Improving software
testing via ODC:
Three case studies

Orthogonal Defect Classification (ODC) is a
methodology used to classify software defects.
When combined with a set of data analysis
techniques designed to suit the software
development process, ODC provides a powerful
way to evaluate the development process and
software product. In this paper, three case
studies demonstrate the use of ODC to improve
software testing. The first case study illustrates
how a team developing a high-quality, mature
product arrived at specific testing strategies
aimed at reducing field defects. The second is a
middleware project that identified the areas of
system test that needed to be strengthened. The
third describes how a very small team with an
inadequate testing strategy recognized its risk in
trying to meet the scheduled release and made
the product more stable by postponing the
release date and adding badly needed testing
scenatrios. All three case studies highlight how
technical teams can use ODC data for objective
feedback on their development processes and
the evolution of their products. This feedback
facilitates the identification of actions to increase
the efficiency and effectiveness of development
and test, resulting in improved resource
management and enhanced software quality.

Software systems continue to grow steadily in
complexity and size. The business demands for
shorter development cycles have forced software de-
velopment organizations to struggle to find a com-
promise among functionality, time to market, and
quality. Lack of skills, schedule pressures, limited re-
sources, and the highly manual nature of software
development have led to problems for both large and
small organizations alike. These problems include
incomplete design, inefficient testing, poor quality,
high development and maintenance costs, and poor

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002

0018-8670/02/$5.00 © 2002 IBM

by M. Butcher
H. Munro
T. Kratschmer

customer satisfaction. As a way to prevent defects
from being delivered, or “escaping,” to customers,
companies are investing more resources in the test-
ing of software. In addition to improving the many
other aspects of testing (e.g., the skill level of testers,
test automation, development of new tools, and the
testing process), it is important to have a way to as-
sess the current testing process for its strengths and
weaknesses and to highlight the risks and exposures
that exist. Although it is well documented that it is
less expensive to find defects earlier in the process
and certainly much more expensive to fix them
once they are in the field,' testers are not usually
aware of what their specific risks and exposures
are or how to strengthen testing to meet their qual-
ity goals.

In this paper, we discuss the use of Orthogonal De-
fect Classification (ODC),” a defect analysis tech-
nique, to evaluate testing processes. Three case stud-
ies are presented. The first two discuss software
products that began using ODC in early 2000 when
the three authors of this paper started working to-
gether to deploy ODC at the IBM Hursley site. The
project manager for the product in the third case
study was T. Kratschmer, one of the authors.

Developers of the product discussed in the first case
study began using ODC to evaluate field defects. Al-

©Copyright 2002 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

BUTCHER, MUNRO, AND KRATSCHMER 31

though it is a high-quality, mature product that does
not generate many defects, defects still occur in the
field, where it is the most expensive to fix them. The
goal of this team in using ODC was to discover how
to enhance the testing process to find more of these
defects in house, thereby decreasing the number of
defects escaping to the field and cutting warranty
costs. The second case study describes a large middle-
ware project with a well-defined development pro-
cess. Despite the mature process, this team had sev-
eral problems and decided to see whether ODC could
shed some light on the improvements the team
needed to make. The team was especially interested
in any exposures in its process that ODC could high-
light and that could be addressed before releasing
the product. The third case study represents a very
small project. ODC was used to evaluate product sta-
bility and identify areas of test that needed to be
strengthened to meet an acceptable level of test
criteria before releasing the product. Because of
an inadequate focus on testing, it was important
to have an objective method of measurement that
would convince both management and the devel-
opment team to agree to the decisions that were
being made.

Overview of Orthogonal Defect
Classification

There have been several papers written on ODC that
describe the concepts, define the ODC scheme, dis-
cuss the relationships among the ODC attributes, and
include results from pilot studies.>* For this reason,
we include only a short description of the ODC de-
tails in this paper. ODC methodology provides both
a classification scheme for software defects and a set
of concepts that provides guidance in the analysis of
the classified aggregate defect data. “Orthogonal”
refers to the nonredundant nature of information
captured by the defect attributes and their values that
are used to classify defects. Much like the Cartesian
coordinates in geometry, nearly a decade of research
has shown that these attributes (and their values)
are adequate to “span” the interesting part of the
defect information space for most software devel-
opment issues. Unlike other defect analysis tools
used primarily by management,** ODC targets the
technical team— developers, testers, and service per-
sonnel. As a result, it is the technical team that clas-
sifies defects, takes an active part in assessment of
data, and decides on the actions to be implemented.
The oDC attributes are listed in Appendix A and B.
Appendix C lists items typically included in an as-
sessment of ODC defects.

32 BUTCHER, MUNRO, AND KRATSCHMER

ODC deployment process. The process for deploy-
ing ODC has evolved over the last 10 years. However,
the following basic steps are critical in order for the
oDC deployment to be successful:

e Management must make a commitment to the de-
ployment of ODC and the implementation of ac-
tions resulting from the ODC assessments.

e The defect data must be classified by the technical
teams and stored in an easily accessible database.

* The classified defects are then validated on a reg-
ular basis to ensure the consistency and correct-
ness of the classification.

¢ Once validation has occurred, assessment of the
data must be performed on a regular basis. Typ-
ically, the assessment is done by a technical per-
son who is familiar with the project and has the
interest and skills for analyzing data. A user-
friendly tool for visualizing data is needed.

* Regular feedback of the validation and assessment
results to the technical teams is important. It im-
proves the quality of the classification. It also pro-
vides the teams with the necessary information so
that they can determine the appropriate actions
for improvement. This feedback is also important
in obtaining the necessary commitment from the
technical teams. Once they see the objective, quan-
tified data, and the reasonable and feasible actions
that result, commitment of the teams to the ODC
process usually increases.

* Once the feedback is given to the teams, they can
then identify and prioritize actions to be imple-
mented.

When this ODC process has been integrated into the
process of the organization, the full range of ben-
efits can be realized. The development process and
the resulting product can be monitored and improved
on an ongoing basis so that product quality is built
in from the earliest stages of development.

Classification and validation of defects. The clas-
sification of the defects occurs at two different points
in time. When a defect is first detected, or submit-
ted, the ODC submittor attributes of activity, trigger,
and impact are classified.

e Activity refers to the actual process step (code in-
spection, function test, etc.) that was being per-
formed at the time the defect was discovered.

e Trigger describes the environment or condition that
had to exist to expose the defects.

 Impact refers to either perceived or actual impact
on the customer.

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002

When the defect has been fixed, or responded to,
the ODC responder attributes, which are target, defect
type, qualifier, source, and age, can be classified.

e Target represents the high-level identity (design,
code, etc.) of the entity that was fixed.

e Defect type refers to the specific nature of the de-
fect fix.

* Qualifier specifies whether the fix that was made
was due to missing, incorrect, or extraneous code
or information.

e Source indicates whether the defect was found in
code written in house, reused from a library, ported
from one platform to another, or outsourced to a
vendor.

* Age specifies whether the defect was found in new,
old (base), rewritten, or refixed code.

Definitions of the attributes and a more detailed dis-
cussion with examples can be found at http://
www.research.ibm.com/softeng.

Typically, the ODC attributes are captured in the
same tool that is used to collect other defect infor-
mation with minor enhancements. Two methods are
used to validate data. The individually classified de-
fects can be reviewed for errors by a person with the
appropriate skills. This may be needed only until the
team members become comfortable with the clas-
sification and its use. It is also possible to use an ag-
gregate analysis of data to help with validation. Al-
though this method of validation is quicker, it does
require skills beyond classification. In order to per-
form a validation using this method, the validator
reviews the distribution of defect attributes. If there
are internal inconsistencies in the information con-
tained in the data or with the process used, it points
to potential problems in the quality of the data, which
can be addressed by a more detailed review of the
subset of defects under question. Even in cases where
there is a misunderstanding by a person in the clas-
sification step, it is typically limited to one or two
specific aspects, which can be clarified easily. Once
the team understands the basic concepts and their
use, data quality is no longer a problem.

Data assessment. Once the data have been validated,
the data are then ready for assessment.*” When do-
ing an assessment, the concern is not with a single
defect as is done with causal analysis.® Rather, trends
and patterns in the aggregate data are studied. Data
assessment of ODC classified data is based on the re-
lationships of the ODC attributes to one another and
to non-ODC attributes such as component, severity,

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002

and defect open date. For example, to evaluate prod-
uct stability, the relationships among the attributes
of defect type, qualifier, open date, and severity of
defects might be considered. A trend of increasing
“missing function” defect type or increasing high-
severity defects may indicate that the product sta-
bility is decreasing.

The following three case studies use ODC to mea-
sure test effectiveness. In each case, ODC highlighted
exposures in the testing process that needed to be
addressed. The assessments provided the required
information for the final step in the ODC process—
selecting the appropriate actions for improvements.
The case studies include background information on
the products, how their ODC process was imple-
mented, and the details of the assessments, includ-
ing actions that resulted.

Case Study 1: Learning from the field
defects in a mature product

The product in this first case study has a mature de-
velopment process and is recognized as a high-qual-
ity product that provides industrial-strength solutions
for mission-critical applications. However, a few de-
fects still escape to the field and need to be fixed un-
der service. The cost of these defects to the custom-
ers arises both from the impact of the defect and the
expense of applying service to the products. The cost
incurred in our development organization from a
field defect is far greater than if it had been found
during our test phase, and this in turn is more ex-
pensive than finding it during the design and code
phase. Irrespective of the exact cost savings, it is
clearly better not to introduce defects into the de-
sign or the code, or at least to find defects early in
the development phase.

The team aims to avoid injecting defects in the first
place, and many of the existing quality activities do
reduce the number of defects introduced into the
code. Measurements used during the development
process include the number and rate of defects (the
defect detection model). There is also a “lessons
learned” analysis at the end of each release, with
changes made to improve the development process.

The current process for the development and test
of this product includes the following main stages:

* High-level design, which is documented and in-
spected

e Low-level design, which is documented and in-
spected

BUTCHER, MUNRO, AND KRATSCHMER 33

Figure 1 Age versus activity in uncovering defects in code

ACTIVITY

Il DESIGN REVIEW
[0 ID REVIEW

Il UNIT TEST

[J FUNCTION TEST
B SYSTEM TEST

NEW REWRITTEN
SOURCE

%)
[
[5)
w
L
w
o

REFIXED

Figure 2 Frequency for component within activity
(base defects only)

COMPONENTS
ma Of Wk Op
Ob mg Wl Mg
Hc Oh Em
Od Wi En
He Hj Ho

NUMBER OF DEFECTS

DESIGN 1D UNIT

FUNCTION SYSTEM
REVIEW TEST TEST TEST

ACTIVITY

REVIEW

Coding that is buddy-checked or inspected
Functional verification testing (test plans are in-
spected)

 System testing, acting as first user (test plans are
inspected)

Package and release test (repeats existing test
cases)

* Solution test (integration test with other products)

There are numerous regression test suites created
during previous releases. These suites are used dur-
ing both function verification test (FVT) and sys-
tem test to ensure that the new release changes do
not cause problems in the existing code base. In ad-
dition, causal analysis is performed on each field de-
fect in order to understand how it escaped to the field
and to prevent the escape of similar defects in the
future. In spite of these numerous best practices,
more focused improvements are needed. ODC s able

34 BUTCHER, MUNRO, AND KRATSCHMER

to provide that focus by identifying the areas of great-
est opportunity in testing based on customer usage.

Deployment. After the decision was made to imple-
ment ODC for the last release of the product, a team
of seven people from development, FVT, system test,
and solution test was formed and then educated in
the use of ODC. This team met weekly to classify the
unique customer-discovered defects.

When classifying field defects, first the trigger is cho-
sen based on the actual description of the circum-
stances, exposing the defect and hence the activity
that most likely would have caught the defect, if
found in house. If it is not known what the customer
was doing when the defect was found, we record how
to recreate the problem in house. If code was ex-
ecuting when the defect occurred, it is assumed to
have escaped from a test phase. In fact, the majority
of defects did escape from a test phase. A few had
also escaped documentation reviews.

Assessment. After classifying 12 months of ODC data,
an assessment was performed. Although there is a
need to be cautious in making major changes because
this product has a life cycle longer than 12 months,
the assessment highlighted some interesting facts.

Importance of base code. The first ODC attribute re-
viewed was age. Was the customer uncovering de-
fects that indicated exposures with base, rewritten,
refixed, or new code? Figure 1 shows age versus ac-
tivity. Although the development team members ex-
pected most of the defects would be in the new code
since defects are usually introduced in new or up-
dated code, they were surprised to find a significant
number of defects in the base and rewritten code,
as well. Two functional areas that had a significant
amount of rewriting without including new function
accounted for those defects classified as “rewritten.”
However, the number of defects in the base code
seemed high. The next step was to identify from
which test phase those base defects had escaped and
the functional components that contained the de-
fects. The frequency for component within activity
for the base defects (Figure 2) shows that the ma-
jority of escapes to the field were from FVT and that
two specific components contained over 40 percent
of the defects.

The oDC assessment identified the areas that re-
quired further investigation. Causal analysis tech-
niques were then used on the base defects within
these specific components. This assessment showed:

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002

[(P=i

1. Component “q” required more regression test-
ing, specifically near the end of the test phase. This
testing is being included in the next release.

2. There had been a significant amount of new code
added in component “b,” so these defects were
being uncovered as the new code was exercising
some aspects of the base code that had not been
used before in that way. The defects in this area
are still being investigated, but an obvious im-
provement is to include more testing of the base
function for components that are being affected
by the new code.

When looking at all defects, it is clear that compo-
nentb had the greatest number of defects. This func-
tional area had undergone significant change dur-
ing the project. The team knew that some of the
changes had not been fully documented because of
schedule constraints, and the risk of less documen-
tation had been accepted. However, this ODC assess-
ment identifies the impact of that decision. In fu-
ture releases, the process for documenting changes
will be enforced.

Improvements to function test. 1deally, the number
of defects uncovered by the customer decreases over
time. In Figure 3, which shows percent view of the
trigger classification for field defects over time, it can
be seen that the number of defects actually increased.
However, that increase was expected since the num-
ber of licenses is still increasing. More important than
observing the trend in the total number of defects
is the assessment of customer usage. This assessment
will indicate how the customer is uncovering the de-
fects. Figure 3 shows that in the first few months the
majority of defects were uncovered through execu-
tion of single functions as indicated by the triggers
of coverage and variation. Then, in month nine, there
is an increase in the defects uncovered through more
complex testing scenarios as evidenced by the trig-
gers of interaction, sequencing, and software con-
figuration. However, variation is the trigger that pre-
dominates in most months. Variation describes
finding defects by varying the input parameters of
a single function. Figure 2, which graphs activity and
components, shows that many of the defects have
escaped FVT as illustrated by the presence of the trig-
gers coverage, variation, interaction, and sequenc-
ing. These observations point out that improvements
must be made in the FVT process to ensure that fewer
defects escape. Specifically, the test plans must in-
clude more variation testing. This will be done
through a combination of education for the testers

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002

Figure 3 Trigger classification for field defects over time

MONTH 1
MONTH 2
MONTH 3
MONTH 4
MONTH 5
MONTH 6
MONTH 7
MONTH 8
MONTH 9
MONTH10 —
MONTH 11
MONTH 12 _
MONTH 13

MONTH 14 _ _ |
0 10 20 30 40 50 60 70 80 90 100

and an emphasis on this point during inspections of
the test plans.

Summary. ODC has helped us identify the following
deficiencies in our process and the actions for im-
provement:

* The majority of defects were escapes from FVT.
The trigger of variation is the most common.
Therefore, the action the team will take is to ed-
ucate testers on the types of testing in FVT and en-
sure that there are enough variation test cases in
the FVT test plans.

* Component q had too many base defects. The team
must increase regression testing in this area.

e Component b had the majority of defects. The
team will ensure that all changes are clearly doc-
umented and also ensure that where code is being
changed there is greater emphasis on testing any
base code that may be impacted.

Future plans. The team will continue to classify the
field defects and use this information to improve the
development and test process. The ODC field defects
provide the foundation for defining a customer us-
age profile that can be reviewed by the test teams.
The team is also starting to classify all in-process de-
fects found during the development cycle on the new
release and compare this classification with the clas-

BUTCHER, MUNRO, AND KRATSCHMER 35

sified field defects. This comparison will provide
more accurate information on the current testing
process and provide a focus for future test effort.

Case Study 2: A large middleware project

This case study involves a member of a family of IBM
middleware products, available on many operating
system platforms. The products are developed by a
few hundred people on three continents. They are
typically developed by following a waterfall process,
with decision checkpoints between the various phases
to assess whether the product would move on to the
next phase.

The use of ODC by the product teams began at the
initiative of the test teams. The teams were in the
process of reorganizing themselves to overcome a
number of problems. They needed a set of metrics
that would allow them to objectively assess their pro-
gress and confront some of their problems, which
were:

 Overlapping test phases of unit test, functional ver-
ification (FV), and system test. In theory, these
phases are supposed to be sequential, but often
they overlap, sometimes completely. It is the ob-
jective of the system test entry checkpoint to de-
termine whether the previous test phases have pro-
gressed enough to allow system test to make
acceptable progress. Metrics are required to en-
able this decision to be made based on quantifi-
able, objective data rather than personal opinions.

* The test teams had developed very large test suites,
but had no idea how effective the suites were. They
had only two metrics: (1) defects—raising and clo-
sure rates, and (2) test cases— execution rates and
test case results, i.e., success or failure.

These metrics measured test progress but gave no
indication as to the test effectiveness. ODC was se-
lected to provide the objective, quantifiable data nec-
essary for decision support that the team was look-
ing for.

ODC process. The ODC process was piloted by two
of the project teams, starting with a series of edu-
cation sessions. Members of the teams attended a
one-hour overview and two hours of detailed edu-
cation on how to classify defects. A subset of the
testers and developers also attended a two-hour class
on how to validate the data. A month later a num-
ber of individuals received two hours of assessment

36 BUTCHER, MUNRO, AND KRATSCHMER

education, learning how to review the data and how
to begin to make use of the data.

The data were validated on a weekly basis by the val-
idation team to ensure that the classification was
done correctly. Any mistakes were corrected. The
data were subsequently reviewed by the team of as-
sessors and used to assess the state of the project
and determine whether any specific actions needed
to be taken. The assessments took place at points
appropriate to the individual project.

Assessment. During assessment, it was determined
that system test could be started and what improve-
ments could be made to system test and function test.

A case for early entry into system test. The use of ODC
in this product began approximately three-quarters
of the way through its FV phase. Within seven weeks,
the project reached the decision checkpoint for sys-
tem test entry. Although the ODC data were not of-
ficially part of the decision-making process at this
time, the team was interested in reviewing the data.
The data proved very useful in supporting the ini-
tiation of system test.’

One of the criteria for system test entry was “FV more
than 80 percent attempted and not less than 50 per-
cent complete (executed cleanly through to comple-
tion).” FV had not met the 80 percent attempted tar-
get, but was over 70 percent complete—a very good
pass rate. In addition, the Fv team believed that the
code was very stable. Figure 4, which shows activ-
ities and triggers, highlights:

e The fact that functional testing had achieved a
broad range of ODC triggers. Coverage, variation,
sequence, and interaction testing had all exposed
defects. In fact, defects had even been uncovered
during this time using the more complex system
test triggers such as recovery/exception and
startup/restart.

* The fact that functional testing had progressed to
the more complex triggers implied that the basic
function of the product was solid and ready to pro-
gress into system test. This implication supported
the “gut feeling” of the Fv team.

Despite not having reached the official FV criteria,
this information from ODC led the team to believe
that the project was ready to start system test. Sub-
sequently, the system test team was able to make
rapid progress.

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002

Figure 4 Each activity uses a broad range of triggers to expose defects

ACTIVITY

BUILD
PERFORMANCE TEST
SYSTEM TEST
FUNCTION TEST
UNIT TEST

CODE INSPECTION
ID REVIEW

DESIGN REVIEW

Improvements to system test from analyzing field de-
fects. Figure 4 also illustrates that the majority of sys-
tem testing is focused on workload/stress. Over 50
percent of the defects were found by workload/stress
testing. The chart in Figure 5 was generated after
subsequent analysis of the field data from the pre-
vious release. The activities and triggers on this chart
clearly show customers exposing defects through a
broader spread of system triggers than in-process
testing had exposed, most notably, software config-
uration. As a result, the system test team will review
its testing in order to broaden its test scenarios, par-
ticularly in the area of software configuration.

Improvements to function test from analyzing field and
in-process defects. Following the completion of FVT,
the test team reviewed the ODC data in order to iden-
tify potential areas for improvement. Analysis of Fig-
ures 6, 7, and 8 highlighted a potential problem with
missing checks.

Figure 6 shows defect type and qualifier for field de-
fects from the previous release of the product. Al-
though the checking defects are not the largest group,
a significant proportion of them are caused by miss-
ing code. Figure 7 shows the same chart, but for the
in-process defects found for the current release. This
time, checking defects are in the majority, again with
a significant proportion caused by missing elements.
Figure 8 shows the defect type and trigger for those
in-process defects that were caused by missing el-
ements, indicating that the majority of the missing
checks were found by variation and sequencing tests.

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002

FREQUENCY

Figure 5 Frequency of activities with triggers

TRIGGER

B COVERAGE

@ VARIATION

B SEQUENCING

O INTERACTION

B WORKLOAD/STRESS

@ RECOVERY/EXCEPTION

B STARTUP/RESTART

B HARDWARE CONFIGURATION
B SOFTWARE CONFIGURATION

FREQUENCY

FUNCTION SYSTEM PERFORMANCE
TEST TEST TEST

ACTIVITY

This highlights a problem with low-level design sta-
bility.

As a result of this assessment, members of the Fv
team decided to review their test suite with the goal
of improving their ability to discover missing checks
in the product. Specifically the test team will:

1. Use a code coverage tool to measure the state-
ment and branch coverage achieved by the func-
tion test suite. The output will be used by the
testers, with the help of the developers, to iden-
tify gaps and duplication in the test suites.

2. Classify and then analyze the function test cases
in terms of which ODC triggers they represent to

BUTCHER, MUNRO, AND KRATSCHMER 37

Figure 6 Frequency of defect type with qualifiers in
previous release

DEFECT TYPE

INTEGRATION |
PACKAGING SCRIPTS -
MAINTENANCE/FIX DEPENDENCIES
TECHNICAL

RELATIONSHIP

QUALIFIER

B INCORRECT
W MISSING

M EXTRANEOUS

INTERFACE/OO MESSAGES
TIMING/SERIALIZATION -
ALGORITHM/METHOD -
CHECKING
ASSIGNMENT-INITIALIZATION

FREQUENCY

Figure 7 Frequency of defect type with qualifiers for
current release

DEFECT TYPE

CHARACTER HANDLING
TRANSLATION
INSTALL/UPGRADE DEPENDENCIES
PACKAGING SCRIPTS
SHIPPED FILES

CODE INTEGRATION
PROCESS CONFORMANCE
NAVIGATIONAL

TECHNICAL

RELATIONSHIP
INTERFACE/OO MESSAGES
TIMING/SERIALIZATION
FUNCTION/CLASS/OBJECT
ALGORITHM/METHOD
CHECKING
ASSIGNMENT-INITIALIZATION

QUALIFIER

B INCORRECT
B MISSING

I EXTRANEOUS

FREQUENCY

Figure 8 Defect frequency for trigger within defect type

DEFECT TYPE

TECHNICAL

RELATIONSHIP
TIMING/SERIALIZATION
FUNCTION/GLASS/OBJECT
ALGORITHM/METHOD
CHECKING

ASSIGNMENT-INITIALIZATION

FREQUENCY

ensure good coverage. The IBM team for the 2000
Summer Olympics in Sydney used this technique
as a way of identifying, in advance, whether the
test suites were using a broad range of triggers.

38 BUTCHER, MUNRO, AND KRATSCHMER

Itis vital to obtain an assessment of the effective-
ness of the FVv test suite of this product, especially
since the number of test cases has increased sig-
nificantly over time.

Actions resulting from assessment. Several actions
aimed at improving the process have resulted from
the ODC assessments. During a typical release cycle,
it was only during the final weeks or months that any
attempt at prioritizing defect fixes was made, often
resulting in areas of testing being blocked for longer
than was necessary. The data presented in Figure 9
indicate that many of the defects were of severity 3,
generally considered severe enough to require fix-
ing, but not so severe as to actually bring a custom-
er’s system down. Although these defects comprised
80 percent of the defects raised, it was impossible
to prioritize them. As a result, a new field, “impor-
tance” has been added to the defect description. The
raiser can specify the importance of obtaining a fix
quickly, based upon how much work is impacted. The
values for “importance” are:

e 1 meaning high importance: Blocking significant
amounts of testing; fix is urgently required.

e 2 meaning medium importance: Blocking some ar-
eas of testing, but some progress still possible in
the meantime; fix is required as soon as possible.

* 3 meaning low importance: Blocking one or two
tests at most; able to make progress easily; fix when
feasible.

This field has enabled the teams to focus on those
defects that are having the most significant impact
on their progress.

Another action that resulted from the ODC assess-
ment is that more information is being included in
the defects themselves to make it easier for the ODC
classified defects to be validated. This action has also
been of use to those team members classifying de-
fects. Clearer explanations are provided, resulting
in the defects being dealt with more effectively.

Summary. ODC has been in use by this project for
just over a year. Within a matter of weeks it proved
valuable, helping to assess the risks of passing
through a decision checkpoint when the traditional
criteria had not been met.

The teams have been able to look at their own data
objectively and quickly identify actions to improve
their processes and ultimately their product. The ac-
tions taken have been reasonable, not requiring huge

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002

Figure 9 Severity of defects

>
o
=4
w
=
[¢]
L
o
[

80

SEVERITY

100

DAYS OPENED

investments in time, money, or effort. The test teams
are achieving their goal of improving test effective-
ness through the use of ODC. The value of the tech-
nology has become evident to the teams and, as a
result, use of ODC has been expanded to other
projects.

Case Study 3: A small team project

This case study pertains to a small project in which
afew people developed a Java™*-based software tool
that allows users to visualize data related to software
development. This tool supports ODC analysis. The
primary users of this product are testers, develop-
ers, and service personnel in software development
laboratories throughout IBM. The challenges faced
by this development team were:

 Lack of development resources and limited expe-
rience—The team was inexperienced with object-
oriented programming, with the Java language, and
with the development tools. In addition, there was
little experience with testing. The team members
relied on a checklist of functional areas and their
own sense of what they thought should be tested.
e Schedule pressures—Program bug fixes and in-

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002

creasing functionality were always in demand,
which led to an aggressive schedule.

 Customer need—This tool was required for the suc-
cessful widescale deployment of ODC. Therefore,
it was imperative that a high-quality, stable prod-
uct be developed in order to maximize the success
of oDC.

ODC was crucial for effectively managing resources,
gauging the stability of the product, and guiding the
team in efficient testing of the product.

ODC process. Although ODC has been practiced
since the first release of this product, this paper will
focus on the improvements made in release 1.3. By
the time this release was available, the team was ex-
perienced at ODC classification. Since the project
manager had been an ODC consultant for the past
five years and had extensive experience performing
validation and assessments, there was no learning
curve for performing the assessment.

Assessment. Initially, version 1.3 was to be released
in the August-September 2000 time frame. It was
primarily a release to fix a software bug with little
or no additional functionality. A month before it was

BUTCHER, MUNRO, AND KRATSCHMER 39

Figure 10 Frequency versus activity with triggers

ACTIVITY

BUILD/INSTALL
SYSTEM TEST
FUNCTION TEST
ID REVIEW

GUI REVIEW

2 4
FREQUENCY

Figure 11 Number of defects by age

—_
N oo

FREQUENCY
o w o ©

BASE NEW

AGE
(OPENDATE <= 2000-08-17)

UNKNOWN

scheduled to be released, team members voiced their
confidence that the product was ready for release.
They believed that since these were only bug fixes,
basic functionality was unchanged. They had already
spent several weeks testing new code, so they felt
there should be no schedule slip, and the product
could be released as originally planned. However,
when the ODC assessment was performed, it was ev-
ident the product was not ready for release.

Figure 10 shows activity and triggers. The first point
to note is that there are only 15 defects. Even for
this small project, it was expected that function and
system test would have uncovered more. Second, the
number of defects found during function testing was
equal to the number found during graphical user in-
terface (GUI) review. Historically in this product, sig-
nificantly more defects are found in function testing
than in GUI review. Third, the defects found during
function testing were exposed through execution of
single functions, as evidenced by the triggers of cov-
erage and variation. It was easy to uncover these de-
fects through the click of a button or execution of
a simple command. In general, a product is well-

40 BUTCHER, MUNRO, AND KRATSCHMER

tested when defects have been uncovered through
a wide range of triggers for each activity. Although
GUI review had uncovered defects through a variety
of triggers, function and system test had not. Cov-
erage and variation represent only two of the four
possible triggers available for this activity. Before re-
leasing the product, testing needed to progress to
uncover defects through the more complex triggers.
Specifically, more defects were expected to be un-
covered through sequencing in function test and
through workload stress and software configuration
in system test.

Figure 11, which shows the number of defects for
the ODC attribute age, further supported the con-
clusion that the product was not ready for release.
It shows that nine defects (60 percent) were found
in base code—defects that existed prior to this cur-
rent release. These are defects that had been dor-
mant. They should have been caught in the previous
release but were not. Therefore, not only have de-
fects been uncovered simply by executing single func-
tions, but the majority of those defects were found
in old code, not new. This information further sup-
ported the team’s suspicions that the code had not
been adequately tested. Therefore, the team took
the only possible acceptable action under the circum-
stances. The testing efforts were increased and the
release date was postponed.

In order to improve test effectiveness, several addi-
tional test cases were created in the areas of vari-
ation, sequencing, interaction, software configura-
tion, and workload stress. The result of the additional
testing is shown in Figure 12, which shows ODC ac-
tivity by triggers.

By December, 138 defects had been uncovered, in
comparison to the 15 detected previously. The in-
creased testing effort had paid off. Next, the trigger
chart was reviewed. Previously, the single function
triggers made up 100 percent of the testing. By ex-
tending the schedule, however, the multiple func-
tion triggers of sequencing and interaction grew to
37 percent of the scenarios that exposed defects. In
addition, we found seven more defects uncovered
through recovery/exception—a system test trigger.
The testing had progressed from uncovering defects
through simple scenarios to the more complex.

Two exposures still existed in workload stress and
software configuration. Limited testing had been per-
formed but had not uncovered any new defects. How-

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002

Figure 12 ODC activity by triggers

ACTIVITY

BUILD/INSTALL
SYSTEM TEST
FUNCTION TEST
ID REVIEW

GUI REVIEW

ever, because of a lack of resources, it was decided
that this exposure was acceptable.

Summary. At the end of the extended test cycle, the
product was much more stable than it had been in
August. Most of the defects had been found, and few
escapes to the field were expected. In fact, that is
what the team found. Four defects were reported in
January, and one of those was a build problem. How-
ever, if the ODC assessment had not been done in
August and the product had been released as orig-
inally planned, the customers clearly would have
been affected as they uncovered many of those de-
fects exposed between September and December.
Customer satisfaction would have been low as they
lost confidence in the team’s ability to develop a qual-
ity product. In addition, the development team would
have been put into the “fire-fighting” mode. Instead,
the team was able to assess the effectiveness of test-
ing through exploiting ODC classified defect data.
Test plans were then created to specifically target
the multiple function scenarios in sequencing that
had been lacking. These steps made it possible to
improve testing efficiency while mitigating weak-
nesses, allowing the team to deliver a stable, high-
quality product to customers.

Itis important to note that as mentioned previously,
ODC provides data-based decision support. The as-
sessment, which took an hour to do, and the sub-
sequent decision to extend testing, was based on ob-
jective data. Once the team reviewed the ODC
attributes displayed in the charts, there was no de-
bate about the readiness of the product. The man-
ager did not have to agonize over two opposing views

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002

FREQUENCY

while trying to decide the best course of action. The
state of the software was clearly shown in the charts,
and the actions needed were obvious to the team.

This experience convinced the development team
that it did not take much time or effort to accurately
measure progress during testing and highlight the
risks. Despite the fact that the team was small, as-
sessment of the classified defect data was done
quickly, and specific actions were taken to avoid a
potentially disastrous situation. Best of all, the feed-
back received from customers is that this release is
the most stable yet!

Conclusion

We have described the experience of teams using
oDC in projects for three different products. Each
team was able to reach its objective of improving test
effectiveness with a minimum impact on organiza-
tional resources by using ODC. In all three projects,
defects had been collected and used prior to adopt-
ing ODC. However, ODC enabled the teams to utilize
this rich collection of defect information to improve
the quality of the respective product in an objective
manner.

The first case study is a high-quality product with a
goal of decreasing customer-reported defects in or-
der to increase customer satisfaction while decreas-
ing warranty costs. Test effectiveness was improved
by identifying the underlying problems that led to
customer-reported problems. Classifying triggers
from defects that escaped to the field provided the
link necessary to improve specific areas of test and

BUTCHER, MUNRO, AND KRATSCHMER 41

development. The actions this team adopted focused
on strengthening test plans, improving FVT educa-
tion, increasing regression testing for the identified
components, and improving documentation.

The second case study used defects found in func-
tion and system test data to improve their effective-
ness. This study illustrated an example of relieving
schedule pressures when the ODC-classified defects
indicated the product had progressed sufficiently
enough to advance to the next step in testing. The
team was able to initiate system testing earlier than
scheduled because the ODC assessment provided the
information that the exit criteria for earlier activi-
ties had been reached. As in the first case study, this
team also identified areas of testing that were weak.
The team then adopted specific actions to target
those areas. The actions they implemented included
use of a code coverage tool and ODC classification
of function test cases to make sure they had the broad
range of scenarios necessary.

The third case study illustrates how a small team with
few resources can benefit by identifying specific
weaknesses in testing. The team used defects found
in house shortly before the project was to be released.
ODC was used to identify the multiple function sce-
narios in function test needing improvement before
releasing the product. In this case, the team was able
to quickly evaluate test effectiveness and implement
correct actions to strengthen the targeted triggers.

ODC data collection can be initiated at any point in
the software development process. All three case
studies provide examples of benefits from analyzing
the oDC-classified defects at different points in the
software life cycle. The actions implemented were
reasonable and feasible and did not require major
investments in resources to realize the goal of im-
proving test effectiveness.

In addition to the positive impact of ODC that has
been shown here, there are many results that are not
easy to measure but nonetheless provide major gains.
These are the subtle changes that occur in the testers
and developers themselves as their skills improve,
because they are now able to view their work in a
new and objective manner. Testers learn to consider
test cases in terms of complexity of triggers. They
also learn about the trends that should be seen as
they progress through the scheduled phases and be-
come more alert to any deviations in those trends.
They become adept at comparing triggers exposing
defects found by customers with triggers exposing

42 BUTCHER, MUNRO, AND KRATSCHMER

defects in their process. Testers have raised their level
of knowledge in testing effectiveness which results
in better quality in the product and a stronger pro-
cess. Ultimately, this increased knowledge not only
produces software that is higher in quality but is less
expensive to develop—a goal all software organiza-
tions strive to attain.

Appendix A: Scheme version 5.11 for design
and code

Please see http://www.research.ibm.com/softeng for
more information and examples.

Attributes classified when a defect is opened:

Activity—This is the actual activity that exposed the
defect. For example, during the scheduled phase of
system test, a defect occurs when you click on a but-
ton to select a printer. The phase is system test but
the activity is function test because the defect sur-
faced by performing a function test-type activity.

Triggers—These are the environment or condition that
had to exist for the defect to surface. Triggers de-
scribe what you need to do to reproduce the defect.

Impact—The impact refers to the effect the defect
had on the customer if it had escaped to the field
or the effect it would have had if not found during
development.

Mapping of the activities to triggers shown in Table
1 is for illustrative purposes only. In general, for de-
fects found in process, pick the activities in the pro-
cess being used and map the appropriate triggers
from the list. For field defects, select the triggers first,
which then automatically maps back to the activity
that most likely would have found the defect if it had
been discovered in house. The list of triggers rep-
resents an adequately complete set and should not
be combined, have additions, or deletions.

Attributes available when the defect fix is known:

Target—What is being fixed: design, code, documen-
tation, etc.

Defect type—The nature of the actual correction
made

Defect qualifier (applies to defect type)—Captures

the element of nonexistent, wrong, or irrelevant im-
plementation

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002

Table 1 Attributes identified when a defect is uncovered

Activity and Triggers Customer
Inspection Unit Test Function System Test Impact
Test
Design conformance Simple path Coverage Workload/stress Installability
Logic/data flow Complex path Variation Startup/restart Serviceability
Lateral compatibility Sequencing Recovery/exception Standards
Backward compatibility Interaction Hardware configuration Integrity/security
Language dependency Software configuration Migration
Concurrency Blocked test (formerly Reliability
Normal Mode)
Internal document Performance
Side effects Documentation
Rare situations Requirements
Maintenance
Usability
Accessibility
Capability
Table 2 Attributes identified when a design or code defect is fixed
Target Defect Type Qualifier Source Age
Design/code Assignment/initialization Missing Developed in house Base
Checking Incorrect Reused from library New
Algorithm/method Extraneous Outsourced Rewritten
Function/class/object Ported Refixed
Timing/serialization
Interface/OO messages
Relationship

Source—The origin of the design/code that had the

Table 3 List of triggers in GUI review
defect 99

Triggers

Age—The history of the design/code that had the -
defect . Design conformance

. Icon/widget appearance
. Screen text/characters

. Input devices

. Navigation

. Widget/GUI behavior

The attributes identified when a design or code de-
fect is fixed are shown in Table 2.

NN AW =

In this paper, we have focused on defects found in
design and code and so have not included the target
of information development, build/packaging, Na-

tional Language Support, and their values. Appendix C: Some typical assessment

topics and associated defect attributes
Appendix B: Triggers for graphical user

interface review activity Table 4 is a list of typical topics of interest to a soft-

ware development organization and the defect at-

Table 3 shows the list of triggers that can expose de-
fects while reviewing a graphical user interface con-
sisting of graphical elements such as buttons, labels,
and scrollbars. Please see http://www.research.ibm.
com/softeng for more information.

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002

tributes that are useful in addressing them. An as-
sessment would usually consist of looking at the
defect distribution across these attributes as well as
evaluating the relationships of the attributes to each
other.

BUTCHER, MUNRO, AND KRATSCHMER 43

Table 4 Typical topics and defect attributes

Topic ODC Attributes

Non-ODC Attributes

Measuring test effectiveness

Evaluating product stability

source, age

Identifying strengths and weaknesses Type, qualifier
in design and code

Evaluating customer usage

Measuring progress Activity, trigger

Activity, trigger, qualifier
Defect type, impact, qualifier,

Impact, trigger, defect type, qualifier

Open date, severity, component, phase

Open date, severity, close date,
component

Component

Open date, severity, component
Severity, component, phase

**Trademark or registered trademark of Sun Microsystems, Inc.

Cited references

1. M. Fewster and D. Graham, Software Test Automation, ACM
Press Books, New York (1999), pp. 203-208.

2. R. Chillarege, I. Bhandari, J. Chaar, M. Halliday, D. Moe-
bus, B. Ray, and M. Y. Wong, “Orthogonal Defect Classi-
fication—A Concept for In-Process Measurement,” I[EEE
Transactions on Software Engineering 18, 943-956 (Novem-
ber 1992).

3. J.K. Chaar, M. J. Halliday, I. S. Bhandari, and R. Chillarege,
“In-Process Evaluation for Software Inspection and Test,”
IEEE Transactions on Software Engineering 19, 1055-1069
(1993).

4. B. Casey, E. Kaldon, J. Sun, and W. Watters, “Application
of Defect Analysis Techniques to Achieve Continuous Qual-
ity and Productivity Improvements,” ICC 91, pp. 1450-1454.

5. R.B. Gradyand D. L. Caswell, Software Metrics: Establishing
a Company-Wide Program, Chapter 8.1, Metrics Worth Col-
lecting, Prentice-Hall, Inc., Englewood Cliffs, NJ (1987), pp.
96-104.

6. K. Bassin, T. Kratschmer, and P. Santhanam, “Evaluating
Software Development Objectively,” IEEE Software 15,6674
(November/December 1998).

7. K. Bassin and P. Santhanam, “Use of Software Triggers to
Evaluate Software Process Effectiveness and Capture Cus-
tomer Usage Profiles,” Proceedings of the 8th International
Symposium on Software Reliability Engineering, Case Studies,
IEEE Computer Society Press, Los Alamitos, CA (1997), pp.
103-114.

8. A. Sharp, Software Quality and Productivity, Van Nostrand
Reinhold, New York (1993), pp. 347-361.

9. N. Bridge, Software Quality Orthogonal Defect Classification
Using Defect Data to Improve Software Development, Amer-
ican Society for Quality, Software Division No. 3 (1997-1998),
pp- 1-8.

10. K. Bassin, R. Biyani, and P. Santhanam, “Evaluating the Soft-
ware Test Strategy for the 2000 Sydney Olympics,” Proceed-
ings of the Twelfth International Symposium on Software Re-
liability Engineering, Hong Kong (November 2001).

Accepted for publication August 30, 2001.

Mark Butcher IBM United Kingdom Laboratories, Hursley Park,
Winchester, Hampshire, SO21 2JN, United Kingdom (electronic
mail: Mark_Butcher@uk.ibm.com). Mr. Butcher is a senior soft-
ware engineer at the IBM Hursley Development Laboratory. For
nearly 16 years, he has worked on a number of large software

44 BUTCHER, MUNRO, AND KRATSCHMER

projects including Graphical Data Display Manager (GDDM®),
0S/27, and MQSeries ", in a variety of test, development, and
build roles. In addition, he is active in the ODC and Code Cov-
erage process improvement activities at Hursley. He studied com-
puter science at Thames Polytechnic (now Greenwich Univer-
sity), graduating in 1985.

Hilora Munro IBM United Kingdom Laboratories, Hursley Park,
Winchester, Hampshire, SO21 2JN, United Kingdom (electronic
mail: hilora@uk.ibm.com). Ms. Munro has 20 years experience
in the development of computer software, the last four being spe-
cifically within software testing. She received a B.Sc. degree in
computer science from the University of Strathclyde, Scotland,
and has subsequently been involved with a variety of software so-
lutions and has worked in all areas of software development in-
cluding design, development, test, and support. During the last
few years, Ms. Munro has been actively involved in the drive to
improve testing within the IBM test community. This has included
the use of metrics, the deployment of ODC, and improving knowl-
edge sharing within the test community.

Theresa Kratschmer IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York 10598
(electronic mail: theresak@us.ibm.com). Ms. Kratschmer is a soft-
ware engineer with 16 years of experience developing software
for real-time, graphics, and database applications. She has been
with the Center for Software Engineering at IBM Research since
1996. Currently, she does research, deployment, and tool devel-
opment related to defect analysis and testing technologies. She
earned a B.S. degree from Cornell University in 1981 and an M.S.
degree in advanced technology/computer science from the State
University of New York at Binghamton in 1985.

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002

