Institute for Computer Science of the Freie Universität Berlin

Developing a Portable Wind Monitoring System for Sailing Events

Overview

Introduction Existing Solutions Goals

Development

Strategy Difficulties

Conclusion

Created Artifacts Evaluation & Outlook

Table of Contents

Introduction Existing Solutions Goals

Development

Strategy Difficulties

Conclusion

Created Artifacts Evaluation & Outlook

Overview of topic

Sailing is a sport that requires competition organizers to have accurate wind measurements to prepare a fair racing environment.

The measured wind speed dictates the length and the direction sets the course axis.

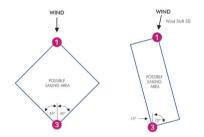
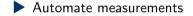


Figure: Effect of an improperly aligned course axis


Existing Solutions

- Manual measurement
- Commercially available portable solutions
- Yachting hardware

Figure: YachtBot WindBot

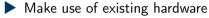
Goals

Goals

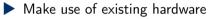
Automate data transfer

Goals

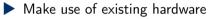
- Automate measurements
- Automate data transfer
- Reduce price compared to commercial solutions

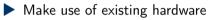

Table of Contents

ntroduction Existing Solutions Goals

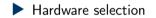

Development Strategy Difficulties

Conclusion


Created Artifacts Evaluation & Outlook


- Carbon pole
- Wind sensor
- Display

- Carbon pole
- Wind sensor
- Display
- Correct direction readings using a magnetic compass


- Carbon pole
- Wind sensor
- Display
- Correct direction readings using a magnetic compass
- Remove movement vector using GPS and INS

- Carbon pole
- Wind sensor
- Display
- Correct direction readings using a magnetic compass
- Remove movement vector using GPS and INS
- Send data over cellular network

Institute for Computer Science of the Freie Universität Berlin

Difficulties

► Hardware selection

Hardware interoperability

► Hardware selection

- Hardware interoperability
- ► Hardware issues

- Hardware selection
- Hardware interoperability
- Hardware issues
- Cellular network connection problems

- Hardware selection
- Hardware interoperability
- Hardware issues
- Cellular network connection problems
- Library support

Difficulties: Hardware Selection

My lack of knowledge on the types of magnetic compasses required lengthy research and culminated in my disassembly of the compass I typically use when sailing to determine the used sensor.

Figure: Raymarine Tacktick Micro Compass extracted from its housing and exposing the used fluxgate magnetometer

Difficulties: Hardware Interoperability

Two of the chosen HATs had a non-obvious pin collision resulting in an unusable CAN interface.

Figure: Connection between the offending HATs replaced with individual jumper cables

Difficulties: Hardware Issues

- Loose contact in USB connection to the GPS HAT
- Loose connection to onboard power
- Undampened gimbal suspension of the fluxgate compass core
- Water ingress into connectors

Difficulties: Cellular network connection problems

- No network coverage in the race area during the test in Kiel
- Inability to establish cellular internet connection with the internal modem

Institute for Computer Science of the Freie Universität Berlin

Difficulties: Library support

No python library for NMEA2000

▶ No python library for the used IMU with support for the on-chip queue

Table of Contents

ntroduction Existing Solutions Goals

Development Strategy

Conclusion Created Artifacts Evaluation & Outlook

NMEA2000 python library

NMEA2000 python library

Added queue support to IMU library

- NMEA2000 python library
- Added queue support to IMU library
- Client and Server software for the Portable Wind Monitoring System

- NMEA2000 python library
- Added queue support to IMU library
- Client and Server software for the Portable Wind Monitoring System
- Instructions to recreate the project
 - 3D print and design files for the enclosure and mounting hardware
 - Bill of Materials
 - Setup instructions for the Raspberry Pi

- NMEA2000 python library
- Added queue support to IMU library
- Client and Server software for the Portable Wind Monitoring System
- Instructions to recreate the project
 - > 3D print and design files for the enclosure and mounting hardware
 - Bill of Materials
 - Setup instructions for the Raspberry Pi
- Improved mounting option on the used boat as well as a new locking power socket

Evaluation

Results of the field test:

- Significantly reduced questions over radio asking for wind updates
- Allowed for quicker measurements because the boat didn't need to be stopped
- Significantly increased the measurement frequency
- ▶ Increased accuracy of the measured direction

Missing capabilities and possible improvements

Currently missing are

- Position filtering with INS
- Data transmission using internal modem

Whereas these areas can still be improved upon:

- UI and UX of the data presentation
- NMEA2000 Library message support
- Local data access in case of missing mobile network coverage

Institute for Computer Science of the Freie Universität Berlin

Thanks for listening

Figure: First prototype

Institute for Computer Science of the Freie Universität Berlin

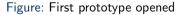


Figure: Second prototype opened

Institute for Computer Science of the Freie Universität Berlin

Figure: System using yachting components

Figure: OWS-5 Monitoring System