the
engineering process control model, could eventually work in
conjunction with it.

0162-8828/92$03.00 0 1992 IEEE

1.3. The Gap

Between the two extremes of the spectrum-quantitative
statistical defect models and qualitative causal analysis-is
a wide gap. This gap is characterized by a lack of good
measurement methods that are meaningful to the developer
and that can exploit good engineering methods. At one end,
the traditional mathematical modeling efforts tend to step back
from the details of the process and to approximate defect
detection by statistical processes [El, [9]. When calibrated,
some of these methods are shown to be quite accurate.
However, they do not provide timely feedback to the de-
veloper in terms of available process controls. At the other
end, the causal analysis mechanism is qualitative and labor
intensive; it can provide feedback on each individual defect.
However, in a large development effort it is akin to studying
the ocean floor with a microscope. It does not naturally
evolve into abstractions and aggregations that can feed into
engineering mechanisms to be used for overall process con-
trol.

It is not as though there is no work done between these two
extremes, indeed there is a myriad of reported research and
industry attempts to quantify the parameters of the software
development process with “metrics” [lo], [ll]. Many of these
attempts are isolated and suffer from the absence of an overall
methodology and a well-defined framework for incrementally
improving the state of the art. Some efforts have been more
successful than others. For example, the relationship between
the defects that occur during software development and the
complexity of a software product have been discussed in [12].
Such information, when compiled over the history of an organ-
ization [13], will be useful for planners and designers. There
also is no one standard [lo] classification system that is in
vogue, although there have been efforts in that direction [14].

In summary, although measurements have been extensively
used in Software Engineering, it still remains a challenge to
turn software development into a measurable and controllable
process. Why is this so? Primarily because no process can
be modeled as an observable and controllable system unless
explicit input-output or cause and effect relationships are
established. Furthermore, such causes and effects should be
easily measurable. It is inadequate to propose that a collection
of measures be used to track a process, with the hope that some
subset of these measures will actually explain the process.
There should at least be a small subset which is carefully
designed based on a good understanding of the mechanisms
within the process.

Looking at the history of the modeling literature in software,
it is evident that little heed has been paid to the actual
cause-effect mechanism, leave alone investigations to establish
them. At the other extreme, when cause-effect was recognized,
though qualitatively, it was not abstracted to a level from
which it could graduate to engineering models. To the best
of the authors’ knowledge, in the world of in-process mea-
surements, and until recently, there has been no systematic
study to establish the existence of measurable cause and effect
relationships in a software development process underway.
Without that insight, and a rational basis, it is hard to argue

that any one measurement scheme or model is better than
another.

1.4. The Bridge

This paper presents ODC, a technique that bridges the gap
between statistical defect models and causal analysis. It brings
a scientific approach to measurements in a difficult area that
othenvise can easily become ad hoc. It also provides a firm
footing from which classes of models and analytical techniques
can be systematically derived. The goal is to provide an in-
process measurement paradigm to extracting key information
from defects and enable the metering of cause-effect relation-
ships. ODC is inspired by a previous study that identified the
existence of measurable cause and effect relationships in a
software development process [15]. Specifically, the choice
of a set of orthogonal classes, mapped over the space of
development or verification, can help developers by providing
feedback on the progress of their software development efforts.
These data and their properties provide a framework for
analysis methods that exploit traditional engineering methods
of process control and feedback.

ODC is enabled only if certain fundamental criteria are met.
Section II of this paper discusses the concept of orthogonal-
ity in ODC and the necessary and sufficient conditions for
a classification scheme to provide feedback. Section III is
devoted to defect types, and their use in providing feedback on
the development process. Section IV discusses defect triggers.
Triggers provide feedback on the verification process just as
defect types provide feedback on the development process.
Section V assesses the costs involved in implementing ODC
and its relationship to causal analysis.

The availability of well-designed defect tracking tools,’
education, and pilot programs to test and develop the technique
is critical to the success of implementing ODC. The classi-
fication system used for these attributes and new attributes
are constantly evolving. For instance, the paradigm illustrated
in this paper could just as well be applied to hardware
development, information development, or nondefect oriented
problems. Several test-pilot programs are currently underway
to explore these areas. After a series of test pilots, the
classification system is stabilized and put into production.
However, we are aware that changes in the classification may
be necessary and currently they are handled in similarity with
software releases.*

II. ORTHOGONAL DEFECT CLASSIFICATION

The difficulty in developing methods and techniques to
bridge the gap between theory and practice in in-process mea-
surements stems from a very fundamental issue-the lack of
well-defined cause-effect relationships that are validated over
time. Without a good sense of cause and effect, it is very hard
to develop methods that provide good feedback to a developer.

‘A team at the Mid-Hudson Valley Programming Lab has specified a re-
design to the test defect tracking moccss. which is documented in 1161. In
preparation is a report on the sut$ct [171.’

L >

*This paper is not intended to either define 01 specify the complete
classification system. The current version of cla.ssifica~ion, definitions, and
data requirements is available through [181.

CHILLAREGE el al: ORTHOGONAL DEFECT CLASSlFICATlON 945

Yet until recently methods to identify such existence and crisp
techniques to measure it were not developed.

A recent study embarked on exploring the existence of
relationships between the semantics of defects and their net
result on the software development process [15]. The choice
of semantics of defects was intentional since it could become
a vehicle that provides a measure of the state-variables for
a development process. The study showed that when defects
were uniquely categorized by a set of defect types, representing
the semantics of the fix, it was possible to relate changes in the
shape of the reliability growth curve to defects of a specific
type. The defect types could be associated with the activities of
the different stages of development. Thus defects of a specific
type were due to some cause in the process and the shape
of the reliability growth curve represented an eflect on the
process. In the study, sub-groups that had larger than average
proportion of initialization defects yielded growth curves that
were very inflected+onfirming the theory that errors early in
the code path (viz., initialization) hide other defects causing the
growth curve to inflect [9]. Had such in-process measurements
on defect type been available, developers could compensate
for problems by altering test strategy. Similarly, a substantial
number of function defects prompted questioning of the design
process. In hindsight, it was learned that the design process had
much to be desired. The study demonstrated that a simple clas-
sification scheme could reveal insight into process problems
faced during development, It was subsequently recognized that
a semantic classification could be exploited to provide in-
process feedback. The study demonstrated the existence of a
measurable causexffect relationship that could open the doors
to a host of viable alternatives.

ODC essentially means that we categorize a defect into
classes that collectively point to the part of the process that
needs attention, much like characterizing a point in a Cartesian
system of orthogonal axes by its (x, y, z) coordinates. In the
software development process, although activities are broadly
divided into design, code, and test, each organization can have
its variations. It is also the case that the process stages in
several instances may overlap while different releases may
be developed in parallel. Process stages can be carried out
by different people and sometimes different organizations.
Therefore, for classification to be widely applicable, the clas-
sification scheme must have consistency between the stages.
Without consistency it is almost impossible to look at trends
across stages. Ideally, the classification should also be quite
independent of the specifics of a product or organization. If the
classification is both consistent across phases and independent
of the product, it tends to be fairly process invariant and
can eventually yield relationships and models that are very
useful. Thus a good measurement system that allows learning
from experience and provides a means of communicating
experiences between projects has at least three requirements:

l orthogonality,
l consistency across phases, and
. uniformity across products.
One of the pitfalls in classifying defects is that it is a human

process, and is subject to the usual problems of human error,

confusion, and general distaste if the use of the data is not well
understood. However, each of these concerns can be handled
if the classification process is simple, with little room for
confusion or possibility of mistakes, and if the data can be
easily interpreted. If the number of classes is small, there is a
greater chance that the human mind can accurately resolve
between them. Having a small set to choose from makes
classification easier and less error prone. When orthogonal, the
choices should also be uniquely identified and easily classified.

2.1. Necessary Condition

There exists a semantic classification of defects, from a
product, such that the defect classes can be related to the
process that can explain the progress of the product through
this process.

If the goal is to explain the progress of a product through
the process, the simple case of asking the programmer fixing
the defect, “where are the problems in this product?” is the
degenerate solution to the problem. This question is implied
by classifications such as “where injected?” that rely on
the intuition of the programmer to directly map defects to
process stages. However, practitioners are quick to point out
that the answer to the above question requires stepping back
from the process; conjecturing can vary dramatically in both
the accuracy and the validity of their answer. Such direct
classification schemes, by the nature of their assumptions,
qualify as good opinion surveys, but do not constitute a
measurement on the process.

The above goal can be achieved by capturing the details of
a defect fix in a semantic classification that is subsequently
related to the process. An example of such semantic classifi-
cation is “defect type,” which captures the meaning of the fix.
Since defect type does not directly translate into “where are
the problems in this product?“, it needs to be mapped to the
process. This mapping provides the relation between defect
types and the process, which enables answering the above
question. Thus semantic classification provides measurements
on the process that can yield an assessment of the progress of
a product through the process.

Semantic classification is likely to be accurate since it is
tied to the work just completed. It is akin to measurements
of events in the process, as opposed to opinions on the
process. There is an important advantage in the semantic
classification of a defect, such as defect type, over an opinion-
based classification, such as where injected. The semantic
classification is invariant to process and product, but requires
a mapping to process stages. This mapping is a level of
indirection that ties a semantic class to a specific process
stage(s). The cost of this indirection is reflected in the need to
calibrate the distribution of these semantic classes for specific
processes.

The opinion-based classification suffers in several ways.
Firstly, as noted, the classification is error-prone. Secondly,
it is very specific to a process and therefore does not map
between different processes. Finally, it cannot work where the
process is not well defined or the process is being changed
dynamically to compensate for problems.

946 IEEE TRANSACTIONS ON SOFlWARE ENGINEERING, VOL. 18, NO. It, NOVEMBER 1992

Clearly, semantic classification has advantages. To be able
to measure the progress of a product, the mapping of semantic
classes to the process should be feasible. Essentially, a set of
such semantic classes should exist that maps to the process.
Classification can always have some degree of subjectivity;
however, orthogonality reduces the human error in classi-
fication by providing classes that are distinct and mutually
exclusive.

2.2. Sufficient Conditions

The set of all values of defect attributes must form a spanning
set over the process sub-space. The sufficient conditions are
based on the set of elements that make up an attribute, such as
defect type. Based on the necessary conditions, the elements
need to be orthogonal and associated to the process on which
measurements are inferred. The sufficient conditions ensure
that the number of classes are adequate to make the necessary
inference. Ideally, the classes should span the space of all
possibilities that they describe. The classes would then form a
spanning set with the capability that everything in that space
can be described by these classes. If they do not form a
spanning set then there is some part of the space that we
want to make inferences on that cannot be described with
the existing data. Making sure that we have the sufficiency
condition satisfied implies that we know and can accurately
describe the space. into which we want to project the data.

Given the experimental nature of the work, it is hard
to a priori guarantee that sufficiency is met with any one
classification. Given that we are trying to observe the world
of the development process and infer about it from the
defects coming out, there are the tasks of a) coming up
with the right measurement, b) validating the inferences from
the measurements with reference to the experiences shared,
and c) improving the measurement system as we learn more
from the pilot experiences. However, this is the nature of
the experimental method [19]. For example, in the first pilot
[15], the following defect types evolved after few classification
attempts, function, initialization, checking, assignment, and
documentation. This set, as indicated earlier in this section,
provided adequate resolution to explain why the development
process had trouble and what could be done about it. However,
in subsequent discussions [16] and pilots it was refined to the
current eight. Given the orthogonality, inspite of these changes
several classes, such as function and assignment and the
dimension they spanned (associations) remained unchanged.

2.3. Classification for Cause-Effect
Collecting the right data that can provide a complete story to

relate cause attributes with effect can provide an organization
a gold mine of information to learn from. Fig. 1 shows
three major groups of data that are important to have. One
group is the cause attributes, which when orthogonally chosen
provide tremendous leverage. So far, we have mentioned
defect type and later in the paper we will discuss defect
trigger. The second group is meant to measure effect-which
could include explicit measures of effect or those computed
as a function of other measures. Traditionally there have

CAUSE -

Orthogonally classified
attributes that descrlbe
a defect and feedback to:

- EFFECT

Attributes or meaasures
effecting product or process

The Development Process: Sevmy (i-4)
Impact areas (CUPRIMO)
Rellabllltv Growth

The Verification Process’
$ziGq

Defect Density
Rework on Fixes
Etc.

Sub-Pofwlations of Interest
ldentdied by a collecbon of attrtbutes that are likely of interest.
Examples. type of process. code. people, products etc.

Fig. 1. ODC data to build causexffect relationships

been several ways to measure effects. An explicit measure
commonly used in IBM is severity; the severity of a defect
is usually measured on a scale of 14. More recently, the
impact of field problems on a customer is captured in a popular
IBM classification: CUPRIMD [20], standing for capability,
useability, performance, reliability, installability, maintain-
ability, and documentation. Other measures of impact that
are functions computed over existing data include reliability
growth, defect density, etc. The third group is really meant
to identify subpopulations of interest. These are typically
attributes that distinguish projects, people, processes, tools, etc.
The list is limitless in that it could include almost any attribute
that is considered meaningful to track. The availability of
such subpopulations identifiers is very valuable and would
provide an ideal fishing ground to study trends similar to those
undertaken in market segmentation and analysis studies.

III. THE Defect Type A~RIBUTE

The ideas on ODC become much clearer when we discuss
the defect type attribute. A programmer making the correction
usually chooses the defect type. The selection of defect type
is implied by the eventual correction. These types are simple,
in that they should be obvious to a programmer, without much
room for confusion. In each case a distinction is made between
something missing or something incorrect. A function error
is one that affects significant capability, end-user interfaces,
product interfaces, interface with hardware architecture, or
global datastructure and should require a formal design
change. Conversely, an assignment error indicates a few lines
of code, such as the initialization of control blocks or datas-
tructure. Interface corresponds to errors in interacting with
other components, modules or device drivers via macros, call
statements, control blocks, or parameter lists. Checking ad-
dresses program logic that has failed to properly validate data
and values before they are used. Timing/serialization errors are
those that are corrected by improved management of shared
and real-time resources. Build/package/merge describe errors
that occur due to mistakes in library systems, management of
changes, or version control. Documentation errors can affect
both publications and maintenance notes. Algorithm errors

CHILLAREGE ef al.: ORTHOGONAL DEFECT CLASSIFKATTON 947

Fig. 2. The defect type and process assoaations.

include efficiency or correctness problems that affect the task
and can be fixed by (rehmplementing an algorithm or local
datastructure without the need for requesting a design change.

The choice of defect types have evolved over time from
the original five types [15], which were refined by working
with the IBM Mid-Hudson Valley Programming Lab [16] to
eight. The idea is to capture distinct activities in fixing a
defect which, given the programming paradigm, are limited
in degrees of freedom. Thus there are only so many distinct
things possible when fixing a defect. Adding a new capability
to software (function) is quite different from a small change
in a few lines of code say to correct values of variables
(assignment). When the choices are orthogonal it also leaves
little room for confusion. Our experience, so far, is that the
increase from five to eight occurred in dimensions relating
to moving from a proof of concept to a production environ-
ment. For example, some of the new types were related to
the mechanics of large development (build/package/merge),
concurrency (serialization) which did not exist in the serial
software in the first exercise. Thus it did not affect the
dimensions that the original set spanned. Similarly, it might
be possible to collapse classes if their associations map to
identical process stages and the added resolution is not desired.
Eventually, the idea is to arrive at classes that satisfy both the
necessary and sufficient conditions.

The defect types are chosen so as to be general enough
to apply to any software development independent of a spe-
cific product. Their granularity is such that they apply to
any phase of the development process, yet can be associ-
ated with a few specific phases in the process. The defect
types should also span the space of these phases to satisfy
the sufficient condition. Fig. 2 shows the defect types, and
associates a phase of the development process with each
of these types. If a function defect is found, whether it
be in system test or unit test, it still points to the high-
level design phase that the defect should be associated with.
Similarly, a timing error would be associated with low level
design. The set of defect types are different enough that
they span the development process. Given this set of defect
types, there are several opportunities for providing feedback
to the developer based on the profiles of the defect type
distribution.

i Function @ Assignment u interface 1 Timing

Fig. 3. Change in the defect type distribution with phase.

3.1. Exploiting the Defect Type
Fig. 3 shows an example that illustrates exploiting orthogo-

nal defect types. Four defect types are used for this example:
function, assignment, interface, and timing. In each phase
of development, a distribution of the defect types is shown,
normalized by the number of defects in this phase. Given a
development process one can describe the expected behavior.
For instance, in most development processes where a design
is conducted prior to coding and testing, the function defects
should be found early in the process and ideally very few at
system test. Thus, the bar corresponding to function defects
should be diminishing through the process. On the other hand,
it is understandable that more timing and serialization defects
are found during system test. Assignment and interface defects
can have profiles that peak at unit-test and integration test,
respectively. Essentially, the defect type distribution changes
with time, and the distribution provides an indication of where
the development is, logically.

The change in distribution of the defect type thus provides a
measure of the progress of the product through the process. At
the same time, it provides a means to validate if a development
is logically at the same place as it is physically. For instance, if
at system test the profile of the distribution looks like it should
be in unit test or integration test, then the distribution indicates
that the product is prematurely in system test. The profile of
the distributions provides the signatures of the process. When
a departure in the process is identified by a deviation in the
distribution curve, the offending defect type also points to
the part of the process that is probably responsible for this
departure.

3.2. Pilot Results
The use of defect type is illustrated best by one of the

early test pilots undertaken. A software component was chosen
which, in hind sight, we knew had a difficult development
history. Toward the end of its development, it had become
evident that several process changes should have been made

948 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 11, NOVEMBER 1992

Fig. 4. Total defects and proportion of Function type defects

earlier in the cycle. The exercise here is to show how the
defect type distribution would have signaled the problem and
recommended a plausible correction. Fig. 4 shows the overall
reliability growth curve of the component. The curve is divided
into four periods, the last three being approximately six months
each. In the last period the number of defects almost doubled,
and corresponds approximately to the system test phase. For
the purpose of the study we drew the lines demarcating
the periods at six month intervals and drew samples for
classification. The granularity of the analysis is thus limited
to these predetermined sampling intervals. In practice there
will not be this sampling effect and analysis conclusions can
be made at much finer intervals.

The lower part of Fig. 4 shows the distribution of the defect
type function. Each bar in the distribution corresponds to the
fraction of defects of that type in that period. The departure
in the process is clearly recognized by the distribution of the
function defect type. Note that the increase of type function
at period 3 may be because the period corresponds to the
function test phase where function defects may be expected to
increase. However, by the final period, function defects have
increased to almost half of the total indicating that the final
testing of the integrity of the software is being hampered by the
failing of functionality. This trend will cause an alert since is
it a significant deviation from expected behavior. Given that
function defects were the cause of the departure, they also
suggest an appropriate (design) re-review or inspection rather
than more intensive testing.

It takes time to calibrate the change in distribution within
a particular development process, but until calibration is
complete trend analysis can still be used to infer whether
a process is making progress in the right direction. In the
following figures, examples are shown pertaining to different
parts of the development process to provide an illustration

of the change in distribution. Given that ODC has been
introduced only in the past year it is not yet possible to provide
data of products from beginning to end. However, we are able
to illustrate from a few snapshots across the phases.

Fig. 5 shows distributions of defects discovered at high-
level design and low-level design, respectively. The trend
across these two stages indicates 1) a decline in the proportion
of defect types function and interface, and 2) an increase
in the proportion of algorithm. Both of these trends are
considered healthy, as 1) function and interface are expected
to diminish as the design becomes more detailed, and 2)
algorithm is expected to increase as the more detailed design
is examined.

Fig. 6 continues this healthy trend across the code
inspection stage, as function decreases and assignment and
checking increase under the scrutiny of this evidently effective
inspection process.

Fig. 7, conversely, indicates an unhealthy trend. The two
distributions are taken respectively from function verification
test and system test. The preponderance of interface over all
other defect types is alarming at both of these execution test
stages. Function verification test is expected to uncover defects
of type function but found only a small proportion. Defects
of type assignment should have been discovered during code
inspection or unit test, but they continue to increase at these
late stages in the cycle.

Given that the defect type distribution changes as a function
of time, reliability growth of individual defect types provides
another avenue to measure maturity of the product. Initial
experiments with this approach were found to produce some
better fits for long term prediction. Reference (211 illustrates
the use of a modified S-shaped growth model for typed
data.

In a recent study on comparing software errors from two
database systems [22], it has been found that the field late-
life defect type distribution is dominated by assignment and
checking types of defects. This seems reasonable given that
they are the few lines of code that typically ignore a condition
or incorrectly assign a value. This same study also finds that
the fraction of function defects is lower in older products (i.e.,
IMS compared to DB2) as seen in Fig. 8 taken from [22].
Furthermore, an interesting analysis of a potentially asymptotic
property in the error type distribution is identified using the
defect-type. This furthers the case for this granularity of the
classification and provides additional insights into its value.

3.3. Process Inferencing
We now take the trend analysis a stage deeper to illustrate

the potential automation that is possible using ODC. Fig. 9
shows a principal association table that has more details than
Fig. 2. Down the columns are the different defect types and
along the rows are the process verification stages. The dots in
the table identify the principal associations. For example, the
defect type function is associated with design (as before) and
can be expected to be detected at both the high level design
inspection and also function verification test. The principal
associations thus show where defects of type function may
peak. By construction, we should also expect valleys before

CHILLAREGE er al.: ORTHOGONAL DEFECT CLASSIFICATION 949

Defect Type

Function

Interface

Timing/Serialization

Documentation

Algorithm

0 10 20 30 40
Percent

n Incorrect H Missing
Total of 153 Defects

Defect Type

Function

Interface

Checking

Assignment

Timing/Serialization

Documentation

Algorithm

0 10 20
Percent

W Incorrect H Missing
Total of 222 Defects

Fig. 5. Defect type distributions through design review.

Defect Type
Function
tnmmx
Checking

Awg”me”t
Tlmlngl.serialiration

B”lld,Package,Merge
O O C ”lll~“fatlO”

Algmthm I .62

Fig. 6. Defect type distribution in code inspection.

and after the principal association stages. This table thus
describes the profiles of the defect type distribution explicitly.
Departures from these profiles reflect potential problem areas.
To illustrate how the departures are recognized, we present an
example with the defect type function.

By focusing on the leftmost column of the principal asso-
ciation table, an inference tree on the defect type function
may be built. This is the binary tree shown in Fig. 10.
The root of this tree represents the first verification stage
of the software development process with which function
is principally associated. The levels of the tree represent
subsequent verfication stages that are principally associated
with function. The number of levels of the tree correspond
to the number of principally associated verification stages
plus one, to include the stage that follows the last principally
associated stage. Thus we have high-level design inspection,
function verification test, and system test. At each of these
stages, it is determined whether there were too few (Low) or
too many (High) defects of type function, where the criteria
for High and Low are determined with experience. These two
outcomes yield a binary tree. Paths from the root of the tree to
a leaf node are development experiences and there are as many
paths as leaf nodes. Against each leaf node are inferences that
provide an assessment on the process. A High after the system
test node indicates that the design is still exposed, whereas a
Low after the system test node could mean that the design is
either not exposed or has been already corrected, depending on

IEEE TRANSA(JTIONS ON SOFTWARE ENGINEERING, “OL 18, NO. 11, NOVEMBER ,992

Defect Type

Function

Interface

Checking

Assignment

Timing/Serialization

Build/Package/Merge

Documentation

Algorithm

0 10 20 30 40
Percent

n Incorrect q Missing
Total of 253 Defects

Defect Type

Function

Interface

Checking

Assignment

Timing/Serialization

Build/Package/Merge

Documentation

Algorithm

0 10 20 30 40
Percent

n Incorrect El Missing
Total of 325 Defects

Fig 7 Defect type dirtributions through test

what happened at a prior node. For instance, the sequence H-
L-H implies that the design is exposed, and probably function
verification test did not do as good a job, leaving system test
to do it. Thus revamping function verification test is indicated.

The above example illustrates the use of ODC to provide
feedback. In more recent work, we have developed algorithms
to automatically generate, from the principal association table,
the trees and the inferences associated with a development
experience. Thus it allows adapting the inference to a new
process simply by re-initializing the principal association
table. Details of the inferencing and profiling of the process
association can be found in [23].

IV. THE Defect Trigger ATTRIBUTE

A defect trigger is a condition that allows a defect to
surface [23]. For instance, when a product is shipped it
is assumed that all the functions and operations are tested.
However, in the field a series of circumstances may allow
a defect to surface that otherwise would not occur in the test

environment. It may be that the system had to get into recovery
to uncover a checking defect type or a checking defect type
does not occur until the software is run under a new hardware
platform. Thus, although the defect type is the same, it might
take different triggers to work as a catalyst for the defect to
surface. In the field, the trigger can potentially be identified
by the customer engineer, or someone experienced in problem
diagnosis. Thus, triggers, unlike defect types, are identified
early in the life cycle of a defect.

The concept of the trigger provides insight not on the
development process directly, but on the verification process.
Ideally, the defect trigger distribution for field defects should
be similar to the defect trigger distribution found during system
test. If there is a significant discrepancy between the two
distributions, it identifies potential holes in the system test
environment. This is particularly useful when a product is sent
out to an early ship customer prior to general availability. The
difference in trigger distribution between early ship and system
test could be used to enhance the test plans in order to cut the
potential field defect exposure.

CHILLAREGE er aL: ORTHOGONAL DEFECT CLASSIFICATION

Defect Type

Function

Interface

Checking-Assignment

Timing/Serialization

Build/Package/Merge

Algorithm

Defect Type

Percent
Total of 222 APARs

DB2

Function

Interface

Checking-Assignment 2

TimingiSeriallzation

Build/Package/Merge

Algorithm

0 10 20 30 40 50 60
Percent

Total of 201 APARs

IMS

Fig 8. Defect type distributions for DB2 and IMS.

Fig. 9. Principal association table.

Fig. 10. Process feedback using inference tree-function defects.

specific type of software error, main storage corruption, is
analyzed. The trigger distribution quantifies the circumstances

4.1. Pilot Results
under which this particular defect surfaces, and this has been
useful in disproving a common belief that timing was the

Fig. 11 shows a trigger distribution of the field defects primary trigger for these defects surfacing in the field. In
or Authorized Program Analysis Reports (APAR’s as they fact, timing triggered only 12.4% of main storage corrup-
are called in IBM) from the MVS operating system. This tion defects, whereas boundary conditions were the dominant
distribution is taken from [24] where the contribution of a agent. Thus system testing different hardware platforms is

952 IEEE TRANSACXONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 11, NOVEMBER 1992

Trigger

Fig. 11. Trigger distribution of MVS APAR’s for main storage corruption.

not as critical as inspections looking specifically for boundary
conditions. This point is key to the importance of classifying
and tracking defect triggers. Prior to this defect analysis,
the most obvious and logical choice for uncovering these
defects would have been a variety of hardware configurations.
But after the analysis, it became clear that low level code
inspection instead will uncover many more main storage
corruption defects for the same, or less, investment.

Fig. 12 compares the trigger distribution of two Database
products, DB2 and IMS taken from [22]. The data are from
APAR’s that aggregates around three years of field life. The
trigger distributions show that while most of the DB2 triggers
are due to stress or workload related, the ones for IMS
are much more evenly distributed across several triggers. It
is likely that the younger product (DB2) sees more new
environments, the IMS product has a much more stable
workload base. These data clearly identify areas for resource
expenditure to maximize the results from a system or product
test.

The above discussion referred specifically to triggers that
apply from the system test stage into the field. These triggers
do not apply at function test or unit test, since under those
circumstances, the test case is itself the trigger that allowed
the defect to surface.

4.2. Document Review and Code Inspection Triggers
The concept of the trigger fits very well into assessing

the effectiveness and eventually the completeness of a design
review. In this review, the design specification document that
defines the functionality of a software product and the design
structures document that describes the details of implementing
this same product are sent out to several people who in turn
send back their comments. A critical part of this review
process is to assess whether these design documents have
been reviewed by enough people with the right skill level.
The importance of such assessment cannot be understated,
since the process that follows design reviews implements and
inspects the code for this product. Hence, any missing or
incorrect information will have a serious impact on testing
and maintaining this product.

Fig. 12. Trigger distributions for DB2 and IMS.

Fig. 13. Design triggers and relationship to experience.

Fig. 13 presents a list of triggers as they apply to the
review of a design document [25]. The set has been de-
rived by considering the activities performed by different
reviewers in accomplishing their task. Some reviewers look
for details in the process of understanding what is written.
Such details may include concurrency when the control of
shared resources is being studied, operational semantics when
the flow of logic required to implement a function is exam-
ined, or the side effects of executing such function. Other
reviewers look at the conformance of the defined services
with preceding requirements and design documents. Similar
activities include examination of compatibility issues both
backward and laterally with other products, checking for

CHILLAREGE erd: ORTEIOGONAL DEFECT CLASSlFlCATlON

Trigger

Design Conformance

Understand Details

Backward Compatible

Lateral Compatible

Rare Situation

Document ConsiComp.

20 30 40 50 60
Percent

W Function 0 Interface q Timing/Serialization
q Documentation RI Algorithm

Total of 153 Defects

Trigger

Design Conformance

Operation Semantics

Side Effects

Concurrency

Backward Compatible

Rare Situation

Document Cons./Comp.

20 30 40 50 60
Percent

W Function 0 Interface q Checking t?J Assignment
N Timing/Serialization q Documentation q Algorithm

Total of 222 Defects

Fig. 14. Trigger distributions through high and low level design reviews.

inconsistencies and missing sections within the document,
inspecting the language-specific details of the implementation
of a component, and searching for a rare situation that has not
been considered or addressed in the design document under
review.

For each of these triggers, one can assess the skill required
by the reviewer. Fig. 13 also shows the skill level appropriate
for each trigger. Note that some of the triggers, such as
looking for details, may not require substantial knowledge or
experience of the subject product, whereas lateral compatibility
clearly indicates the need for people with skill in more
than just the product or component under review. Similarly,
backward compatibility requires people with experience within
the component or product. People who can identify rare
situations need a lot of experience, either with the product
or otherwise.

Given that we can map the defect triggers to skills required
to find the defect type, we can again exploit the defect trigger
distribution to gain insight into the effectiveness of the review.
It is common to also have several reviews of the document,

each incorporating the accepted comments from the earlier
one. Thus one can look at the change in the trigger distribution
to see if it reflects anticipated trends, similar to the defect type
distribution.

Fig. 14 shows the trigger distribution of defects from a
high-level design review and a low-level design review, re-
spectively, whereas Fig. 15 shows the trigger distribution from
a code inspection. The corresponding defect type distributions
were shown in Fig. 5 and Fig. 6, respectively. Although,
these trigger distributions have not yet been calibrated, the
information is still useful. Given the characteristics of a
software product, the cross product of the defect type and
the trigger, in the mathematical sense, provides a measure
of the effectiveness of the verification method in identifying
defects from this process. Thus, in the case of Fig. 14,
a software product with significant interactions with other
products, the lack of any interface defects that are trig-
gered by lateral compatibility is suspicious. It can imply
either an excellent development or a deficient design re-
view. Looking through the skill base of the review team

954 ,EEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. II, NOVEMBER 1992

Trigger

Fig. 15. Trigger distribution in code inspection.

and the defect types they identified, it became evident that
the review team lacked skills in cross product experience.
Subsequently, a second design review was initiated and these
same triggers were used to assess the effectiveness of this
review. Thus the defect trigger helped provide feedback on
the effectiveness of the verification process, the review, of a
design.

The small number of defects that were found by checking
for concurrency, backward compatibility, and lateral compat-
ibility issues in Fig. 15 has also been a cause of concern.
Members with good experience in the product were subse-
quently asked to reinspect the code in order to help find more
defects that are triggered by compatibility concerns.

V. IMPLEMENTING ODC
The cost impact on an individual software engineer during

the development process is minimal. Typically, measured in
the order of a dozen keystrokes per defect to fill out one
or two panels. The incremental time is probably negligible
once one enters a tracking system to track the defect. We
have measured anywhere from less than a minute up to four
minutes depending on the tracking system. There is an initial
setup cost that involves education, tool changes, and process
changes to get ODC started. Currently some of our education
classes run a total of three hours, which includes a lab session.
To provide a workable framework within the development lab,
a process needs to be defined for the analysis and feedback of
the data with owners responsible for the activities. Depending
on the degree of deployment within a lab, we have the ODC
ownership completely within a development team in the case
of a few projects, or under a process manager when used for
the whole lab.

One of the natural extensions of ODC is to assist the Defect
Prevention Process (DPP) [6]. DPP identifies the root cause of
defects and creates action that prevent the re-occurrence of
such defects. ODC data provides a fertile environment where
analysis can identify hot-spots and report situations without
human analysis of each defect. Essentially, ODC provides a
very low-cost method to bring issues to the table and rank
order them in terms of impact. Furthermore, ODC is not

limited by human attention span in looking at several problems
or across several databases to make inferences. Thus ODC can
be used to focus DPP and the DPP process can be leveraged
by devoting time to the hot-spots and not laboring over reams
of data.

VI. SUMMARY

This paper addresses a key issue of measurement in the
software development process, i.e., feedback to the developer.
Without feedback to the development team, the value of
measurement is questionable and defeats the very purpose
of data collection. Yet, feedback has been one of the biggest
challenges faced, and not without reason. At one end of the
spectrum, research in defect modeling focused on reliability
prediction treating all defects as homogeneous. At the other
end of the spectrum, causal analysis provided qualitative
feedback on the process. The middle ground did not de-
velop systematic mechanisms for feedback due to the lack
of fundamental cause-effect relationship extractable from the
process. This paper builds on some fundamental work that
demonstrated the existence of a relationship between the type
of defects found and their effect on the development process.
The

.

. -
major contributions of this paper are:
Orthogonal Defect Classification which provides a basic
capability to extract signatures from defects and infer the
health of the development process. The classification is
to be based on what was known about the defect such
as its defect rype or trigger and not on opinion such as
where it was injected. The choice of the classes in an
attribute should satisfy the stated necessary and sufficient
conditions so that they eventually point to the part of the
process that requires attention.
The design of the defect type attribute to measure the
progress of a product through the process. Defect type
identifies what is corrected and can be associated with
the different stages of the process. Thus, a set of defects
from different stages in the process, classified according
to an orthogonal set of attributes, should bear the signature
of this stage in its distribution. Moreover, changes in the
distribution can meter the progress of the product through
the process. The departure from the distribution provides
alert signals pointing to the stage of the process that
requires attention. Thus, the defect type provides feedback
on the development process.
The design of the defect trigger attribute to provide
a measure of the effectiveness of a verification stage.
Defect triggers capture the circumstance that allowed the
defect to surface. The information that yields the trigger
measures aspects of completeness of a verification stage.
The verification stages could be the testing of code or
the inspection and review of a design. These data can
eventually provide feedback on the verification process.
Taken together with the defect type, the cross-product
of defect type and trigger provides information that can
estimate the effectiveness of the process.
Our experience with ODC, which indicates that it can
provide fast feedback to developers. Currently, two-stage

CHLLAREGE e, al.. ORTHOGONAL DEFECT CLASSIFICATION

data is used for trend analysis to yield feedback. It is
envisioned that as pilots evolve, the measurements can
yield calibration. The use of ODC can begin as early as
high-level design and the paper illustrates data from a
selection of pilots using ODC.

l ODC as general concept for in-process measurements. Al-
though this paper has focused its application in software
development, it is plausible that similar advancements are
possible in other areas. Currently these ideas are being
explored, at IBM, in hardware development, information
development, and nondefect oriented problems.

ACKNOWLEDGMENT

ODC as a concept made significant strides since we could
run pilots to experiment with the ideas in a real production
environment. Thus, several people have been involved in
putting this to practice, not all of whom can be individu-
ally named. W e would like to mention a few people and
some important milestones in its history. Lip Lim, the then
development manager, at IBM’s Mid-Hudson Valley Pro-
gramming Lab recognized the ideas and promoted the very
first pilots. Our efforts in applying ODC to cover the design
area s temmed from our joint work with IBM’s Santa Teresa
Lab. Chris Byrne’s untiring enthusiasm and Ron Peterson’s
pilot work gave us a head start in the lab where Tom
Furey, the lab director, helped move ODC into production.
During the initial stages of ODC development, our joint-
program manager, Marge Schong, helped find avenues to
bring ODC into the mainstream of IBM development. Also,
our management team at Research, George Wang and Jeff
Jaffe, provided a strong source of encouragement and sup-
port.

111

121

I31

[41

IS1

J. Gray, “A census of tandem system availability between 1985 and
1990,” IEEE Trans. Reliability, vol. 39, pp. 4091118, Oct. 1990.
IEEE Software, “Theme articles: Reliability measurement,” IEEE So@
ware, vol. 9, July 1992.
J. D. Musa, A. Iannino, and K. Okumoto, Sofhvare Relinbil-
iry--Measurement, Predictron, Applicarion. New York: McGraw-Hill,
1987.
C. V. Ramamoorthy and F. B. Bastani, “Software rehabdlty-Status and
perspectives,” IEEE Trans. Sofhvare Eng., vol. 8, pp. 354-371, 1982.
A.L. Goel, “Software reliability models: Assumptions, limitations, and
applicability,“IEEE Trans. SofnuareEng., vol. 11, pp. 1411-1423, 1985.

161 R. Mavs, C. Jones. G. Holloway, and D. Studinski, “Experiences with

REFERENCES

. .
defect.prevention,” IBM Syst. .I:, vol. 29, 1990.

[7] W. S. Humphrey, Managing the Sofhvare Procr.~s. Springfield, MA:
Addison-Wesley, 1989.

[S] B. Litt lewood and I. L. Verrall, “A Bayesian reliability growth model for
computer software,” .I. Royal Statistical Sociery, vol. 22, pp. 332-346,
1973.

[9] M. Ohba, “Software reliability analysts models,” IBM .I. Research and
Development, vol. 28, pp. 428443, 1984.

[lo] IEEE Standards, “Standard for software quality metrics methodol-
ogy,” Software Engineering Standards Subcommitree, vol. Standard
P-106l/D21-Unapproved Draft, Apr. 1990.

[l l] IEEE Software, “Theme articles: Metrics,” IEEE Soware, vol. 7, Mar.
1990.

[12] V. R. Basili and B. T. Perricone, “Software errors and complexity. Au
empirical investigation,” Commun. ACM, vol. 27, 1984.

[13] V. R. Basili and H. D. Rombach, “The TAME project: Toward improve-
ment oriented software environments,” IEEE Trans. Sof&vare Eng., vol.
14, pp. 7x-773, June 1988.

1141

1151

1161

1171

1181

1191

[W

12’1

I221

1231

1241

IEEE Standards, “A standard classification of software errors, faults and
failures,” Technical Committee on Software Engineering, vol. Standard
P-1044iD3-Unapproved Draft, Dec. 1987.
R. Chdlarege, W.-L Kao, and R. G. Condit, “Defect type and its impact
on the growth curve,” in Proc. 13th Inf. Conj Software Engineering,
1991.
IBM MHVPL PTM Work Group, “Requirements for program trouble
memoranda,” IBM Mid-Hudson Valley Programming Lab, Wappingers
Falls, NY, 1992.
A. Dooley, “Specifying a change management process and tool,” In
Prepuratron, IBM Mid-Hudson Valley Programming Lab, Wappingers
Falls, NY, 1992.
IBM Research, Working Document, Orthogonal Defect Classilica-
t ion-Data Definitions and Requirements, Request Document: Author’s
address, 1992
R. Chil larege and D. P. Siewiorek, “Experimental evaluation of com-
puter systems reliability,” IEEE Trans. Reliabrhry, pp. 403.408, vol. 39,
Oct. 1990.
R. A. Radice and R. W. Phillips, Sofrware Engineermg: An Indusrriol
Approach. Englewood Cliffs, NJ: Prentice Hall, 1988.
B. Ray, I. Bhandari, and R. Chillarege, “Reliability growth for typed
defect\.” m Proc. IEEE Reliabibry and Mainramability Symp., pp.
327-336. 1992.
M. Sull ivan and R. Chillarege, “Software defects and their impact on
system availability-A study of field failures in operating systems,”
Dlgesr of Papers: The 21 sf Int. Symp. Fault-Tolerant Computing, pp.
2-Y, 1991.
I. Bhandari, M-Y. Won& R. Chillarege, B. Ray, and D. Choi, “Au in-
ference stmctule for process feedback: Technique and implementation,”
IBM Research, RC 17869, 1992.

1 M. Sull ivan and R. Chillarege, “A comparison of software defects in
database management systems and operating systems,“Digesf ofPapers:
22nd Int. Symp. Faulr-Toleranr Compurmg, pp. 4751184, 1992.

1251 J.K Chaar, M.J. Halliday, I.S. Bhandari, and R. Chillarege, “In-process
metrics for software inspection and test evaluations,” Tech. Rep. 80725,
IBM Research, 1992.

955

Ram Chillarege (M’% % S M ’91) received the B.Sc.
degree in mathematics and physics from the Univer-
sity of Mysore, the B.E. degree (with distinction) in
electrical engineering, and the M.E. degree (with
distinction) in automation from the Indian Institute
of Science, Bangalore, and the Ph.D. degree in elec-
trical and computer engineering from the University
of Ilhnois in 1986.

He worked as an independent hardware design
consultant before earning his doctorate, and is cur-
rently Manager of Cont inuous Availability and Qual-

Ity at T.1 Watson Research Center. His work has predominantly been in the
area of experimental evaluation of reliability and failure characteristics of
machines. His work includes the first measurements of error latency under
real workload and the concept of failure acceleration for fault injection based
measurement of coverage. More recently his work has focused on exo~ and
failure characteristics in software. He IS an Associate Editor of the IEEE
TRANSA~IONS ON RELIABILITY.

loderpal Bhandari (M’91) received the B.Eng.
degree from the Birla Institute of Technology and
Science, Pilani, India, the M.S. degree from the Uni-
versity of Massachusetts, Amherst, and the Ph.D.
degree from Carnegie Mel lon in 1990.

He is a member of the research staff at the IBM
T.J. Watson Research Center where he is investigat-
ing system-level and process-level troubleshooting.
His primary areas of research are in software engi-
neering (automatic process feedback) and artificial
intell igence (data discovery and diagnosis).

956 IEEE TRANSA‘TIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 11, NOVEMBER 1992

Jarir Chaar (SMW-M’90) received the B.E. de-
gree (with distinction) in electrical engineering from
The American University of Betrut, Lebanon, in
1981, and the MS. degree in electrical engineering
and Ph.D. degree in computer science and engineer-
ing from The University of Michigan, Ann Arbor,
in 1982 and 1990.

Prior to pursuing his Ph.D. degree, he held the
position of instructor in the Electrical Engineering
department at the American University of Beirut
(1983-1985). He also was the manager and systems

engineer of Computeknix Micrwomputers (1982-1984). He is currently a
research staff member at the IBM T. J. Watson Research Center. Prior to
joining IBM, he worked as a senior software engineer at Deneb Robotics and
held the position of research associate at The University of Michigan. Whi le
with the University of Michigan, he researched and developed a methodology
for generat ing the control software of manufacturing systems, appl ied this
methodology in implementing the control software of a Prismatic Machining
cell for General Motors, and co-authored many technical articles that discussed
the various aspects of this methodology.

Michael J. Halliday graduated from the University
of Nott ingham, UK.

He joined IBM in 1969, and has worked on
the design and development of IBM’s mainframe
operating systems (MVS, VM, and TPF) for much
of that time. He is currently a Senior Programmer
at the IBM T. J. Watson Research Center.

Diane Mwbus received the B.A. degree from
LeMoyne College with a dual major of mathematics
and computer science, and the M.S. degree from
Ma&t Col lege in software engineering.

She has been emuloved bv IBM as a developer
between 1984 and’ 1990, working both at ihe
Glendale Lab and Myers Corners Lab. In 1990,
she took a new position as manager for MVS
Development. Prior to working at IBM, she was
employed by Grumman Aerospace as a software
engineer.

Bonnie Ray received the B.S. degree in mathematics from Baylor University
in 1985. and the Ph.D. decree in statistics from Columbia Universitv in 1990.

She is currently an A&ant Professor at the New Jersey Institute of
Technology. She held a National Research Council post-doctoral appointment
in the Operations Research Department at the Naval Postgraduate School.
Prior to working at NPS, she worked as a post-dot in the continuous
availability and quality group at the IBM T.J. Watson Research Center.

Dr. Ray is a member of the American Statistical Association.

Man-Yuen W a n g received the M.S. degree from
North Carolina State University and the Ph.D. de-
gree from George Washington University.

He is a lecturer in the Department of Management
Studies at the University of Hong Kong. He was a
member of the Continuous Availability and Qual-
ity Department at the IBM T.J. Watson Research
Center. Prior to joining IBM, he has been a visiting
scholar at Stanford University, and was a member
of technical staff at Bell Communicat ions Research.

