O

~° Bug reports quality

 and potential room for
Improvement through
automation.

o)
o O

Covered papers

I. What makes a good report? [BetJusSch08]

II. BugListener: Identifying and Synthesizing Bug Reports from
Collaborative Live Chats[ShiMuZha22]

Disclaimer: When presenting the various used techniques, some
parts will only be explained at the surface level because of time
frame & expertise limitations.

Agenda

I. Introduction
II. What makes a good report?
1. The Survey
2. Rating bug reports
3. CUEZILLA
III. Automated bug report generation: Collaborative Chat:
BugListener
Why collaborative live chat?
BugListener’'s components
Evaluation
Potential use case
Discussion

b Wb

L v 7" P
¢ N
"The difference between a
well-written bug report and a
poorly written one can be the
difference between a fix in the
next release and a fix never."

4

Introduction

e A software bug report contains particular information about what is wrong with a
software product and what needs to be resolved.

e Essential in software development
o Help improve software quality and user experience.
o Save cost and time by enabling debug at an earlier stage.
o Maintain all stakeholders informed about the bug & assists them in taking
corrective actions.
e Includes full description
e Sometimes includes stacktraces
e Bug report quality is crucial.
o Poorly written bug reports slow developers down(e.g: Mozilla bug #109242)

[BetJusSch08]
e Bug reports written by users:

o Clear way of communication between users and developers
o Assumption: Mismatch between what developers consider most helpful and
what users provide.

What makes a good bug report ? s

e Goals
o Accurately define a good bug report
o Improve bug reports quality
= Bridge the gap between what developers think is most helpful and what users
provide
e Survey on important parts of a bug report
o Participants: 156 experienced developers & 310 experienced reporters across 3
projects: Apache, Eclipse and Mozilla
o Developers rate chosen bug reports
e CUEZILLA: Measure bug reports quality & suggest improvements

1: MOZILLA bug #109242

The survey: Questions

e Developers

o Which items have developers previously used when fixing bugs? Which three items helped the most?
o Which problems have developers encountered when fixing bugs? Which three problems caused most delay in fixing bugs?

D4: Which three problems caused you most delay in fixing bugs?

You were given wrong: There were errors in: The reporter used: Others:

2 product name Q code examples Q bad grammar Q duplicates

- component name O steps to reproduce 0 unstructured text O spam

2 version number Q test cases Q prose text Q incomplete information
2 hardware (2 stack traces Q too long text Q viruses/worms

J operating system 0 non-technical language

2 observed behavior 0 no spell check

2 expected behavior
[BetJusSch08, p3]
e Reporters
o Which items have reporters previously provided? Which three items were most difficult to provide?
o Which three items do reporters consider to be most relevant for developers?

i

R3: In your opinion, which three items are most relevant for developers when fixing bugs?

Q product Q hardware 0 observed behavior Q screenshots

Q component Q operating system Q expected behavior 0 code examples
Q version O summary Q steps to reproduce Q error reports
Q severity Q build information O stack traces Q test cases

[BetJusSch08, p3]

The survey: Results

o DeVEIOPEIS: Which items have developers previously used when fixing bugs? Which three items helped the most?

Contents of bug reports (D1/D2).
=== product (5%)

=== component (3%)
=== version (12%)

== severity (0%)

In parentheses: importance of item.
== hardware (0%)

== operating system (4%)
= summary (13%)
=" build information (8%)

o Importance of items

mmz=— observed behavior (33%)
mz=n expected behavior (22%)
s steps to reproduce (83%)
s stack traces (57%)

mz=— screenshots (26%)
== code examples (14%)
= error reports (12%)

=) test cases (51%) [BetJusSchos, p4]

Steps to reproduce > stack traces, test cases > observed behavior > expected behavior > code examples, summary,
version, operating system, product, hardware.

e Reporters

o Items provided frequently by reporters: Expected behavior, observed behavior,
steps to reproduce

o Less frequently: stack traces, code examples, test cases
o Most difficult items to provide: Test cases > Steps to reproduce> Code examples > Stacktrace

Which three items do reporters consider to be most relevant for developers?

Contents considered to be relevant for developers (R3). In parentheses: frequency of item in R3.
—— product (7%)
——— component (4%)
e——= version (12%)
— severity (2%)

c——— hardware (0%) == observed behavior (33%)
——— operating system (4%) e=— expected behavior (22%)
——— summary (6%) ===0 steps to reproduce (78%)
——— hbuild information (8%) =— stack traces (33%)

—— screenshots (5%)
e——= code examples (9%)
= error reports (9%)

[BetJusScho8, p4]
= test cases (43%)

The survey: Results

e Do developers and reporters agree on important items in bug reports?

Developers. Reporters Developers. Reporters Developers. Reporters
steps 10 reproduce (97%) steps to reproduce (38%) steps 10 reproduce (83%) 95 10 reproduce (98%) steps 10 reproduce (83%) ps to reproduce (78%)
observed behavior (95%) observed behavior (96%) stack traces (575%) 4 observed behavior (96%) stack traces (57%) test cases (43%)
expacted behavior (89%) expacted behavior (94%) tost cases (51%) expacted behavior (94%) test casos (51%) — observed behavior (33%)
stack traces (89%) product (94%) observed behavior (33%) product (94%) observed behavior (33%) stack traces (33%)
test cases (85%) wversion (91%) screenshots (26%) version (81%) screenshots (26%) e expected behavior (22%)
summary (81%) operating system (90%) ‘expected behavior (22%) operating system (90%) expected behavior (22%) xﬁ_,,_— version (12%)
screenshots (75%) ‘summary (90%) code examples (14%) summary (90%) code examples (14%) code exampies (9%)
version (75%) ccomponent (87%) summary (13%) component (87%) summary (13%) error reports (9%)
code examples (68%) severity (77%) version (12%) seventy (77%) version (1234) A buikd information (8%)
component (67%) build information (60%) error reports (12%) /| build information (60%) error reports (12%) product (7%)
product (65%) screenshots (60%) build information (8%) screenshots (60%) build information (8%) summary (6%)
error reports (65%) test cases (56%) product (5%) test cases (56%) product (5%) screenshots (5%)
operating system (63%) error reports (53%) operating system (4%) eror reports (53%) operating system (4%) F_ component (4%)
build information (62%) ‘stack traces (50%) component (3%) ‘stack traces (50%) component (3%) ~ operating system (4%)
ey | naraware (48%) | hardware (0%) " hardwave (48%) | [hawae @) | " severty @%) [BetJusSchog, ps]
hardware (32%) code examples (36%) severity (0%) code examples (36%) severity (0%) hardware (0%)

(c) Most helpful for developers vs.

(b) Most helpful for developers vs.
reporters expected to be helpful.

(a) Information used by developers vs.
provided by reporters.

provided by reporters.

e Comparison of
o Information used by developers vs provided by reporters
o Most helpful for developers vs provided by reporters

o . Most helpful for developers vs what reporters expect to be helpful

Problems

e “Which problems have developers encountered when fixing bugs? Which three

problems caused most delay in fixing bugs?” (setiusschos, pa]
o Incomplete information, errors in steps to reproduce
o Errors in test cases, incorrect versions number, observed behavior, expected behavior, bug duplicates
o Fluency in the language

e Additional problems
o Difference in knowledge levels
o Violating netiquette
o Complicated steps to reproduce

e Some bug reports are favored

o Reports written by well known reporters
o Reports where the reporter made the effort to identify the problematic code
o Bugs with high severity

10

Rating bug reports

e Random sample of 100 bug reports from the respective projects
e Likert scale: very poor (1) — very good (5)

e Why? 5/5 rating score
Ie) Venfy the SUTVGY'S results with real-world examp]es_ Run the following example. Double click on a tree item and
. . otice that it does not ex ‘A
o Rating scores will be used to evaluate CUEZILLA nofice it docs notexpand ,
Comment out the Selection listener and now double click on
[) But any tree item and notice that it expands.
’ : : : 2 public static void main(String[] args) {
© Can't ratlngs be SUb]eCtlve T Display display = new Display();
o Candevelopers agree on rating by chance? Shell shell = new Shell(display);
. . . . [...] (21 lines of code removed)
= Compute standard deviations of quality ratings display.dispose();
. . /
O, N -
e Low standard deviation across 92% of bug reports (ECLIPSE bug report #31021)

e Developers generally agree on the quality of bug reports

= It is possible to build a tool that learns from bug reports to measure quality of new bug
reports = CUEZILLA

11

CUEZILLA

Measurement
S~ —
% ——— CUEZILLA —
Bug re‘c)or't + Sufj?es‘t}on; Have you ‘t'nou?ht about cxclol‘ms, a

stack trace to your bufj re,\oor’t?

e Measure bug reports quality based on its content
e Based on the survey, CUEZILLA computes quality score of bug reports

o Binary: e.g: is screenshot present ?
o Continuous: e.g: readability

e Completeness of a bug report
o NLP operations to identify keywords
m remove stop-words — Stemming — Select words present in at least 1% of bug reports
o Assign keywords to groups:
m action items (e.g., open, select, click)
m expected and observed behavior (e.g., error, missing)
m steps to reproduce (e.g., steps, repro)
m build-related (e.g., build)
m user interface elements (e.g., toolbar, menu, dialog)

e Analyze attachments: Code samples, stack traces, patches, screenshots

12

CUEZILLA: How are recommendations
generated ?

e CUEZILLA delivers useful random facts that are statistically scraped from bug
databases
e How is this done ?
o Sample 50.000 bug report from each project
o A bug has resolution state: [FIXED], [DUPLICATE], [MOVED], [WONTFIX],
[WORKSFORME]
o Compute the test results to know whether the presence of a certain feature
significantly determine the resolution category of a bug.
e What items in a bug report shorten its life time(gets fixed!)?
e Findings from the 3 projects(sample size: 50.000 x 3)
o Bug reports including stack traces are resolved more quickly(Across 3 Projects).
o - Bug reports that are more readable have shorter lives(Across 3 Projects).
o. Including code examples in your bug report enhances the likelihood of it being

fixed.(MOZILLA)
13

Evaluation

Supervised learning models : support vector machines (SVM), generalized linear
regression (GLR), and stepwise linear regression
Evaluation
o Within the same project: For a given project A, predict quality of a bug report
within A using the other bug reports in A. (leave-one-out cross-validation)
o Across projects. Use model built from all rated bug reports of project A, and
apply it to predict the quality of all rated bugs in project B.
Prediction models perform comparably well
Models trained from one project can be applied to other projects without losing
much predictive power

— CUEZILLA models are portable across different projects but they perform best
within the same project

CUEZILLA can measure quality of bug reports within reasonable accuracy

CUEZILLA has potential to be integrated in bug tracking systems
14

Threats to validity

e Selection of developers/reporters
e Self selection principle: Participation in the survey is voluntary
e Time constraint hinders completeness

e Generalization: What about closed-software projects?

15

Conclusion

e What does this paper achieve?
o Provide a scientific evidence to common-sense good practices.E.g: Stack traces
are helpful
e Steps to reproduce and stack traces are the most useful elements of a bug report.
e The most serious issues that developers face include errors in steps to reproduce,
incomplete information, and wrong observed behavior
e Bug duplicates are encountered often but aren’t considered harmful
e Mismatch between what information developers consider as important and what
users provide
e CUEZILLA
o Rate up to 41% bug reports in complete agreement with developers.
o - Present recommendations to improve bug report quality

16

i = Ii
Mismatch between what information
developers consider as important and

what users provide

17

Why collaborative live chat?

Live chatting is more efficient compared to asynchronous communication such as
emails or forums. [LinZagD.SSer16][ShiMinE.H09]

= It is becoming an essential part of most software development processes

Chat conversation includes:

Unexpected Behaviors
Development problems
User Feedback

Social Events

18

Why collaborative live chat?

Live chatting is more efficient compared to asynchronous communication such as emails or
forums. [LinZagD.SSer16][ShiMinE.H09]

= it is becoming an essential part of most software development processes

Chat conversation includes:

Unexpected Behaviors (= 32% of chat dialogs are reporting unexpected behavior
Development problems [Shietal.]

User Feedback

Social Events

19

Use-case: Coordination between developers

e Approach:
1.Discuss bug in Slack, Gitter,MS Teams...
2.0pen project management software
3.Create an issue(Task type: Bug)
4 Write bug report

| Steps to reproduce |
‘L e e I

e A bit more sophisticated method: Jira for Slack Integration

20

Automated approach using BugListener

David

David

Dec 30 2016 10:34
I think. | have something important to say. It's the second time
that this happens with me.

cl ups. | think |
have to report this, because lt's a shame When | delete all
docker images and uninstall docker, | have 100GB free...

Someone tells me. How this is even possible that docker uses
100GB? * Please fix that.

Until there, | will be using docker on a virtual machine, because |
can't trust this software anymore.

Dec 30 2016 12:03
great feedback

Dec 30 2016 21:02

@David it sounds like you performed a | docker pull somehugerepository |

instead of a [dacker pull somehugerepository:specifictag | and ended up
filling your disk.

Dec 30 2016 22:14
@Jack Doesn't make any sense. After | restart my computer, the
disk free space keeps decreasing.

8y,
Description: erepon
| have something important to say. It's the second time that this happens

with me. | lost all my system backups. | think | have to report this,
because it's a shame. When | delete all docker images and uninstall
docker, | have 100GB free... How this is even possible that docker uses
100GB? Until there, | will be using docker on a virtual machine, because
| can't trust this software anymore.

Observed Behavior:

Ex| ted Behavior:

Steps to reproduce:

Live chat dialog extracted from docker's Gitter — isnimuznaza)

Output produced by BugListener [ShiMuZha22]

21

Challenges

e Noisy chat conversations

o Off-topics, irrelevant informations

e Entangled chat conversations

o Context dependent utterances

e Insufficient labeled resource

o Data annotation through human intervention

e Quality of produced bug-report

o Description, observed behavior, expected behavior, steps to reproduce

I Dial Di t 1 t - i
| ialog Disentanglemen : =% Bug-Report dialog

& Augmentation

' Identification(BRI)

|
| Bug—-Report
: Synthesis(BRS)

22

Dialog Disentanglement

e Motivation: Interleaved conversations need to be split
e Goal of disentanglement:
o Establish a “reply to" relationship
between utterances
o Cluster utterances as one dialog
e Given chat log L: f(L) disentangle it into separate
dialogs {D1,D2,D3...}
e Experiment with various disentanglement
models(FF, BERT, E2E...) | .
e Feed-Forward model yields best results C Developer A

(A AR 4

\

L

\

|' Developer B

23

Data augmentation

e Motivation: Issues with data imbalance and limited annotation
e Data augmentation
o Dialog mutation while keeping semantics
m Long utterance: Word level replacement
m Short utterance: Utterance level replacement
e Databalance
o Augment Bug-report dialogs
o Match the number of bug-report dialogs to non bug-report dialogs

24

Bug-report identification(BRI)

e Motivation: Identify bug report dialogs from separated dialogs @
e Binaryfunction f(D;) — {true, false}
e Utterance embedding:
o Word encoding : Encode semantic information of words
o Utterance encoding: Learn the representation of utterances
e Graph-based Context embedding: capture the graphical context of utterances in one

dialog
o Use the “reply-to” relationship between utterances in a dialog to build a directed
graph

o Embed dialog graph context
e Use the obtained representation of an entire dialog to classify it as either a positive or
a negative bug-report dialog.

25

Bug-report synthesis(BRS)

e Motivation: Synthesize the bug reports from predicted bug report dialogs

el) i

=) >j-—» OBS@(‘VQJ 7l>eh0\v or e
| EREER i () ; Expec‘ted Beha\/uo{‘ s
LY o7 J \ S'tepS ‘to rq)r‘oduce

e Challenge: high volume of live chat data & limited labeled data = low volume
training data for bug report synthesis task.
o Solution: twice fine-tuned BERT model
e BERT: Pre-trained on large amounts of text (Wikipedia:2500M words,
BookCorpus(800M words)

26

Evaluation: Methodology

e Selected OSS communities:

o Top-1 most participated communities from six active domains

Front end framework : Angular
Mobile: Appium

Data science: DL4J

DevOps: Docker

Collaboration: Gitter

Programming Language: TypeScript

o Use Gitter as communication tool
e Data preprocessing & disentanglement
e Sampling
o Random 100 dialogs from each OSS community

Only 1.1% of the population. Problematic ?

e Filtering: exclude noisy dialogs

27

Evaluation: Methodology

Labeling
o Manually correct disentanglement results
o Manually correct the “reply-to” relationship
o Manually label dialogs with BR(Bug Report) or NBR(Not BugReport)
o Manually label individual sentences with OB, EB and SR
o Validity?
m Agreement between labelers:
e 79 % correctness of automated dialog disentanglement
e Average Cohen's Kappa(BRI) = 0.87
e Average Cohen's Kappa(BRS) = 0.84
Balance BR and NBR data
Include an external dataset for transfer learning

28

BugListener vs state-of-the-art baselines

‘ How effective is BugListener in identifying bug-report dialogs from live chat data?”

Table 2: Baseline comparison across the six communities for bug-report dialog identification (%).

Angular Appium Docker DL4J Gitter Typescript Average
Methods
P R [FI P R [FI P TR [H P [R |FI P TR F1 P R F1 P [R F1

BugListener | 8293 | 79.07 80.95 | 69.39 | 80.95 74.73 | 77.42 78.69 | 78.05 | 85.07 72.15 | 78.08 | 82.09 87.30 | 84.62 | 70.00 70.00 | 70.00 | 77.82 78.03 | 77.74
NB 58.88 | 73.26 | 65.28 | 62.22 | 66.67 | 64.37 | 65.52 | 31.15 | 42.22 | 62.79 | 34.18 | 44.26 | 72.92 | 55.56 | 63.06 | 35.29 | 30.00 | 32.43 | 59.60 | 48.47 | 51.94
GBDT 72.22 | 60.47 | 65.82 | 65.17 | 69.05 | 67.05 | 66.00 | 54.10 | 59.46 | 85.00 | 64.56 | 73.38 | 59.77 | 82.54 | 69.33 | 35.14 | 65.00 | 45.61 | 63.88 | 65.95 | 63.44
RF 75.00 | 59.30 | 66.23 | 72.15 | 67.86 | 69.94 | 68.75 | 36.07 | 47.31 | 72.73 | 20.25 | 31.68 | 62.34 | 76.19 | 68.57 | 60.00 | 30.00 | 40.00 | 68.50 | 48.28 | 53.96
FastText 77.59 | 52.33 | 62.50 | 68.54 | 72.62 | 70.52 | 56.60 | 49.18 | 52.63 | 74.51 | 48.10 | 58.46 | 67.24 | 61.90 | 64.46 | 40.91 | 45.00 | 42.86 | 64.23 | 54.86 | 58.57
CNC 80.36 | 52.33 | 63.38 | 67.05 | 70.24 | 68.60 | 74.51 | 62.29 | 67.86 | 84.44 | 48.10 | 61.29 | 68.18 | 71.43 | 69.77 | 52.00 | 65.00 | 57.78 | 71.09 | 61.57 | 64.78
DECA 51.32 | 45.35 | 48.15 | 51.16 | 52.38 | 51.76 | 45.57 | 59.02 | 51.43 | 42.22 | 48.10 | 44.97 | 55.36 | 49.20 | 52.10 | 21.57 | 55.00 | 30.99 | 44.53 | 51.51 | 46.57
Casper 67.65 | 53.49 | 59.74 | 66.06 85.71 | 74.61 | 60.56 | 70.49 | 65.15 | 82.14 | 58.23 | 68.15 | 73.33 | 69.84 | 71.54 | 3250 | 65.00 | 43.33 | 63.71 | 67.13 | 63.75

[ShiMuzha22,p7]

How effective is BugListener in synthesizing bug reports?

100
90 0B es M SR
80 1
70 719, 13% - 7% 70% 9%
60 - 2% . 6%
% | 53%520, i P 54%
40 A
30
20 4 14%
10 A -
0 | B
BugListener FastText F GBDT NB BEE [ShiMuZha22,p8]

Fig. 3: Baseline comparison for bug report synthesis.

Human evaluation: Procedure

Apply BugListener to 5 new communities : Webdriverio, Scala, Materialize, Webpack,
Pandas
Human annotators
o 2 PhD students
o 2 Master students
o 3 Professional developers
o 2 Senior researchers
Scrape recent live chats(3443 utterances) — Disentanglement(562 dialogs) — 31
potential bug reports identified
Each bug report is evaluated by 3 annotators
Evaluate based on a survey ishiMuzhazz,g)
o Correctness: Whether the dialog is discussing a bug that should be reported at
that moment?
o Quality: How would you rate the quality of Description, Observed Behavior,
Expected Behavior, and Step to Reproduce in the bug report?

o Usefulness: How would you rate the usefulness of BugListener?
30

Human evaluation: Results

Correct Incorrect
16
14 -
12 * (23%) e
. . 10 - (77%)
e Correctness: 77% of identified bug reports are correct s :
e Quality N B
o 83% ~ satisfaction on description : 5 0 B

Webdriverio Scale Materialize Webpack Pandas

o Acceptable satisfaction on EB, OB, SR S
[] Usefulness: 71% agreement that BugLiStener is user]' Dissatisfied Somewhat disstisfied Not dissatisfiel

Somewhat satisfied Satisfied
Des [4% l_’:% 83%
2 OB |13% ZTS% 62%)
CS; EB [33% Zil% 46%)
SR 121% Zfl% 58%)
HOW CAN IT BE USEFUL? Usefulness [4% 2% 7

T T T T T T T
100 75 50 25 0 25 50 75 100
Percentage(%)
(b) Quality and usefulness
Fig. 5: Results of human evaluation

[ShiMuzZha22,9]

31

Potential use-case

e Semi-automated
e Scenario
o 0SS repository owner/core team members subscribe to adequate chat rooms via
BugListener
o BugListener monitors the chatrooms and notifies subscribers about potential bug
reports periodically
o Subscribers confirm that it is actually a bug and assess quality
o BugListener automatically create issues on code repositories

e Problem: Relying only on BugListener for Bugs report identification is risky because

of no perfect recall(77%). What if a dialog is a bug but doesn't get identified as such?
e Isthe tradeoff worth it ?

32

Discussion

e How is the quality of automatically created bug reports ? v/
e Why do developers discuss bugs in chat instead of creating a proper bug report?
o Better collaboration due to real-time communication
o Initial assessment: Evaluate bugs severity and impact
o Fast-paced development environments where the goal is to find quick fixes and
documentation is sometimes unnecessary.
o Informal communication — More freedom
e Does the bug report need to be proper?
o Minimalist approach where only necessary items are present
o Minimalist bug report: short term high risk, long term chaos
m Insufficient information — increased back-and-forth communication
m Misunderstood severity and impact — faulty prioritization
o Bug trackers make it easier to create proper bug reports through standardized
format & required fields.
e What can be a potential solution to the problem?
o Semi-automated BugListener integration for chat clients & BugTrackers v/
33

Thank you for your time !
&
Happy debugging !

34

Credits

e What makes a good report? [BetJusSch08]

e BugListener: Identifying and Synthesizing Bug Reports from Collaborative Live
Chats[ShiMuZha22]

e Why Developers Are Slacking Off: Understanding How Software Teams Use Slack?
[LinZagD.SSer16,333-336]

e On the Use of Internet Relay Chat (IRC) Meetings by Developers of the GNOME GTK+
Project [ShiMinE.H09,107-110]

e On the Use of Internet Relay Chat (IRC) Meetings by Developers of the GNOME GTK+
Project [ShiMinE.H09,147-156]

e Illustrations: undraw.co

e Presentation theme:
https://www.slidescarnival.com/cordelia-free-presentation-template/216

35

Credits

e What makes a good report? [BetJusSch08]

e BugListener: Identifying and Synthesizing Bug Reports from Collaborative Live
Chats[ShiMuZha22]

e Why Developers Are Slacking Off: Understanding How Software Teams Use Slack?
[LinZagD.SSer16,333-336]

e On the Use of Internet Relay Chat (IRC) Meetings by Developers of the GNOME GTK+
Project [ShiMinE.H09,107-110]

e On the Use of Internet Relay Chat (IRC) Meetings by Developers of the GNOME GTK+
Project [ShiMinE.H09,147-156]

e Illustrations: undraw.co

e Presentation theme:
https://www.slidescarnival.com/cordelia-free-presentation-template/216

36

