
5 6 I E E E S o f t w a r e J a n u a r y – F e b r u a r y 1 9 9 8 0 7 4 0 - 7 4 5 9 / 9 8 / $ 1 0 . 0 0 © 1 9 9 8 I E E E]

Nuts

Nuts

B
o

lts

B
o

lt
s

David N. Card, SOFTWARE PRODUCTIVITY CONSORTIUM

Learning from Our
Mistakes with Defect
Causal Analysis

efect causal analysis offers a simple, low-cost method for systematically

improving the quality of software produced by a team,project,or orga-

nization.DCA takes advantage of one of the most widely available types

of quality information—the software problem report.This information

drives a team-based technique for defect causal analysis. The analysis leads to

process changes that help prevent defects and ensure their early detection.

Although some approaches to quality improvement involve exhaustive defect clas-

sification schemes or complex mathematical models,the approach I present relies on

basic techniques that can be implemented readily by the typical software organization.

The DCA process was developed at IBM1; I adapted it for Computer Sciences

Corporation2 and other organizations.Three key principles drive the DCA approach.

♦ Reduce defects to improve quality. Although there are many different ideas about

what quality is or which “-ility” is more important—reliability, portability, or what-

ever—we can all probably agree that a product with many defects lacks quality,

however you define it. Thus, we can improve software quality by focusing on the

prevention and early detection of defects,a readily measurable software attribute.

D

By cu l l ing sys temat ic e r rors f rom problem repor ts,
DCA he lps deve lop s t rateg ies fo r prevent ing defec ts
or detec t ing them ear l ie r.

.

♦ Apply local expertise. The people who really un-
derstand what went wrong are the people present when
the defects were inserted—the software engineering
team. Although causal analysis can be performed by out-
side groups such as quality assurance, researchers, or a
software engineering process group,those people gen-
erally don’t know the detailed circumstances that led to
the mistake,or how to prevent it in the future.

♦ Focus on systematic errors. Most projects have too
many defects to even consider conducting a causal
analysis of them all. However, some mistakes tend to
be repeated. These “systematic errors” account for a
large portion of the defects found in the typical soft-
ware project.Identifying and preventing systematic er-
rors can have a big impact on quality (in terms of de-
fects) for a relatively small investment.

There are relatively few prerequisites for imple-
menting DCA.

♦ You must have defects—usually not a difficult
prerequisite to satisfy.

♦ Your defects must have been documented
through problem reports, inspection results,and so on.

♦ You must have a desire to avoid mistakes or at
least the negative feedback associated with them.

♦ You must define a basic software process to pro-
vide a framework for effective actions.

You don’t have to fully define and detail your soft-
ware engineering process for DCA to provide value.
However,without at least a basic process framework it
becomes difficult to understand where and how de-
fects enter the software and which actions are most
likely to prevent or find them earlier.

Process overview

Typically, software defects are fixed and forgotten.
DCA provides a mechanism for learning from them.
Figure 1 shows the DCA process.Software is produced,

then undergoes testing by either the programmers or
a separate test team. Problems identified during test-
ing are recorded in a problem database. Eventually,
programmers get around to fixing them.In the typical
software organization,that’s usually the last time any-
one thinks about the problems. However, DCA adds
steps that help the organization learn from its mistakes
instead of continually repeating them.

The DCA process draws samples of problems from
the database for periodic causal-analysis meetings.
These meetings produce recommendations for an ac-
tion team.The proposals may be either short-term (for
immediate action by project staff) or long-term (for

J a n u a r y – F e b r u a r y 1 9 9 8 I E E E S o f t w a r e 5 7]

Nuts

Nuts

B
o

lts

B
o

lt
s

Action
team

meeting

Causal
analysis
meeting

Long-term
actions

Sample of
problems

Problems
to fix

Short-term
actions

Problems
identified

Problem
database

Organization
process

Software
production

Software
testing

Software

Baseline for
future projects

Recommended
actions

Figure 1. The defect-causal-analysis process, which draws problem
samples from the database for periodic meetings that produce ac-
tion team recommendations. Short-term proposals benefit the cur-
rent project; long-term proposals are integrated into the organiza-
tion’s process improvement efforts and benefit future projects.

Welcome to Nuts and Bolts, a new section of articles that will help software practitioners apply specific technologies or development tasks

to their work. As an IEEE Software reader, you’re uniquely qualified to contribute to Nuts and Bolts. Your submissions should contain methods

that have proven successful and readily implementable by the typical software organization. These methods need not, however, be widely

established in practice yet.

Our Tutorial articles will explain how a specific technology is applied to software development or how a specific real-world problem can

be solved. It surveys all aspects of a research or application domain. Given our magazine’s broad scope, contributions should be written at a

level easily understood by nonexperts.

Our How-To articles are new to IEEE Software. They will give developers and managers step-by-step instructions for doing one thing one

way—and well. Again, any given technique will certainly be completely new to some readers, or your article may provide them with the key

to applying it successfully. Thus, How-To’s should be short (3-5 pages) and to the point.

Detailed guidelines for writing IEEE Software How-To and Tutorial articles can be found at http://computer.org/software/genres.htm, or

request them via e-mail to software@computer.org. If you have questions about submitting articles to Nuts and Bolts or would like to discuss

potential article topics, please contact me directly at card@software.org.

—David N. Card, Nuts & Bolts editor

.

the benefit of future projects). The longer-term pro-
posed action should be integrated into the organiza-
tion’s other process improvement efforts. Usually, the
effects of causal analysis and resulting actions can be
measured within a few months of the project’s start.

Causal-analysis team

The causal-analysis team is the focus of the DCA
process. It performs most of its work during a causal-
analysis meeting in which the software team analyzes
problems and recommends improvements that will
prevent defects or detect them earlier in the process.
The causal-analysis team should consist of the soft-
ware producers (developer and maintainers) who have
the greatest intimacy with the product and process.
Robert Mays and colleagues1 observe that the best re-
sults are obtained when DCA is performed “by the de-
veloper making the error, [which] results in a more ac-
curate determination of the cause of the defect and
more relevant preventive actions.”

Causal-analysis meetings should be held at regular
intervals, typically

♦ after each testing phase,
♦ after each development phase, and
♦ three months after the delivery of each release.
Meetings typically last about two hours. Encourage

the entire development team to participate. Usually
only 50 to 60 percent of the team attends any given
meeting.By limiting teams to 25 people or less,you get
meetings of a manageable size. If the project is very
large, define subteams logically. For example, you can
establish subteams for the database,applications,and
systems programmers. Each subteam should investi-
gate problems from its own domain.

The causal-analysis meeting should be led by a des-
ignated moderator or facilitator. The role of the facili-
tator is to hold the team to its agenda while preserving

group integrity. The facilitator could be a respected
member of the team, a member of the software engi-
neering process group,a tester,or a member of another
causal-analysis team. Don’t select a manager or qual-
ity assurance person as the facilitator because that in-
dividual may inhibit discussion. As we shall see, man-
agement and quality assurance have other important
roles to play in the DCA process.

The typical agenda for a DCA meeting includes the
following steps:

♦ select problem sample,
♦ classify selected problems,
♦ identify systematic errors,
♦ determine principal cause,
♦ develop action proposals, and
♦ document meeting results.
The output of each step provides input to the next.

The final results of the causal-analysis meeting are spe-
cific recommendations provided to the action team,
usually the software engineering process group.

Select problem sample
Because most projects have more problems than

they can afford to analyze, a sample must be selected
for consideration during the causal-analysis meeting.
Do not select more than 20 problems for analysis in
one session. The moderator or the custodian of the
problem report database (often QA) may perform this
step in advance of the group meeting.

Make the sample as representative of the team’s
work as possible. Omit obvious duplicates and non-
software problems. Do not restrict your sample to
high-priority problems. Priority is accidental. For ex-
ample, a misspelled word on a display may be cos-
metic,while the same misspelling in another place may
produce a system failure.Do not select problems from
just one source, whether that source is an individual
programmer or a system component.

Classify selected problems
Classifying or grouping problems helps to identify

clusters in which systematic errors are likely to be
found.You should select the classification schemes to
be used when you set up the DCA process. Moreover,
the meeting itself will go faster if you classify the prob-
lems to be analyzed according to a predefined classi-
fication scheme. Ideally,each problem should be clas-
sified by the programmer when implementing its fix.
Alternatively,the moderator may classify the problems
prior to the group meeting. Three dimensions are es-
pecially useful for classifying problems:

♦ When was the defect that caused the problem
inserted into the software?

♦ When was the problem detected?
♦ What type of mistake was made or defect intro-

duced?
The first two classification dimensions correspond

to activities or phases in the software process.The last

5 8 I E E E S o f t w a r e J a n u a r y – F e b r u a r y 1 9 9 8]

Nuts

Nuts

B
o

lts

B
o

lt
s

Type of error

Interface

Data
Logic

Initialization
Computation

N
u

m
b

er

10

5

Figure 2. This Pareto chart example shows that Interface defects
comprised the largest defect class.

..

dimension reflects the nature of the work performed
and the opportunities for making mistakes.Some com-
monly used error types include interface, computa-
tional, logical, initialization, and data structure.
Depending on the project’s nature, you can add other
classes such as documentation and user interface.

You can produce tables or Pareto charts to help
identify problem clusters. A Pareto chart is a bar chart
that shows the count of problems by type in decreas-
ing order of frequency. Figure 2 shows a Pareto chart
of defects by type for a scientific data processing sys-
tem.The figure shows that Interface defects comprised
the largest class. The set of problem reports compris-
ing this class would be a good place to start looking
for a systematic error.

Identify systematic errors
A systematic error results in the same or similar de-

fects being repeated on different occasions. Usually
systematic errors are associated with a specific activ-
ity or part of the product. Ignore the effects of individ-
ual defects in seeking out systematic errors. Table 1
shows three examples of systematic errors from dif-
ferent domains.In each of these cases,20 to 40 percent
of the problem reports in the samples examined dur-
ing the causal-analysis meeting were associated with
the common problem (systematic error) identified in
the table. That many defects result from these situa-
tions is good motivation for changing the process. All
the solutions described in the table required additional
developer effort in the short term. Nevertheless, the
developers themselves proposed these actions.
Consequently, once management authorized them,

these process changes were readily adopted by the en-
gineering teams.

Determine principal cause
Many factors may contribute to a systematic error.

Usually it is uneconomical to address them all, so you
must concentrate attention on the principal cause.
Often the principal cause will be obvious from the prob-
lem statement. Table 1 lists some examples of causes.
Look for unexpected circumstances that repeat and for
departures from normal practices. If the principal cause
isn’t obvious, develop a cause–effect diagram to try to
draw it out, as shown in the boxed text on page 60.
Causes usually fall into one of four categories3:

♦ methods,which may be incomplete,ambiguous,
wrong, or unenforced;

♦ tools and environment, which may be clumsy,
unreliable, or defective;

♦ people, who may lack adequate training or un-
derstanding; and

♦ input and requirements, which may be incom-
plete, ambiguous, or defective.

The causal categories help group related items, as
well as identify general software process areas that
may need attention. As with the defect classification
scheme,you should adapt the causal categories as nec-
essary to support the analysis and reporting needs of
the organization.

Develop action proposals
Once you find the principal cause of a systematic

defect, you must develop action proposals that will
promote either prevention or earlier detection of the

J a n u a r y – F e b r u a r y 1 9 9 8 I E E E S o f t w a r e 5 9]

Table 1
Examples of Causal-analysis Results

Domain Problem Cause Solution

Scientific Members of the software development team Inconsistent use of Create a standard workspace based

data had configured their workspaces differently development on the operational environment in which

processing with different directory structures, file pro- environment. each developer checked out their code

tections, default devices, and so on. Each team before delivering it to integration and test.

member could get their assigned code to

function in their workspace, but once it moved

to integration and test it often failed to work.

Spacecraft Many problem reports involved consistency Inconsistent use of Define standard conventions for the user

navigation between different parts of the user interface, user interface interface such as position and width of

as well as discrepancies between what the package. fields, data editing applied to fields, and

user interface provided and what the software use of function keys.

applications expected. The user interface was

a purchased package, but not well documented.

Computer- The software process involved a significant Insufficient familiarity Conduct a requirements review immediately

aided design delay (due to approval and scheduling) from with requirements. prior to beginning the development of

the time that requirements were documented each software segment.

to the time that development actually began.

Even though the same people worked on

both the requirements and development,

significant mistakes occurred simply because

people forgot some of the decisions that had

been made earlier.

.

systematic defect. Ask questions like the following
when trying to elicit recommendations.

♦ How could we have done things differently?
♦ What did we need to know to avoid this?
♦ When is the earliest this defect could have been

recognized?
♦ What symptoms suggest the defect will occur?
Limit the number of proposed actions and focus on

those recommendations most likely to have a signifi-
cant impact.Some organizations seem to measure the
success of their DCA process by the number of actions
proposed.Too many actions can overwhelm manage-

ment’s ability to process them. One good action pro-
posal implemented is worth more than any number
waiting in queue. Table 1 lists some examples of ac-
tions. Other examples include

♦ adding the identified defect to the list of com-
mon defects used in design inspections,

♦ providing training to programmers in the use of
the configuration management tool, and

♦ notifying programmers and testers via e-mail
when interface specifications change.

Make action proposals specific, as shown in these
examples, and avoid general terms such as “better,”
“more,” “as needed,” “available,” and “enough.” State
who should be responsible, what should happen, and
when. DCA differs from generic process assessment
methods in that it focuses on identifying specific ac-
tions rather than suggesting broad areas for increased
process improvement attention.

Action proposals must focus on the systematic
error. The defects associated with this error motivate
taking action. Extraneous suggestions only reduce the
impact of the team’s findings. Avoid trying to fix some-
one else’s process. Confine recommendations that ex-
tend beyond the scope of the team’s responsibility to
the interfaces between processes.

Document meeting results
You need records of meeting results to ensure that ac-

tions get implemented. In most cases a simple form-based
report will suffice. Include the following information:

♦ identification of meeting event, such as team,
date, and so on;

♦ description of systematic errors;
♦ principal cause and category of cause for each

systematic error;
♦ list of problem reports or defects related to each

systematic error; and
♦ proposed actions.
The problem reports, defects from inspections, and

so on associated with the systematic error provide the
justification for the proposed action,so it is important to
enumerate them when documenting meeting results.

Action team

Most recommendations produced by the causal-
analysis team can’t be implemented without man-
agement support. To get any benefit from DCA, you
must form an action team that meets regularly to con-
sider proposed actions. Multiple causal-analysis teams
may feed into one action team. The action team per-
forms the following duties.

♦ Prioritizing action proposals. Few organizations
can afford to implement all proposals at once.

♦ Resolving conflicts and combining related pro-
posals, especially if multiple causal-analysis teams are
operating.

6 0 I E E E S o f t w a r e J a n u a r y – F e b r u a r y 1 9 9 8]

The cause-effect diagram, also known as an Ishikawa or Fishbone

diagram, is a simple graphical technique for sorting and relating factors that

contribute to a given situation. A team usually develops the cause-effect dia-

gram in a facilitated brainstorming session.

Figure A shows the three steps for constructing a cause-effect diagram.

1. State the problem being analyzed. Use the statement of the systematic

error. Draw the main branch of the diagram connected to the problem state-

ment. Insert headings for the generic causes to be used in the diagram;

methods, tools, people, and input are commonly used.

2. Brainstorm to collect specific causes. Attach each specific cause to the

appropriate generic cause or to a related previously stated cause. Several

layers of causes may be attached.

3. Once all ideas have been collected, discuss the significance of the causes

identified. Highlight the principal or operative cause contributing to the system-

atic error. Often this is found in the densest cluster of causes on the diagram.

The cause-effect diagram provides a focus for discussion. It does not lead

to a deterministic solution. Teams working with the same information usu-

ally produce similar, but not identical, results.

Figure A. The three steps for constructing a cause-effect dia-
gram: (1) State the problem, (2) brainstorm to collect specific
causes, and (3) discuss the significance of the causes identified.

C A U S E - E F F E C T D I A G R A M

Tools Methods

Input People

Problem

Step 1

Tools Methods

Input People

Problem

Step 2

Tools Methods

Input People

Problem

Step 3

.

♦ Planning and scheduling the implementation of
proposals.

♦ Allocating resources and assigning responsibil-
ity for proposal implementation.

♦ Monitoring the progress of implementation and
the effectiveness of actions.

♦ Communicating actions and status to the causal-
analysis teams.

An existing organizational element, such as a soft-
ware engineering process group, may serve as the ac-
tion team. However, this group must have manage-
ment participation or a management sponsor who can
initiate action. The benefits of DCA are lost without
timely action.Therefore,you should identify the mem-
bers of the action team before conducting any causal-
analysis meetings.

Implementing DCA

Despite DCA’s simplicity, appropriate preparation in-
creases the probability of a successful implementation.
Implementing a DCA process involves three major steps.

Step 1: Define the DCA process
Before the process can be taught or executed it

must be defined. Some important decisions must be
made during this step.

♦ When will causal analysis be conducted?
♦ How will the DCA teams be organized if more

than one is needed?
♦ Who will sit on the action team?
In addition to the DCA procedure, the defect clas-

sification scheme and reporting form must be docu-
mented. Data collection mechanisms must be estab-
lished or augmented to support the evaluation of the
DCA process.

Step 2: Provide training to participants
Everyone is likely to perform better if they under-

stand their roles in the DCA process. I recommend
three types of training.

♦ Moderator training.The causal-analysis team will run
more smoothly if facilitated by someone who understands
the basic techniques for promoting participation and
building consensus while preserving group integrity.

♦ DCA team training. Causal-analysis teams must
understand the DCA process,as well as the basic tools
used in arriving at principal causes.

♦ Management orientation. Although managers
don’t have to understand the details of the causal-
analysis meeting and techniques, they must grasp
DCA’s principles if they are to take action effectively.

In addition to the formal training described earlier,
observing and providing feedback on a team’s first
meeting has proven effective in assessing their un-
derstanding of the DCA process and correcting any
misinterpretations or misunderstandings.

Step 3: Evaluate the DCA process
The DCA process should evolve over time to better

suit the organization’s needs.Two sources of informa-
tion should drive this evolution:

♦ Participant feedback on the DCA process itself.
This includes the procedure,reporting forms,training,
and classification scheme. This can be accomplished
via a simple survey of team members.

♦ Quantitative data on the effects of DCA-origi-
nated actions.Ideally,an organization should establish
a baseline of defect rates and types prior to com-
mencing DCA.Measuring rates and types after actions
have been taken can show the effects of DCA.

Potential problems
Because DCA is a commonsense idea,organizations

sometimes attempt to “just do it” without adequate
preparation. Planning, training, and follow-up help
avoid some common pitfalls of DCA implementations.

Other dangers can result from the fear of blame that
Deming recognized years ago. Behaviors to avoid in-
clude the following.

♦ Fixing someone else’s process. It is always tempt-
ing to try to fix the customer’s or tester’s process rather
than our own.This isn’t an effective use of time because
producers have neither the expertise to suggest ef-
fective changes to the other processes,nor the control
to implement these changes.

♦ Defending our process. No one likes to make mis-
takes.DCA can become a forum for rationalizing away er-
rors—downgrading their severity and converting them
from “problems”to “changes.”Consequently, the “num-
bers”may look better,but performance won’t improve.

♦ Discounting the producers. Since many software
managers previously worked as software engineers,
they have a tendency to think that they know better
than the people actually performing the work.
Modifying the producers’ proposals to conform with
management’s preconceptions reduces the enthusiasm
of producers for implementing the resulting actions.

Other potential problems relate to the management
of the DCA process itself, including the following.

♦ Adopting a suggestion focus.The goal of DCA is to
motivate action. Nevertheless, organizations often are
tempted to treat DCA like suggestion programs in which
score is kept by counting the proposed suggestions or
recommendations rather than focusing on actions.

♦ Procrastinating. It takes time to realize the bene-
fits of any improvement program. However, a signifi-
cant part of this lag often can be attributed to man-
agement’s delay in implementing recommendations.
Resources for action should be set aside before initi-

J a n u a r y – F e b r u a r y 1 9 9 8 I E E E S o f t w a r e 6 1]

Despite DCA’s simplicity,
preparation increases the odds
of successful implementation.

Nuts

Nuts

B
o

lts

B
o

lt
s

.

6 2 I E E E S o f t w a r e J a n u a r y – F e b r u a r y 1 9 9 8]

ating the DCA process.
♦ Letting the process drift.Both the analysis and ac-

tion elements of DCA are human-intensive processes.
Unless you actively manage them, social forces can
change their methods and goals, leading to the prob-
lems described previously.

Enthusiastic follow-through by management and
respect for the technical skills of the software produc-
ers are the keys to a successful DCA implementation.

DCA’S impact

DCA’s impact on an organization can be assessed
from at least three perspectives: its benefits in terms of

quality improvement, the cost to implement DCA,and
its compatibility with other improvement initiatives.

Evidence of improvement
The two simplest ways of determining the effec-

tiveness of improvement actions on quality are to track
the overall defect rate and the distribution of error
types. Here, I summarize the benefits of DCA from the
perspectives of two different organizations. The IBM
experience involved projects with hundreds of staff,1

while, in contrast, the Computer Sciences Corporation
experience involved projects with only tens of staff.2

In both cases, defect rates declined by about 50 per-
cent over each two-year period of study. Further, CSC
experienced the lowest defect rate achieved in the ap-
plication domain studied and “severe” errors disap-
peared2 from the project that implemented DCA.This
project received a commendation from the customer
for the quality of the software delivered.

Figure 3 shows that in IBM the defect rate declined
in all phases of the life cycle compared to a historical
baseline of projects from the same application domain.

Not all defects equally affect the user and the prod-
uct’s success. For example, certain parts are critical to
system operation; others are not.Nevertheless, reduc-
ing defects in general reduces critical defects,too—as
the CSC example shows. Moreover, reducing system-
atic sources of defects usually reduces development
cost and cycle time. Both IBM and CSC enjoyed signif-
icant dollar savings as a result of systematic quality im-
provement.Focusing exclusively on the egregious mis-
takes that crash the system usually doesn’t produce
these side benefits.

The distribution of error types may be a more sensi-
tive indicator of process changes in the short-term.4 For
example,if a systematic error had been found among the
Interface problems in Figure 2, and an effective action
for preventing this systematic error had been imple-
mented,the proportion of problems in this class should
diminish over time.This change in distribution often can
be detected earlier than the change in defect rate.

Cost of implementation
DCA isn’t expensive, but it does require some in-

vestment.The cost of operating a DCA program, from
causal analysis through implementing actions,ranges
from 0.5 percent of the software budget at IBM1 to 1.5
percent at CSC.2 Beyond this operational cost,a startup
investment must be made to fund training, classifica-
tion scheme definitions,procedures setup,and the es-
tablishment of data collection mechanisms. This im-
plementation cost depends on what relevant resources
the organization already possesses as well as how
widely DCA is to be implemented. Nevertheless, the
experiences I’ve cited show that if quality is important
to your organization,DCA is well worth the investment.

Type of systematic error

65

15 12 8

Methods People Input Tools

Pe
rc

en
ta

g
e

Figure 4. Distribution of systematic errors for one
organization. About two-thirds of all systematic er-
rors stemmed from flawed software methods, es-
pecially failures of process or communication.

7.9

18.6
20.8

17.4

3.3

Development stage

Key:
Old
MLD
UT

Component-level design
Module-level design
Unit test

FVT
PVT
SVT

Function verification test
Product verification test
System verification test

D
ef

ec
ts

 p
er

 t
h

o
u

sa
n

d
 li

n
es

3.7

Old

6.9

11.4
8.7

1.8

MLD Code UT/FVT PVT/SVT

After DCA History

Figure 3. IBM’s experience with DCA showed that defect rates de-
clined by an average of 50 percent. Computer Sciences Corporation
enjoyed similar benefits when it implemented DCA.

.

Relationship to CMM
The Software Engineering Institute’s Capability

Maturity Model envisions the deployment of DCA and
other defect-prevention techniques at Level 5,
Optimizing.5 Consequently, many organizations put
off investment in DCA because they want to focus all
their attention on exactly the level they are trying to
attain currently—and that usually isn’t Level 5.
However, the CMM is a descriptive, not prescriptive
model: it describes what must be in place for an orga-
nization to qualify for each level,not how an organiza-
tion moves from one level to another.Moreover,some
practices exert a maturity-pull effect.6 Often,the most
effective way of moving from one level to the next is to
adopt some practices from higher levels.For example,
an organization moving from Level 1 to Level 2 usually
starts by establishing a training program and software
engineering process group—Level 3 practices!

DCA is a maturity-pull technology for organizations
attempting to establish themselves at Levels 3 and 4
because it facilitates the following behaviors.

♦ Quality awareness. Participating in causal-analy-
sis and action meetings makes software quality tangi-
ble to managers and producers alike.They gain a prac-
tical understanding of the consequences of quality.

♦ Process commitment. Evidence accumulated
through DCA helps show producers the value of con-
forming to the process.Figure 4 shows data on one or-
ganization’s systematic error distribution. About two-
thirds of all systematic defects stemmed from flawed
software methods.Moreover,most problems from this
class were caused by a failure to follow some element
of the defined process or to communicate important
information.Conducting DCA convinces software pro-
ducers of the value of an effective process.

♦ Quality measurement understanding. When soft-
ware producers begin analyzing problems and imple-
menting improvements via DCA,they begin to under-
stand the value of quality data.Their fears about data
misuse decline, because now they are data users too.

Many organizations have adopted strategies other
than the CMM to drive process improvement.DCA pro-
vides an effective mechanism for feedback on process
improvement in those situations,too.DCA can’t be im-
plemented effectively in the total absence of a process
framework,but it can help steer the evolution of an or-
ganization’s process well before it achieves Level 5.

DCA is a low-cost strategy for improving software
quality that has proven effective in many differ-

ent organizational settings. Although the benefits of
DCA take time to realize, implementing the project-
level approach I’ve described typically produces mea-
surable results within months. Of course, without
timely follow-through by the action team,you will ob-
tain no benefits at all.

This approach to DCA is based on sampling,not an
exhaustive analysis of all reported problems. A sys-

tematic error is likely to be represented in a given
sample, or the next. Actions should focus on the sys-
tematic errors—a subset of the sample.Some organi-
zations have conducted causal analyses of 200 prob-
lems and produced 500 proposed actions. That
quantity of recommendations is likely to overwhelm
management’s ability to react. Effective action is more
likely if you propose a few, high-leverage actions.

DCA is readily adapted to tasks besides software
production.For example,the goal of testers is to find all
defects before the system is fielded. Any problem re-
ported from the field represents a defect for the testers.
This information can be used in the DCA process to
identify testing-process improvements that could fa-
cilitate finding those defects before they are fielded.

Many of the actions proposed by the DCA teams
will be small incremental improvements rather than
revolutionary ideas.Unfortunately,we devote much of
our professional lives to dealing with problematic
trivia—small things that go wrong, but take up lots of
time. Reducing these hindrances lets an organization
perform at its true potential and perform actions that
may have dramatic effects. ❖

REFERENCES
1. R. Mays et al., “Experiences with Defect Prevention,” IBM

Systems J., Vol. 29, No. 1, 1990, pp. 4-32.

2. O. Dangerfield et al., “Defect Causal-analysis: A Report from the
Field,” Proc. ASQC 2nd Int’l Conf. Software Quality, ASQC,
Milwaukee, Wisc., Oct. 1992.

3. K. Ishikawa, Guide to Quality Control, Asian Productivity
Organization, Tokyo, 1976 (revised 1982).

4. R. Chillarge et al., “Orthogonal Defect Classification,” IEEE Trans.
Software Eng., Nov. 1992, pp. 943-955.

5. M. Paulk et al., “Capability Maturity Model, Version 1.1,” IEEE
Software, July 1993, pp. 18-27.

6. D. Card, “Defect Causal Analysis Drives Down Error Rates,” IEEE
Software, July 1993, pp. 98-99.

J a n u a r y – F e b r u a r y 1 9 9 8 I E E E S o f t w a r e 6 3]

Nuts

Nuts

B
o

lts

B
o

lt
s

David N. Card is the manager of the soft-
ware measurement program at the
Software Productivity Consortium. He
previously worked for Lockheed Martin,
Software Productivity Solutions, and
Computer Sciences Corporation. He was
a resident affiliate at the Software
Engineering Institute and spent seven

years as a member of the NASA Software Engineering
Laboratory research team.

Card received a BS in interdisciplinary science from
American University. He is a member of the IEEE Computer
Society and the American Society for Quality.

Address questions about this article to Card at 115 Windward
Way, Indian Harbour Beach, FL 32937; card@software.org.

About the Author

.

