
Bug reports quality
and potential room for
improvement through
automation.

Covered papers
I. What makes a good report? [BetJusSch08]

II. BugListener: Identifying and Synthesizing Bug Reports from
Collaborative Live Chats[ShiMuZha22]

Disclaimer: When presenting the various used techniques, some
parts will only be explained at the surface level because of time
frame & expertise limitations.

2

Agenda
I. Introduction

II. What makes a good report?
1. The Survey
2. Rating bug reports
3. CUEZILLA

III. Automated bug report generation: Collaborative Chat:
BugListener

1. Why collaborative live chat?
2. BugListener’s components
3. Evaluation
4. Potential use case
5. Discussion

3

“
"The difference between a

well-written bug report and a
poorly written one can be the
difference between a fix in the
next release and a fix never."

4

Introduction

5

● A software bug report contains particular information about what is wrong with a
software product and what needs to be resolved.

● Essential in software development
○ Help improve software quality and user experience.
○ Save cost and time by enabling debug at an earlier stage.
○ Maintain all stakeholders informed about the bug & assists them in taking

corrective actions.
● Includes full description
● Sometimes includes stacktraces
● Bug report quality is crucial.

○ Poorly written bug reports slow developers down(e.g: Mozilla bug #109242)
[BetJusSch08]

● Bug reports written by users:
○ Clear way of communication between users and developers
○ Assumption: Mismatch between what developers consider most helpful and

what users provide.

What makes a good bug report ? [BetJusSch08]

61: MOZILLA bug #109242

● Goals
○ Accurately define a good bug report
○ Improve bug reports quality

⇒ Bridge the gap between what developers think is most helpful and what users
provide

● Survey on important parts of a bug report
○ Participants: 156 experienced developers & 310 experienced reporters across 3

projects: Apache, Eclipse and Mozilla
○ Developers rate chosen bug reports

● CUEZILLA: Measure bug reports quality & suggest improvements

The survey: Questions

7

● Developers
○ Which items have developers previously used when fixing bugs? Which three items helped the most?
○ Which problems have developers encountered when fixing bugs? Which three problems caused most delay in fixing bugs?

● Reporters
○ Which items have reporters previously provided? Which three items were most difficult to provide?
○ Which three items do reporters consider to be most relevant for developers?

[BetJusSch08, p3]

[BetJusSch08, p3]

The survey: Results

8

● Developers: Which items have developers previously used when fixing bugs? Which three items helped the most?

○ Importance of items
■ Steps to reproduce > stack traces, test cases > observed behavior > expected behavior > code examples, summary,

version, operating system, product, hardware.

● Reporters
○ Items provided frequently by reporters: Expected behavior, observed behavior,

steps to reproduce
○ Less frequently: stack traces, code examples, test cases
○ Most difficult items to provide: Test cases > Steps to reproduce> Code examples > Stacktrace

Which three items do reporters consider to be most relevant for developers?

[BetJusSch08, p4]

[BetJusSch08, p4]

The survey: Results

9

● Do developers and reporters agree on important items in bug reports?

[BetJusSch08, p5]

● Comparison of
○ Information used by developers vs provided by reporters
○ Most helpful for developers vs provided by reporters
○ Most helpful for developers vs what reporters expect to be helpful

Problems

10

● “Which problems have developers encountered when fixing bugs? Which three
problems caused most delay in fixing bugs?”

○ Incomplete information, errors in steps to reproduce
○ Errors in test cases, incorrect versions number, observed behavior, expected behavior, bug duplicates
○ Fluency in the language

● Additional problems
○ Difference in knowledge levels
○ Violating netiquette
○ Complicated steps to reproduce

● Some bug reports are favored
○ Reports written by well known reporters
○ Reports where the reporter made the effort to identify the problematic code
○ Bugs with high severity

[BetJusSch08, p4]

Rating bug reports

11

● Random sample of 100 bug reports from the respective projects
● Likert scale: very poor (1) → very good (5)
● Why?

○ Verify the survey's results with real-world examples.
○ Rating scores will be used to evaluate CUEZILLA

● But
○ Can’t ratings be subjective?
○ Can developers agree on rating by chance?

⇒ Compute standard deviations of quality ratings
● Low standard deviation across 92% of bug reports
● Developers generally agree on the quality of bug reports

⇒ It is possible to build a tool that learns from bug reports to measure quality of new bug
reports ⇒ CUEZILLA

5/5 rating score

[BetJusSch08, p6]

CUEZILLA

12

● Measure bug reports quality based on its content
● Based on the survey, CUEZILLA computes quality score of bug reports

○ Binary: e.g: is screenshot present ?
○ Continuous: e.g: readability

● Completeness of a bug report
○ NLP operations to identify keywords

■ remove stop-words → Stemming → Select words present in at least 1% of bug reports
○ Assign keywords to groups:

■ action items (e.g., open, select, click)
■ expected and observed behavior (e.g., error, missing)
■ steps to reproduce (e.g., steps, repro)
■ build-related (e.g., build)
■ user interface elements (e.g., toolbar, menu, dialog)

● Analyze attachments: Code samples, stack traces, patches, screenshots

CUEZILLA: How are recommendations
generated ?

13

● CUEZILLA delivers useful random facts that are statistically scraped from bug
databases

● How is this done ?
○ Sample 50.000 bug report from each project
○ A bug has resolution state: [FIXED], [DUPLICATE], [MOVED], [WONTFIX],

[WORKSFORME]
○ Compute the test results to know whether the presence of a certain feature

significantly determine the resolution category of a bug.
● What items in a bug report shorten its life time(gets fixed!)?
● Findings from the 3 projects(sample size: 50.000 x 3)

○ Bug reports including stack traces are resolved more quickly(Across 3 Projects).
○ Bug reports that are more readable have shorter lives(Across 3 Projects).
○ Including code examples in your bug report enhances the likelihood of it being

fixed.(MOZILLA)

Evaluation

14

● Supervised learning models : support vector machines (SVM), generalized linear
regression (GLR), and stepwise linear regression

● Evaluation
○ Within the same project: For a given project A, predict quality of a bug report

within A using the other bug reports in A. (leave-one-out cross-validation)
○ Across projects. Use model built from all rated bug reports of project A, and

apply it to predict the quality of all rated bugs in project B.
● Prediction models perform comparably well
● Models trained from one project can be applied to other projects without losing

much predictive power
 ⇒ CUEZILLA models are portable across different projects but they perform best
within the same project
● CUEZILLA can measure quality of bug reports within reasonable accuracy
● CUEZILLA has potential to be integrated in bug tracking systems

Threats to validity

15

● Selection of developers/reporters

● Self selection principle: Participation in the survey is voluntary

● Time constraint hinders completeness

● Generalization: What about closed-software projects?

Conclusion

16

● What does this paper achieve?
○ Provide a scientific evidence to common-sense good practices.E.g: Stack traces

are helpful
● Steps to reproduce and stack traces are the most useful elements of a bug report.
● The most serious issues that developers face include errors in steps to reproduce,

incomplete information, and wrong observed behavior
● Bug duplicates are encountered often but aren’t considered harmful
● Mismatch between what information developers consider as important and what

users provide
● CUEZILLA

○ Rate up to 41% bug reports in complete agreement with developers.
○ Present recommendations to improve bug report quality

Mismatch between what information
developers consider as important and

what users provide

17

18

● Development problems
● User Feedback
● Social Events

● Unexpected Behaviors

Why collaborative live chat?

Live chatting is more efficient compared to asynchronous communication such as
emails or forums. [LinZagD.SSer16][ShiMinE.H09]

⇒ It is becoming an essential part of most software development processes

Chat conversation includes:

19

● Development problems
● User Feedback
● Social Events

Why collaborative live chat?

Live chatting is more efficient compared to asynchronous communication such as emails or
forums. [LinZagD.SSer16][ShiMinE.H09]

⇒ it is becoming an essential part of most software development processes

Chat conversation includes:

● Unexpected Behaviors 32% of chat dialogs are reporting unexpected behavior
[Shi et al.]

Use-case: Coordination between developers

20

● Approach:
1.Discuss bug in Slack, Gitter,MS Teams…
2.Open project management software
3.Create an issue(Task type: Bug)
4.Write bug report

● A bit more sophisticated method: Jira for Slack Integration

Automated approach using BugListener

21

Live chat dialog extracted from docker's Gitter [ShiMuZha22]

Output produced by BugListener [ShiMuZha22]

Challenges

22

● Noisy chat conversations
○ Off-topics, irrelevant informations

● Entangled chat conversations
○ Context dependent utterances

● Insufficient labeled resource
○ Data annotation through human intervention

● Quality of produced bug-report
○ Description, observed behavior, expected behavior, steps to reproduce

Dialog Disentanglement

23

● Motivation: Interleaved conversations need to be split
● Goal of disentanglement:

○ Establish a “reply to” relationship
between utterances

○ Cluster utterances as one dialog
● Given chat log L: f(L) disentangle it into separate

 dialogs {D1,D2,D3…}
● Experiment with various disentanglement

models(FF, BERT, E2E…)
● Feed-Forward model yields best results

Data augmentation

24

● Motivation: Issues with data imbalance and limited annotation
● Data augmentation

○ Dialog mutation while keeping semantics
■ Long utterance: Word level replacement
■ Short utterance: Utterance level replacement

● Data balance
○ Augment Bug-report dialogs
○ Match the number of bug-report dialogs to non bug-report dialogs

Bug-report identification(BRI)

25

● Motivation: Identify bug report dialogs from separated dialogs
● Binary function
● Utterance embedding:

○ Word encoding : Encode semantic information of words
○ Utterance encoding: Learn the representation of utterances

● Graph-based Context embedding: capture the graphical context of utterances in one
dialog
○ Use the “reply-to” relationship between utterances in a dialog to build a directed

graph
○ Embed dialog graph context

● Use the obtained representation of an entire dialog to classify it as either a positive or
a negative bug-report dialog.

Bug-report synthesis(BRS)

26

● Motivation: Synthesize the bug reports from predicted bug report dialogs

● Challenge: high volume of live chat data & limited labeled data ⇒ low volume
training data for bug report synthesis task.
○ Solution: twice fine-tuned BERT model

● BERT: Pre-trained on large amounts of text (Wikipedia:2500M words,
BookCorpus(800M words)

Evaluation: Methodology

27

● Selected OSS communities:
○ Top-1 most participated communities from six active domains

■ Front end framework : Angular
■ Mobile: Appium
■ Data science: DL4J
■ DevOps: Docker
■ Collaboration: Gitter
■ Programming Language: TypeScript

○ Use Gitter as communication tool
● Data preprocessing & disentanglement
● Sampling

○ Random 100 dialogs from each OSS community
■ Only 1.1% of the population. Problematic ?

● Filtering: exclude noisy dialogs

Evaluation: Methodology

28

● Labeling
○ Manually correct disentanglement results
○ Manually correct the “reply-to” relationship
○ Manually label dialogs with BR(Bug Report) or NBR(Not BugReport)
○ Manually label individual sentences with OB, EB and SR
○ Validity?

■ Agreement between labelers:
● 79 % correctness of automated dialog disentanglement
● Average Cohen’s Kappa(BRI) = 0.87
● Average Cohen’s Kappa(BRS) = 0.84

● Balance BR and NBR data
● Include an external dataset for transfer learning

BugListener vs state-of-the-art baselines

29

“ How effective is BugListener in identifying bug-report dialogs from live chat data?”

 How effective is BugListener in synthesizing bug reports?
[ShiMuZha22,p7]

[ShiMuZha22,p8]

Human evaluation: Procedure

30

● Apply BugListener to 5 new communities : Webdriverio, Scala, Materialize, Webpack,
Pandas

● Human annotators
○ 2 PhD students
○ 2 Master students
○ 3 Professional developers
○ 2 Senior researchers

● Scrape recent live chats(3443 utterances) → Disentanglement(562 dialogs) → 31
potential bug reports identified

● Each bug report is evaluated by 3 annotators
● Evaluate based on a survey

○ Correctness: Whether the dialog is discussing a bug that should be reported at
that moment?

○ Quality: How would you rate the quality of Description, Observed Behavior,
Expected Behavior, and Step to Reproduce in the bug report?

○ Usefulness: How would you rate the usefulness of BugListener?

[ShiMuZha22,9]

Human evaluation: Results

31

● Correctness: 77% of identified bug reports are correct
● Quality

○ 83% ~ satisfaction on description
○ Acceptable satisfaction on EB, OB, SR

● Usefulness: 71% agreement that BugListener is useful

HOW CAN IT BE USEFUL?

[ShiMuZha22,9]

Potential use-case

32

● Semi-automated
● Scenario

○ OSS repository owner/core team members subscribe to adequate chat rooms via
BugListener

○ BugListener monitors the chatrooms and notifies subscribers about potential bug
reports periodically

○ Subscribers confirm that it is actually a bug and assess quality
○ BugListener automatically create issues on code repositories

● Problem: Relying only on BugListener for Bugs report identification is risky because
of no perfect recall(77%). What if a dialog is a bug but doesn’t get identified as such?

● Is the tradeoff worth it ?

Discussion

33

● How is the quality of automatically created bug reports ? ✔
● Why do developers discuss bugs in chat instead of creating a proper bug report?

○ Better collaboration due to real-time communication
○ Initial assessment: Evaluate bugs severity and impact
○ Fast-paced development environments where the goal is to find quick fixes and

documentation is sometimes unnecessary.
○ Informal communication → More freedom

● Does the bug report need to be proper?
○ Minimalist approach where only necessary items are present
○ Minimalist bug report: short term high risk, long term chaos

■ Insufficient information → increased back-and-forth communication
■ Misunderstood severity and impact → faulty prioritization

○ Bug trackers make it easier to create proper bug reports through standardized
format & required fields.

● What can be a potential solution to the problem?
○ Semi-automated BugListener integration for chat clients & BugTrackers ✔

Thank you for your time !
&

Happy debugging !

34

Credits

35

● What makes a good report? [BetJusSch08]
● BugListener: Identifying and Synthesizing Bug Reports from Collaborative Live

Chats[ShiMuZha22]
● Why Developers Are Slacking Off: Understanding How Software Teams Use Slack?

[LinZagD.SSer16,333-336]
● On the Use of Internet Relay Chat (IRC) Meetings by Developers of the GNOME GTK+

Project [ShiMinE.H09,107–110]
● On the Use of Internet Relay Chat (IRC) Meetings by Developers of the GNOME GTK+

Project [ShiMinE.H09,147-156]
● Illustrations: undraw.co
● Presentation theme:

https://www.slidescarnival.com/cordelia-free-presentation-template/216

Credits

36

● What makes a good report? [BetJusSch08]
● BugListener: Identifying and Synthesizing Bug Reports from Collaborative Live

Chats[ShiMuZha22]
● Why Developers Are Slacking Off: Understanding How Software Teams Use Slack?

[LinZagD.SSer16,333-336]
● On the Use of Internet Relay Chat (IRC) Meetings by Developers of the GNOME GTK+

Project [ShiMinE.H09,107–110]
● On the Use of Internet Relay Chat (IRC) Meetings by Developers of the GNOME GTK+

Project [ShiMinE.H09,147-156]
● Illustrations: undraw.co
● Presentation theme:

https://www.slidescarnival.com/cordelia-free-presentation-template/216

