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AL~stract-This paper describes orthogonal defect classificaGon 
(ON), a concept that enables in-process feedback to developers 
by extracting signatures on the development process from defects. 
The ideas are evolved from an earlier finding that demonstrates 
the use of semantic information from defects to extract cause- 
effect relationships in the development process. This finding 
is leveraged to develop a systematic framework for building 
measurement and analysis methods. This paper 

* defines ODC and discusses the necessary and sufficient 
conditions required to provide feedback to a developer; 

* illustrates the use of the defect type distribution to measure 
the progress of a product through a process; 

S illustrates the use of the defect trigger distribution to eval- 
uate the effectiveness and eventually the completeness of 
verification processes such as inspection or testing; 

* provides sample results from pilot projects using ODC; 
* opens the doors to a wide variety of analysis techniques for 

providing effective and fast feedback based on the concepts 
of ODC. 

I. INTRODUCTION 

I N RECENT years the emphasis on software quality has 
increased due to forces from several sectors of the computer 

industry. Software is one of the slowest processes in enabling 
new business opportunities, solutions, or dimensions of com- 
puting, and is a significant part of total cost. It has also been 
found that the dominant cause of system outage has shifted to 
software given that it has not kept pace, in the past few years, 
with improvements in hardware or maintenance [l]. Thus 
there is a resurgence of research in software topics such as 
reliability, engineering, measurement, etc. [2], [3]. However, 
the area of software quality measurements and quantification is 
beset with undue complexity and has, in some ways, advanced 
away from the developer. In an area where the processes 
are so amorphous, the tangibles required for measurement 
and modeling are few. With the result academic pursuits that 
can’t be confined to the limitations of practice evolved and 
became distanced from the developer. In this area, the need to 
derive tractable measurements that are reasonable to undertake 
and intuitively plausible cannot be understated. Measurement 
without an underlying theme can leave the experimentalist, the 
theorist and the practitioner very confused. 
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The goal of this paper is to develop reasonable measure- 
ments. It does this by examining the fundamental properties 
of such measurements and then deriving the rationale for 
analysis and models. To put the domain of software in-process 
measurements and analysis in perspective, let us examine 
two extremes of the spectrum: statistical defect models and 
qualitative causal analysis. 

1.1. Statistical Defect Models 
The goal of statistical defect modeling, which includes what 

is commonly referred to as software reliability growth, has 
been to predict the reliability of a software product. Typically, 
this may be measured in terms of the number of defects 
remaining in the field, the failure rate of the product, the 
short term defect detection rate, etc. [3]-[5]. Although this 
may provide a good report card, it often occurs so late in the 
development cycle that it is of little value to the developer. 
Ideally, a developer would like to get feedback during the 
process. 

1.2. Causal Analysis 

The goal of causal analysis is to identify the root cause 
of defects and initiate actions so that the source of defects 
is eliminated. To do so, defects are analyzed, one at a time, 
by a team that is knowledgeable in the area. The analysis is 
qualitative and only limited by the range of human investiga- 
tive capabilities. To sustain such pursuit and provide a focus 
for the activity a process description has been found useful. 
At IBM, the Defect Prevention Process [6] and similar efforts 
elsewhere have found causal analysis to be very effective in 
reducing the number of errors committed in a software project. 
The qualitative analysis provides feedback to developers that 
eventually improves both the quality and the productivity of 
the software organization [7]. 

Defect Prevention can provide feedback to developers at 
any stage of their software development process. However, the 
resources required to administer this method are significant, al- 
though the rewards have proven to be well worth it. Moreover, 
given the qualitative nature of the analysis, the method does 
not lend itself well to measurement and quantitative analysis. 
Consequently, Defect Prevention, though not a part of the 
engineering process control model, could eventually work in 
conjunction with it. 
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1.3. The Gap 

Between the two extremes of the spectrum-quantitative 
statistical defect models and qualitative causal analysis-is 
a wide gap. This gap is characterized by a lack of good 
measurement methods that are meaningful to the developer 
and that can exploit good engineering methods. At one end, 
the traditional mathematical modeling efforts tend to step back 
from the details of the process and to approximate defect 
detection by statistical processes [El, [9]. When calibrated, 
some of these methods are shown to be quite accurate. 
However, they do not provide timely feedback to the de- 
veloper in terms of available process controls. At the other 
end, the causal analysis mechanism is qualitative and labor 
intensive; it can provide feedback on each individual defect. 
However, in a large development effort it is akin to studying 
the ocean floor with a microscope. It does not naturally 
evolve into abstractions and aggregations that can feed into 
engineering mechanisms to be used for overall process con- 
trol. 

It is not as though there is no work done between these two 
extremes, indeed there is a myriad of reported research and 
industry attempts to quantify the parameters of the software 
development process with “metrics” [lo], [ll]. Many of these 
attempts are isolated and suffer from the absence of an overall 
methodology and a well-defined framework for incrementally 
improving the state of the art. Some efforts have been more 
successful than others. For example, the relationship between 
the defects that occur during software development and the 
complexity of a software product have been discussed in [12]. 
Such information, when compiled over the history of an organ- 
ization [13], will be useful for planners and designers. There 
also is no one standard [lo] classification system that is in 
vogue, although there have been efforts in that direction [14]. 

In summary, although measurements have been extensively 
used in Software Engineering, it still remains a challenge to 
turn software development into a measurable and controllable 
process. Why is this so? Primarily because no process can 
be modeled as an observable and controllable system unless 
explicit input-output or cause and effect relationships are 
established. Furthermore, such causes and effects should be 
easily measurable. It is inadequate to propose that a collection 
of measures be used to track a process, with the hope that some 
subset of these measures will actually explain the process. 
There should at least be a small subset which is carefully 
designed based on a good understanding of the mechanisms 
within the process. 

Looking at the history of the modeling literature in software, 
it is evident that little heed has been paid to the actual 
cause-effect mechanism, leave alone investigations to establish 
them. At the other extreme, when cause-effect was recognized, 
though qualitatively, it was not abstracted to a level from 
which it could graduate to engineering models. To the best 
of the authors’ knowledge, in the world of in-process mea- 
surements, and until recently, there has been no systematic 
study to establish the existence of measurable cause and effect 
relationships in a software development process underway. 
Without that insight, and a rational basis, it is hard to argue 

that any one measurement scheme or model is better than 
another. 

1.4. The Bridge 

This paper presents ODC, a technique that bridges the gap 
between statistical defect models and causal analysis. It brings 
a scientific approach to measurements in a difficult area that 
othenvise can easily become ad hoc. It also provides a firm 
footing from which classes of models and analytical techniques 
can be systematically derived. The goal is to provide an in- 
process measurement paradigm to extracting key information 
from defects and enable the metering of cause-effect relation- 
ships. ODC is inspired by a previous study that identified the 
existence of measurable cause and effect relationships in a 
software development process [15]. Specifically, the choice 
of a set of orthogonal classes, mapped over the space of 
development or verification, can help developers by providing 
feedback on the progress of their software development efforts. 
These data and their properties provide a framework for 
analysis methods that exploit traditional engineering methods 
of process control and feedback. 

ODC is enabled only if certain fundamental criteria are met. 
Section II of this paper discusses the concept of orthogonal- 
ity in ODC and the necessary and sufficient conditions for 
a classification scheme to provide feedback. Section III is 
devoted to defect types, and their use in providing feedback on 
the development process. Section IV discusses defect triggers. 
Triggers provide feedback on the verification process just as 
defect types provide feedback on the development process. 
Section V assesses the costs involved in implementing ODC 
and its relationship to causal analysis. 

The availability of well-designed defect tracking tools,’ 
education, and pilot programs to test and develop the technique 
is critical to the success of implementing ODC. The classi- 
fication system used for these attributes and new attributes 
are constantly evolving. For instance, the paradigm illustrated 
in this paper could just as well be applied to hardware 
development, information development, or nondefect oriented 
problems. Several test-pilot programs are currently underway 
to explore these areas. After a series of test pilots, the 
classification system is stabilized and put into production. 
However, we are aware that changes in the classification may 
be necessary and currently they are handled in similarity with 
software releases.* 

II. ORTHOGONAL DEFECT CLASSIFICATION 

The difficulty in developing methods and techniques to 
bridge the gap between theory and practice in in-process mea- 
surements stems from a very fundamental issue-the lack of 
well-defined cause-effect relationships that are validated over 
time. Without a good sense of cause and effect, it is very hard 
to develop methods that provide good feedback to a developer. 

‘A team at the Mid-Hudson Valley Programming Lab has specified a re- 
design to the test defect tracking moccss. which is documented in 1161. In 
preparation is a report on the sut$ct [ 171.’ 

L > 

*This paper is not intended to either define 01 specify the complete 
classification system. The current version of cla.ssifica~ion, definitions, and 
data requirements is available through [ 181. 
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Yet until recently methods to identify such existence and crisp 
techniques to measure it were not developed. 

A recent study embarked on exploring the existence of 
relationships between the semantics of defects and their net 
result on the software development process [15]. The choice 
of semantics of defects was intentional since it could become 
a vehicle that provides a measure of the state-variables for 
a development process. The study showed that when defects 
were uniquely categorized by a set of defect types, representing 
the semantics of the fix, it was possible to relate changes in the 
shape of the reliability growth curve to defects of a specific 
type. The defect types could be associated with the activities of 
the different stages of development. Thus defects of a specific 
type were due to some cause in the process and the shape 
of the reliability growth curve represented an eflect on the 
process. In the study, sub-groups that had larger than average 
proportion of initialization defects yielded growth curves that 
were very inflected+onfirming the theory that errors early in 
the code path (viz., initialization) hide other defects causing the 
growth curve to inflect [9]. Had such in-process measurements 
on defect type been available, developers could compensate 
for problems by altering test strategy. Similarly, a substantial 
number of function defects prompted questioning of the design 
process. In hindsight, it was learned that the design process had 
much to be desired. The study demonstrated that a simple clas- 
sification scheme could reveal insight into process problems 
faced during development, It was subsequently recognized that 
a semantic classification could be exploited to provide in- 
process feedback. The study demonstrated the existence of a 
measurable causexffect relationship that could open the doors 
to a host of viable alternatives. 

ODC essentially means that we categorize a defect into 
classes that collectively point to the part of the process that 
needs attention, much like characterizing a point in a Cartesian 
system of orthogonal axes by its (x, y, z) coordinates. In the 
software development process, although activities are broadly 
divided into design, code, and test, each organization can have 
its variations. It is also the case that the process stages in 
several instances may overlap while different releases may 
be developed in parallel. Process stages can be carried out 
by different people and sometimes different organizations. 
Therefore, for classification to be widely applicable, the clas- 
sification scheme must have consistency between the stages. 
Without consistency it is almost impossible to look at trends 
across stages. Ideally, the classification should also be quite 
independent of the specifics of a product or organization. If the 
classification is both consistent across phases and independent 
of the product, it tends to be fairly process invariant and 
can eventually yield relationships and models that are very 
useful. Thus a good measurement system that allows learning 
from experience and provides a means of communicating 
experiences between projects has at least three requirements: 

l orthogonality, 
l consistency across phases, and 
. uniformity across products. 
One of the pitfalls in classifying defects is that it is a human 

process, and is subject to the usual problems of human error, 

confusion, and general distaste if the use of the data is not well 
understood. However, each of these concerns can be handled 
if the classification process is simple, with little room for 
confusion or possibility of mistakes, and if the data can be 
easily interpreted. If the number of classes is small, there is a 
greater chance that the human mind can accurately resolve 
between them. Having a small set to choose from makes 
classification easier and less error prone. When orthogonal, the 
choices should also be uniquely identified and easily classified. 

2.1. Necessary Condition 

There exists a semantic classification of defects, from a 
product, such that the defect classes can be related to the 
process that can explain the progress of the product through 
this process. 

If the goal is to explain the progress of a product through 
the process, the simple case of asking the programmer fixing 
the defect, “where are the problems in this product?” is the 
degenerate solution to the problem. This question is implied 
by classifications such as “where injected?” that rely on 
the intuition of the programmer to directly map defects to 
process stages. However, practitioners are quick to point out 
that the answer to the above question requires stepping back 
from the process; conjecturing can vary dramatically in both 
the accuracy and the validity of their answer. Such direct 
classification schemes, by the nature of their assumptions, 
qualify as good opinion surveys, but do not constitute a 
measurement on the process. 

The above goal can be achieved by capturing the details of 
a defect fix in a semantic classification that is subsequently 
related to the process. An example of such semantic classifi- 
cation is “defect type,” which captures the meaning of the fix. 
Since defect type does not directly translate into “where are 
the problems in this product?“, it needs to be mapped to the 
process. This mapping provides the relation between defect 
types and the process, which enables answering the above 
question. Thus semantic classification provides measurements 
on the process that can yield an assessment of the progress of 
a product through the process. 

Semantic classification is likely to be accurate since it is 
tied to the work just completed. It is akin to measurements 
of events in the process, as opposed to opinions on the 
process. There is an important advantage in the semantic 
classification of a defect, such as defect type, over an opinion- 
based classification, such as where injected. The semantic 
classification is invariant to process and product, but requires 
a mapping to process stages. This mapping is a level of 
indirection that ties a semantic class to a specific process 
stage(s). The cost of this indirection is reflected in the need to 
calibrate the distribution of these semantic classes for specific 
processes. 

The opinion-based classification suffers in several ways. 
Firstly, as noted, the classification is error-prone. Secondly, 
it is very specific to a process and therefore does not map 
between different processes. Finally, it cannot work where the 
process is not well defined or the process is being changed 
dynamically to compensate for problems. 
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Clearly, semantic classification has advantages. To be able 
to measure the progress of a product, the mapping of semantic 
classes to the process should be feasible. Essentially, a set of 
such semantic classes should exist that maps to the process. 
Classification can always have some degree of subjectivity; 
however, orthogonality reduces the human error in classi- 
fication by providing classes that are distinct and mutually 
exclusive. 

2.2. Sufficient Conditions 

The set of all values of defect attributes must form a spanning 
set over the process sub-space. The sufficient conditions are 
based on the set of elements that make up an attribute, such as 
defect type. Based on the necessary conditions, the elements 
need to be orthogonal and associated to the process on which 
measurements are inferred. The sufficient conditions ensure 
that the number of classes are adequate to make the necessary 
inference. Ideally, the classes should span the space of all 
possibilities that they describe. The classes would then form a 
spanning set with the capability that everything in that space 
can be described by these classes. If they do not form a 
spanning set then there is some part of the space that we 
want to make inferences on that cannot be described with 
the existing data. Making sure that we have the sufficiency 
condition satisfied implies that we know and can accurately 
describe the space. into which we want to project the data. 

Given the experimental nature of the work, it is hard 
to a priori guarantee that sufficiency is met with any one 
classification. Given that we are trying to observe the world 
of the development process and infer about it from the 
defects coming out, there are the tasks of a) coming up 
with the right measurement, b) validating the inferences from 
the measurements with reference to the experiences shared, 
and c) improving the measurement system as we learn more 
from the pilot experiences. However, this is the nature of 
the experimental method [19]. For example, in the first pilot 
[15], the following defect types evolved after few classification 
attempts, function, initialization, checking, assignment, and 
documentation. This set, as indicated earlier in this section, 
provided adequate resolution to explain why the development 
process had trouble and what could be done about it. However, 
in subsequent discussions [16] and pilots it was refined to the 
current eight. Given the orthogonality, inspite of these changes 
several classes, such as function and assignment and the 
dimension they spanned (associations) remained unchanged. 

2.3. Classification for Cause-Effect 
Collecting the right data that can provide a complete story to 

relate cause attributes with effect can provide an organization 
a gold mine of information to learn from. Fig. 1 shows 
three major groups of data that are important to have. One 
group is the cause attributes, which when orthogonally chosen 
provide tremendous leverage. So far, we have mentioned 
defect type and later in the paper we will discuss defect 
trigger. The second group is meant to measure effect-which 
could include explicit measures of effect or those computed 
as a function of other measures. Traditionally there have 

CAUSE - 

Orthogonally classified 
attributes that descrlbe 
a defect and feedback to: 

- EFFECT 

Attributes or meaasures 
effecting product or process 

The Development Process: Sevmy (i-4) 
Impact areas (CUPRIMO) 
Rellabllltv Growth 

The Verification Process’ 
$ziGq 

Defect Density 
Rework on Fixes 
Etc. 

Sub-Pofwlations of Interest 
ldentdied by a collecbon of attrtbutes that are likely of interest. 
Examples. type of process. code. people, products etc. 

Fig. 1. ODC data to build causexffect relationships 

been several ways to measure effects. An explicit measure 
commonly used in IBM is severity; the severity of a defect 
is usually measured on a scale of 14. More recently, the 
impact of field problems on a customer is captured in a popular 
IBM classification: CUPRIMD [20], standing for capability, 
useability, performance, reliability, installability, maintain- 
ability, and documentation. Other measures of impact that 
are functions computed over existing data include reliability 
growth, defect density, etc. The third group is really meant 
to identify subpopulations of interest. These are typically 
attributes that distinguish projects, people, processes, tools, etc. 
The list is limitless in that it could include almost any attribute 
that is considered meaningful to track. The availability of 
such subpopulations identifiers is very valuable and would 
provide an ideal fishing ground to study trends similar to those 
undertaken in market segmentation and analysis studies. 

III. THE Defect Type A~RIBUTE 

The ideas on ODC become much clearer when we discuss 
the defect type attribute. A programmer making the correction 
usually chooses the defect type. The selection of defect type 
is implied by the eventual correction. These types are simple, 
in that they should be obvious to a programmer, without much 
room for confusion. In each case a distinction is made between 
something missing or something incorrect. A function error 
is one that affects significant capability, end-user interfaces, 
product interfaces, interface with hardware architecture, or 
global datastructure and should require a formal design 
change. Conversely, an assignment error indicates a few lines 
of code, such as the initialization of control blocks or datas- 
tructure. Interface corresponds to errors in interacting with 
other components, modules or device drivers via macros, call 
statements, control blocks, or parameter lists. Checking ad- 
dresses program logic that has failed to properly validate data 
and values before they are used. Timing/serialization errors are 
those that are corrected by improved management of shared 
and real-time resources. Build/package/merge describe errors 
that occur due to mistakes in library systems, management of 
changes, or version control. Documentation errors can affect 
both publications and maintenance notes. Algorithm errors 
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Fig. 2. The defect type and process assoaations. 

include efficiency or correctness problems that affect the task 
and can be fixed by (rehmplementing an algorithm or local 
datastructure without the need for requesting a design change. 

The choice of defect types have evolved over time from 
the original five types [15], which were refined by working 
with the IBM Mid-Hudson Valley Programming Lab [16] to 
eight. The idea is to capture distinct activities in fixing a 
defect which, given the programming paradigm, are limited 
in degrees of freedom. Thus there are only so many distinct 
things possible when fixing a defect. Adding a new capability 
to software (function) is quite different from a small change 
in a few lines of code say to correct values of variables 
(assignment). When the choices are orthogonal it also leaves 
little room for confusion. Our experience, so far, is that the 
increase from five to eight occurred in dimensions relating 
to moving from a proof of concept to a production environ- 
ment. For example, some of the new types were related to 
the mechanics of large development (build/package/merge), 
concurrency (serialization) which did not exist in the serial 
software in the first exercise. Thus it did not affect the 
dimensions that the original set spanned. Similarly, it might 
be possible to collapse classes if their associations map to 
identical process stages and the added resolution is not desired. 
Eventually, the idea is to arrive at classes that satisfy both the 
necessary and sufficient conditions. 

The defect types are chosen so as to be general enough 
to apply to any software development independent of a spe- 
cific product. Their granularity is such that they apply to 
any phase of the development process, yet can be associ- 
ated with a few specific phases in the process. The defect 
types should also span the space of these phases to satisfy 
the sufficient condition. Fig. 2 shows the defect types, and 
associates a phase of the development process with each 
of these types. If a function defect is found, whether it 
be in system test or unit test, it still points to the high- 
level design phase that the defect should be associated with. 
Similarly, a timing error would be associated with low level 
design. The set of defect types are different enough that 
they span the development process. Given this set of defect 
types, there are several opportunities for providing feedback 
to the developer based on the profiles of the defect type 
distribution. 

i Function @  Assignment u interface 1 Timing 

Fig. 3. Change in the defect type distribution with phase. 

3.1. Exploiting the Defect Type 
Fig. 3 shows an example that illustrates exploiting orthogo- 

nal defect types. Four defect types are used for this example: 
function, assignment, interface, and timing. In each phase 
of development, a distribution of the defect types is shown, 
normalized by the number of defects in this phase. Given a 
development process one can describe the expected behavior. 
For instance, in most development processes where a design 
is conducted prior to coding and testing, the function defects 
should be found early in the process and ideally very few at 
system test. Thus, the bar corresponding to function defects 
should be diminishing through the process. On the other hand, 
it is understandable that more timing and serialization defects 
are found during system test. Assignment and interface defects 
can have profiles that peak at unit-test and integration test, 
respectively. Essentially, the defect type distribution changes 
with time, and the distribution provides an indication of where 
the development is, logically. 

The change in distribution of the defect type thus provides a 
measure of the progress of the product through the process. At 
the same time, it provides a means to validate if a development 
is logically at the same place as it is physically. For instance, if 
at system test the profile of the distribution looks like it should 
be in unit test or integration test, then the distribution indicates 
that the product is prematurely in system test. The profile of 
the distributions provides the signatures of the process. When 
a departure in the process is identified by a deviation in the 
distribution curve, the offending defect type also points to 
the part of the process that is probably responsible for this 
departure. 

3.2. Pilot Results 
The use of defect type is illustrated best by one of the 

early test pilots undertaken. A software component was chosen 
which, in hind sight, we knew had a difficult development 
history. Toward the end of its development, it had become 
evident that several process changes should have been made 
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Fig. 4. Total defects and proportion of Function type defects 

earlier in the cycle. The exercise here is to show how the 
defect type distribution would have signaled the problem and 
recommended a plausible correction. Fig. 4 shows the overall 
reliability growth curve of the component. The curve is divided 
into four periods, the last three being approximately six months 
each. In the last period the number of defects almost doubled, 
and corresponds approximately to the system test phase. For 
the purpose of the study we drew the lines demarcating 
the periods at six month intervals and drew samples for 
classification. The granularity of the analysis is thus limited 
to these predetermined sampling intervals. In practice there 
will not be this sampling effect and analysis conclusions can 
be made at much finer intervals. 

The lower part of Fig. 4 shows the distribution of the defect 
type function. Each bar in the distribution corresponds to the 
fraction of defects of that type in that period. The departure 
in the process is clearly recognized by the distribution of the 
function defect type. Note that the increase of type function 
at period 3 may be because the period corresponds to the 
function test phase where function defects may be expected to 
increase. However, by the final period, function defects have 
increased to almost half of the total indicating that the final 
testing of the integrity of the software is being hampered by the 
failing of functionality. This trend will cause an alert since is 
it a significant deviation from expected behavior. Given that 
function defects were the cause of the departure, they also 
suggest an appropriate (design) re-review or inspection rather 
than more intensive testing. 

It takes time to calibrate the change in distribution within 
a particular development process, but until calibration is 
complete trend analysis can still be used to infer whether 
a process is making progress in the right direction. In the 
following figures, examples are shown pertaining to different 
parts of the development process to provide an illustration 

of the change in distribution. Given that ODC has been 
introduced only in the past year it is not yet possible to provide 
data of products from beginning to end. However, we are able 
to illustrate from a few snapshots across the phases. 

Fig. 5 shows distributions of defects discovered at high- 
level design and low-level design, respectively. The trend 
across these two stages indicates 1) a decline in the proportion 
of defect types function and interface, and 2) an increase 
in the proportion of algorithm. Both of these trends are 
considered healthy, as 1) function and interface are expected 
to diminish as the design becomes more detailed, and 2) 
algorithm is expected to increase as the more detailed design 
is examined. 

Fig. 6 continues this healthy trend across the code 
inspection stage, as function decreases and assignment and 
checking increase under the scrutiny of this evidently effective 
inspection process. 

Fig. 7, conversely, indicates an unhealthy trend. The two 
distributions are taken respectively from function verification 
test and system test. The preponderance of interface over all 
other defect types is alarming at both of these execution test 
stages. Function verification test is expected to uncover defects 
of type function but found only a small proportion. Defects 
of type assignment should have been discovered during code 
inspection or unit test, but they continue to increase at these 
late stages in the cycle. 

Given that the defect type distribution changes as a function 
of time, reliability growth of individual defect types provides 
another avenue to measure maturity of the product. Initial 
experiments with this approach were found to produce some 
better fits for long term prediction. Reference (211 illustrates 
the use of a modified S-shaped growth model for typed 
data. 

In a recent study on comparing software errors from two 
database systems [22], it has been found that the field late- 
life defect type distribution is dominated by assignment and 
checking types of defects. This seems reasonable given that 
they are the few lines of code that typically ignore a condition 
or incorrectly assign a value. This same study also finds that 
the fraction of function defects is lower in older products (i.e., 
IMS compared to DB2) as seen in Fig. 8 taken from [22]. 
Furthermore, an interesting analysis of a potentially asymptotic 
property in the error type distribution is identified using the 
defect-type. This furthers the case for this granularity of the 
classification and provides additional insights into its value. 

3.3. Process Inferencing 
We now take the trend analysis a stage deeper to illustrate 

the potential automation that is possible using ODC. Fig. 9 
shows a principal association table that has more details than 
Fig. 2. Down the columns are the different defect types and 
along the rows are the process verification stages. The dots in 
the table identify the principal associations. For example, the 
defect type function is associated with design (as before) and 
can be expected to be detected at both the high level design 
inspection and also function verification test. The principal 
associations thus show where defects of type function may 
peak. By construction, we should also expect valleys before 
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Fig. 6. Defect type distribution in code inspection. 

and after the principal association stages. This table thus 
describes the profiles of the defect type distribution explicitly. 
Departures from these profiles reflect potential problem areas. 
To illustrate how the departures are recognized, we present an 
example with the defect type function. 

By focusing on the leftmost column of the principal asso- 
ciation table, an inference tree on the defect type function 
may be built. This is the binary tree shown in Fig. 10. 
The root of this tree represents the first verification stage 
of the software development process with which function 
is principally associated. The levels of the tree represent 
subsequent verfication stages that are principally associated 
with function. The number of levels of the tree correspond 
to the number of principally associated verification stages 
plus one, to include the stage that follows the last principally 
associated stage. Thus we have high-level design inspection, 
function verification test, and system test. At each of these 
stages, it is determined whether there were too few (Low) or 
too many (High) defects of type function, where the criteria 
for High and Low are determined with experience. These two 
outcomes yield a binary tree. Paths from the root of the tree to 
a leaf node are development experiences and there are as many 
paths as leaf nodes. Against each leaf node are inferences that 
provide an assessment on the process. A High after the system 
test node indicates that the design is still exposed, whereas a 
Low after the system test node could mean that the design is 
either not exposed or has been already corrected, depending on 
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what happened at a prior node. For instance, the sequence H- 
L-H implies that the design is exposed, and probably function 
verification test did not do as good a job, leaving system test 
to do it. Thus revamping function verification test is indicated. 

The above example illustrates the use of ODC to provide 
feedback. In more recent work, we have developed algorithms 
to automatically generate, from the principal association table, 
the trees and the inferences associated with a development 
experience. Thus it allows adapting the inference to a new 
process simply by re-initializing the principal association 
table. Details of the inferencing and profiling of the process 
association can be found in [23]. 

IV. THE Defect Trigger ATTRIBUTE 

A defect trigger is a condition that allows a defect to 
surface [23]. For instance, when a product is shipped it 
is assumed that all the functions and operations are tested. 
However, in the field a series of circumstances may allow 
a defect to surface that otherwise would not occur in the test 

environment. It may be that the system had to get into recovery 
to uncover a checking defect type or a checking defect type 
does not occur until the software is run under a new hardware 
platform. Thus, although the defect type is the same, it might 
take different triggers to work as a catalyst for the defect to 
surface. In the field, the trigger can potentially be identified 
by the customer engineer, or someone experienced in problem 
diagnosis. Thus, triggers, unlike defect types, are identified 
early in the life cycle of a defect. 

The concept of the trigger provides insight not on the 
development process directly, but on the verification process. 
Ideally, the defect trigger distribution for field defects should 
be similar to the defect trigger distribution found during system 
test. If there is a significant discrepancy between the two 
distributions, it identifies potential holes in the system test 
environment. This is particularly useful when a product is sent 
out to an early ship customer prior to general availability. The 
difference in trigger distribution between early ship and system 
test could be used to enhance the test plans in order to cut the 
potential field defect exposure. 
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Fig. 10. Process feedback using inference tree-function defects. 

specific type of software error, main storage corruption, is 
analyzed. The trigger distribution quantifies the circumstances 

4.1. Pilot Results 
under which this particular defect surfaces, and this has been 
useful in disproving a common belief that timing was the 

Fig. 11 shows a trigger distribution of the field defects primary trigger for these defects surfacing in the field. In 
or Authorized Program Analysis Reports (APAR’s as they fact, timing triggered only 12.4% of main storage corrup- 
are called in IBM) from the MVS operating system. This tion defects, whereas boundary conditions were the dominant 
distribution is taken from [24] where the contribution of a agent. Thus system testing different hardware platforms is 
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Fig. 11. Trigger distribution of MVS APAR’s for main storage corruption. 

not as critical as inspections looking specifically for boundary 
conditions. This point is key to the importance of classifying 
and tracking defect triggers. Prior to this defect analysis, 
the most obvious and logical choice for uncovering these 
defects would have been a variety of hardware configurations. 
But after the analysis, it became clear that low level code 
inspection instead will uncover many more main storage 
corruption defects for the same, or less, investment. 

Fig. 12 compares the trigger distribution of two Database 
products, DB2 and IMS taken from [22]. The data are from 
APAR’s that aggregates around three years of field life. The 
trigger distributions show that while most of the DB2 triggers 
are due to stress or workload related, the ones for IMS 
are much more evenly distributed across several triggers. It 
is likely that the younger product (DB2) sees more new 
environments, the IMS product has a much more stable 
workload base. These data clearly identify areas for resource 
expenditure to maximize the results from a system or product 
test. 

The above discussion referred specifically to triggers that 
apply from the system test stage into the field. These triggers 
do not apply at function test or unit test, since under those 
circumstances, the test case is itself the trigger that allowed 
the defect to surface. 

4.2. Document Review and Code Inspection Triggers 
The concept of the trigger fits very well into assessing 

the effectiveness and eventually the completeness of a design 
review. In this review, the design specification document that 
defines the functionality of a software product and the design 
structures document that describes the details of implementing 
this same product are sent out to several people who in turn 
send back their comments. A critical part of this review 
process is to assess whether these design documents have 
been reviewed by enough people with the right skill level. 
The importance of such assessment cannot be understated, 
since the process that follows design reviews implements and 
inspects the code for this product. Hence, any missing or 
incorrect information will have a serious impact on testing 
and maintaining this product. 

Fig. 12. Trigger distributions for DB2 and IMS. 

Fig. 13. Design triggers and relationship to experience. 

Fig. 13 presents a list of triggers as they apply to the 
review of a design document [25]. The set has been de- 
rived by considering the activities performed by different 
reviewers in accomplishing their task. Some reviewers look 
for details in the process of understanding what is written. 
Such details may include concurrency when the control of 
shared resources is being studied, operational semantics when 
the flow of logic required to implement a function is exam- 
ined, or the side effects of executing such function. Other 
reviewers look at the conformance of the defined services 
with preceding requirements and design documents. Similar 
activities include examination of compatibility issues both 
backward and laterally with other products, checking for 
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Fig. 14. Trigger distributions through high and low level design reviews. 

inconsistencies and missing sections within the document, 
inspecting the language-specific details of the implementation 
of a component, and searching for a rare situation that has not 
been considered or addressed in the design document under 
review. 

For each of these triggers, one can assess the skill required 
by the reviewer. Fig. 13 also shows the skill level appropriate 
for each trigger. Note that some of the triggers, such as 
looking for details, may not require substantial knowledge or 
experience of the subject product, whereas lateral compatibility 
clearly indicates the need for people with skill in more 
than just the product or component under review. Similarly, 
backward compatibility requires people with experience within 
the component or product. People who can identify rare 
situations need a lot of experience, either with the product 
or otherwise. 

Given that we can map the defect triggers to skills required 
to find the defect type, we can again exploit the defect trigger 
distribution to gain insight into the effectiveness of the review. 
It is common to also have several reviews of the document, 

each incorporating the accepted comments from the earlier 
one. Thus one can look at the change in the trigger distribution 
to see if it reflects anticipated trends, similar to the defect type 
distribution. 

Fig. 14 shows the trigger distribution of defects from a 
high-level design review and a low-level design review, re- 
spectively, whereas Fig. 15 shows the trigger distribution from 
a code inspection. The corresponding defect type distributions 
were shown in Fig. 5 and Fig. 6, respectively. Although, 
these trigger distributions have not yet been calibrated, the 
information is still useful. Given the characteristics of a 
software product, the cross product of the defect type and 
the trigger, in the mathematical sense, provides a measure 
of the effectiveness of the verification method in identifying 
defects from this process. Thus, in the case of Fig. 14, 
a software product with significant interactions with other 
products, the lack of any interface defects that are trig- 
gered by lateral compatibility is suspicious. It can imply 
either an excellent development or a deficient design re- 
view. Looking through the skill base of the review team 
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Fig. 15. Trigger distribution in code inspection. 

and the defect types they identified, it became evident that 
the review team lacked skills in cross product experience. 
Subsequently, a second design review was initiated and these 
same triggers were used to assess the effectiveness of this 
review. Thus the defect trigger helped provide feedback on 
the effectiveness of the verification process, the review, of a 
design. 

The small number of defects that were found by checking 
for concurrency, backward compatibility, and lateral compat- 
ibility issues in Fig. 15 has also been a cause of concern. 
Members with good experience in the product were subse- 
quently asked to reinspect the code in order to help find more 
defects that are triggered by compatibility concerns. 

V. IMPLEMENTING ODC 
The cost impact on an individual software engineer during 

the development process is minimal. Typically, measured in 
the order of a dozen keystrokes per defect to fill out one 
or two panels. The incremental time is probably negligible 
once one enters a tracking system to track the defect. We 
have measured anywhere from less than a minute up to four 
minutes depending on the tracking system. There is an initial 
setup cost that involves education, tool changes, and process 
changes to get ODC started. Currently some of our education 
classes run a total of three hours, which includes a lab session. 
To provide a workable framework within the development lab, 
a process needs to be defined for the analysis and feedback of 
the data with owners responsible for the activities. Depending 
on the degree of deployment within a lab, we have the ODC 
ownership completely within a development team in the case 
of a few projects, or under a process manager when used for 
the whole lab. 

One of the natural extensions of ODC is to assist the Defect 
Prevention Process (DPP) [6]. DPP identifies the root cause of 
defects and creates action that prevent the re-occurrence of 
such defects. ODC data provides a fertile environment where 
analysis can identify hot-spots and report situations without 
human analysis of each defect. Essentially, ODC provides a 
very low-cost method to bring issues to the table and rank 
order them in terms of impact. Furthermore, ODC is not 

limited by human attention span in looking at several problems 
or across several databases to make inferences. Thus ODC can 
be used to focus DPP and the DPP process can be leveraged 
by devoting time to the hot-spots and not laboring over reams 
of data. 

VI. SUMMARY 

This paper addresses a key issue of measurement in the 
software development process, i.e., feedback to the developer. 
Without feedback to the development team, the value of 
measurement is questionable and defeats the very purpose 
of data collection. Yet, feedback has been one of the biggest 
challenges faced, and not without reason. At one end of the 
spectrum, research in defect modeling focused on reliability 
prediction treating all defects as homogeneous. At the other 
end of the spectrum, causal analysis provided qualitative 
feedback on the process. The middle ground did not de- 
velop systematic mechanisms for feedback due to the lack 
of fundamental cause-effect relationship extractable from the 
process. This paper builds on some fundamental work that 
demonstrated the existence of a relationship between the type 
of defects found and their effect on the development process. 
The 

. 

. - 
major contributions of this paper are: 
Orthogonal Defect Classification which provides a basic 
capability to extract signatures from defects and infer the 
health of the development process. The classification is 
to be based on what was known about the defect such 
as its defect rype or trigger and not on opinion such as 
where it was injected. The choice of the classes in an 
attribute should satisfy the stated necessary and sufficient 
conditions so that they eventually point to the part of the 
process that requires attention. 
The design of the defect type attribute to measure the 
progress of a product through the process. Defect type 
identifies what is corrected and can be associated with 
the different stages of the process. Thus, a set of defects 
from different stages in the process, classified according 
to an orthogonal set of attributes, should bear the signature 
of this stage in its distribution. Moreover, changes in the 
distribution can meter the progress of the product through 
the process. The departure from the distribution provides 
alert signals pointing to the stage of the process that 
requires attention. Thus, the defect type provides feedback 
on the development process. 
The design of the defect trigger attribute to provide 
a measure of the effectiveness of a verification stage. 
Defect triggers capture the circumstance that allowed the 
defect to surface. The information that yields the trigger 
measures aspects of completeness of a verification stage. 
The verification stages could be the testing of code or 
the inspection and review of a design. These data can 
eventually provide feedback on the verification process. 
Taken together with the defect type, the cross-product 
of defect type and trigger provides information that can 
estimate the effectiveness of the process. 
Our experience with ODC, which indicates that it can 
provide fast feedback to developers. Currently, two-stage 
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data is used for trend analysis to yield feedback. It is 
envisioned that as pilots evolve, the measurements can 
yield calibration. The use of ODC can begin as early as 
high-level design and the paper illustrates data from a 
selection of pilots using ODC. 

l ODC as general concept for in-process measurements. Al- 
though this paper has focused its application in software 
development, it is plausible that similar advancements are 
possible in other areas. Currently these ideas are being 
explored, at IBM, in hardware development, information 
development, and nondefect oriented problems. 
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