
Lutz Prechelt, prechelt@inf.fu-berlin.de 1

Course "Debugging"
Debugging – An Introduction 

Prof. Dr. Lutz Prechelt
Freie Universität Berlin, Institut für Informatik

http://www.inf.fu-berlin.de/inst/ag-se/

• Universal method of 
debugging

• 9 rules
subrules
examples ("war stories") 



Lutz Prechelt, prechelt@inf.fu-berlin.de 2

Source

• David J. Agans:
"Debugging – The 9 indispensable rules for finding even 
the most elusive software 
and hardware problems",
Amacom, NY, 2002

Only 180 pages
A fun read!



Lutz Prechelt, prechelt@inf.fu-berlin.de 4

Obvious?

• Most of these rules may look obvious

BUT:
• Obvious does not mean easy
• It is not obvious how to apply them to any one problem
• Often neglected in the "heat of the battle"
• Few people follow all of these rules naturally

"Debugging is an art"



Lutz Prechelt, prechelt@inf.fu-berlin.de 5

Universal

The rules work for
• software
• computer hardware
• other electronics
• cars
• houses
• human bodies
• etc.

The rules work if the system
• has been designed wrong
• has been built wrong
• has been used wrong
• is broken



Lutz Prechelt, prechelt@inf.fu-berlin.de 6

What the rules are about

The purpose of the rules is to
• determine the causes of misbehavior (defects)
• correct the causes of misbehavior

The purpose is NOT to
• prevent defects ("process management")
• detect the presence of defects ("testing", "use")
• decide whether a defect should be corrected (an aspect 

of "quality management")



Lutz Prechelt, prechelt@inf.fu-berlin.de 8

Tatatataaaaa: The nine rules

1. Understand the system

2. Make it fail

3. Quit thinking and look

4. Divide and conquer

5. Change one thing at a time

6. Keep an audit trail

7. Check the plug

8. Get a fresh view

9. If you don't fix it, it ain't fixed



Lutz Prechelt, prechelt@inf.fu-berlin.de 10

Understand the system: The war story (1)

• Situation: A microprocessor-based valve controller, 
built from a re-used design

• Problem: When the scale had a new measurement, the 
interface chip never passed on an interrupt to the 
processor

Even that was difficult to find out
No progress in finding out why



Lutz Prechelt, prechelt@inf.fu-berlin.de 11

Understand the system: The war story (2)

• The system:



Lutz Prechelt, prechelt@inf.fu-berlin.de 13

Understand the system: The essence

• You cannot find problems if you do not understand how 
the system is supposed to work

• Essentially, you have to "read the instructions"
Preferably before things go wrong

• Experience shows that the least understood parts of a 
complex system invariably have the most problems

You need the understanding at design time!

• Unfortunately, understanding a complex (software) 
infrastructure can be extremely time-consuming

This is usually the most time-consuming rule to follow
But also usually the most worthwhile



Lutz Prechelt, prechelt@inf.fu-berlin.de 17

The nine rules

1. Understand the system

2. Make it fail

3. Quit thinking and look

4. Divide and conquer

5. Change one thing at a time

6. Keep an audit trail

7. Check the plug

8. Get a fresh view

9. If you don't fix it, it ain't fixed



Lutz Prechelt, prechelt@inf.fu-berlin.de 19

Make it fail: What and why

• For efficient debugging, you must be able to reproduce 
the failure at will

You need to find out the exact steps to make it fail

Why you need this:
• To look at the failure itself

and understand its characteristics

• To be able to focus on finding the cause
rather than worry how to make it fail at all

• So you can tell when you have fixed it



Lutz Prechelt, prechelt@inf.fu-berlin.de 20

Make it fail: Practical hints

• Do it again
After you found out how to make it fail, do it once more to 
make sure you have the right procedure

• Start at the beginning
Make sure you can reproduce the failure from a repeatable 
(clean) initial state: restart everything from scratch

• Automate
If making it fail involves a lot of steps, automate their 
execution

• see the war story below

If the conditions of the failure are rare, create them 
artificially

• e.g. an allergy test by explicitly applying allergens
• e.g. create heavy-load conditions to provoke a known heavy-

load failure



Lutz Prechelt, prechelt@inf.fu-berlin.de 21

Make it fail: War story (Automation)

• Context: Debugging an analog TV 'Pong' game
• Problem: The ball would sometimes wrongly bounce off 

the 'practice wall'
Manual playing kept attention away from observing the 
failure

• Automation:
Both ball position (x, y) and 
paddle position (y) were 
represented by voltages
Connect paddle y to the 
ball y voltage and the game
will play itself.



Lutz Prechelt, prechelt@inf.fu-berlin.de 22

Make it fail: War story (Stimulation)

• Context: A house
• Problem: A particular window leaks in heavy rain -- but 

only sometimes
• Stimulation: Create artificial heavy rain by using a hose

The leaking happens only when the rain comes from 
southeast
Closely investigating the window finds a break in the 
caulking at that side of the window
After fixing the caulking, another hose test confirms that 
the defect has been fixed



Lutz Prechelt, prechelt@inf.fu-berlin.de 23

Make it fail: Practical hints (2)

• Do not simulate the failure
It is good to stimulate (even amplify) the real failure

• see the window/hose example

It may be helpful to try and make a similar system fail
• so you can narrow down the possible causes

But it can be misleading to simulate the failure only
• Because that involves guessing the failure mechanism
• If your guess is wrong, you'll end up on the wrong track



Lutz Prechelt, prechelt@inf.fu-berlin.de 24

Make it fail: What if it's intermittent?

• Some failures appear to be irreproducible (intermittent)
• But they aren't:

The factors evoking the failure are fixed 
(remember?: laws of nature!)

• However
a. you may not know what the particular factors are

• and there may be many to choose from or

b. you may not be able to control those factors
• or the ones you would like to check for



Lutz Prechelt, prechelt@inf.fu-berlin.de 25

Make it fail: What if it's intermittent? (2)

If you do not know the relevant factors:
• Try to find some relevant factor by trying to make the 

failure more frequent
• Method: trial-and-error experiments

Guess all kinds of conceivable factors
Change them and observe
If multiple factors are involved, only randomization helps

• but randomize systematically

• Sometimes making it fail somewhat more often may be 
the best you can achieve

but that may be very helpful



Lutz Prechelt, prechelt@inf.fu-berlin.de 26

Make it fail: What if it's still intermittent? (3)

If you cannot control the relevant factors (or just still don't 
know them):

• Instrument the system to capture enough information 
about the few failures you get and about normal 
executions

and compare those two kinds

• Systematic differences usually provide the clue for 
finding and fixing the problem

• Problem: How can you make sure you fixed it?
You need to find a failure signature: Any run showing these 
conditions will fail
Then after your corrections, when you see such a run, but 
no failure, you know you have removed your problem.



Lutz Prechelt, prechelt@inf.fu-berlin.de 28

The nine rules

1. Understand the system

2. Make it fail

3. Quit thinking and look

4. Divide and conquer

5. Change one thing at a time

6. Keep an audit trail

7. Check the plug

8. Get a fresh view

9. If you don't fix it, it ain't fixed



Lutz Prechelt, prechelt@inf.fu-berlin.de 30

Quit thinking and look: War story

• PC card with slave microprocessor failed sometimes after 
the program upload

memory checksum was incorrect

• Several junior engineers were assigned to fix this
• Their first test: Repeated writes into a register on the 

card microprocessor
result was always correct



Lutz Prechelt, prechelt@inf.fu-berlin.de 31

Quit thinking and look: War story (2)

• Conclusion: Data transfer into the card works alright
• Next step: Understand the system

They analysed the memory interface circuits
They found that its timing design was borderline

• They assumed this was the problem
• They worked out an additional "fix-the-timing" circuit

That took several months!



Lutz Prechelt, prechelt@inf.fu-berlin.de 32

Quit thinking and look: War story (3)

• Result: The card failed just as often as before
• Now a senior engineer stepped in and insisted they first 

see the actual failure
• He hooked up a logic analyser to the memory bus and 

observed the results of repeated writes of the following 
pattern (to subsequent byte addresses): 00 55 AA FF

He sometimes found 00 55 55 AA FF

• So the writes to the card could be duplicate sometimes
He checked the write pulse to the card and found it to have 
noise which sometimes made it look like two pulses

• In the junior engineers "write register" test, this could 
not be observed

Writing the same value twice to the same register is not a 
problem



Lutz Prechelt, prechelt@inf.fu-berlin.de 33

Quit thinking and look: War story (4)



Lutz Prechelt, prechelt@inf.fu-berlin.de 34

Quit thinking and look: Subrules

• Subrule: See the failure
We tend to jump to conclusions when really what we are 
seeing is the consequence of a failure, not the failure itself

• The junior engineers never saw the timing fail

• Subrule: See the details
Looking once is seldom enough
More typically, each looking provides a little more 
information; you will understand the failure bit by bit

• Subrule: Now you see it, now you don't
Seeing the actual low-level failure mechanism 
will be helpful later on when verifying a fix

• Subrule: Instrument the system
Looking from the outside may not be easy or good enough
Build observation aids (instrumentation) into the system



Lutz Prechelt, prechelt@inf.fu-berlin.de 42

The nine rules

1. Understand the system

2. Make it fail

3. Quit thinking and look

4. Divide and conquer

5. Change one thing at a time

6. Keep an audit trail

7. Check the plug

8. Get a fresh view

9. If you don't fix it, it ain't fixed



Lutz Prechelt, prechelt@inf.fu-berlin.de 44

Divide and conquer: War story

• Setting: A server (database machine) in a hotel, 
with 8 Macintosh computers attached as clients

Communication over serial cables

• Problem: Database retrieval had become very slow



Lutz Prechelt, prechelt@inf.fu-berlin.de 45

Divide and conquer: War story (2)

Checks of the technician (in order):
• 1. Guess: There are data transmission problems.

Check found error messages in the communication log

• 2. Guess: No SW changes, so problem is probably HW
Guess: All terminals work, so it's 
probably not them

Oscilloscope check at server port 
found good signals going out to 
the terminals, and 
weak signals coming back

• 3. Checked halfway between there and the Macs: 
At the terminal sockets of the breakout box

Inverse situation: weak signals coming from server, and
strong signals coming from the clients



Lutz Prechelt, prechelt@inf.fu-berlin.de 46

Breakout boxes



Lutz Prechelt, prechelt@inf.fu-berlin.de 47

Divide and conquer: War story (3)

• 4. Checked end of flatband cable (input to breakout box)
Again inverse situation: strong signals coming from server, 
again and weak signals coming from the clients

• 5. Conclusion: The problem must be in the breakout box
Check: Measure resistance of the breakout box 
Result: Resistance is much too high
Consequence: Open the breakout box

• 6. Measure resistance between 
various points.

Found hairline cracks where serial 
connector pins were soldered to 
circuit board



Lutz Prechelt, prechelt@inf.fu-berlin.de 48

Divide and conquer: War story (4)



Lutz Prechelt, prechelt@inf.fu-berlin.de 49

Divide and conquer: War story (5)

• Repair: 
Disconnected all clients and the server
Reheated all spots with a soldering iron
Reconnected all clients and the server
Checked that the clients worked fast again
Only now re-assembled the breakout box:

• Disconnect all clients and server
• Reassemble and reinstall breakout box
• Reconnect all clients and server

• (Subrule: Never reassemble more than absolutely 
necessary before checking that your fix works as 
intended)



Lutz Prechelt, prechelt@inf.fu-berlin.de 50

Divide and conquer: The essence

• "Divide and conquer" is the central rule of debugging
All others are just auxiliary

• Think of it somewhat like binary search:
Of the range of all possibilities, pick one half, 
check it, and then

if the defect is in it: cut it in half again
if not: check the other half!

• if the defect is in it: cut it in half again
• if not: think again what your range is and why

• Let's try: I chose a number between 1 and 100. Guess it.
• Debugging is successive approximation of the cause of a 

phenomenon
Unfortunately, the "range" is not often as obvious as in the 
breakout box example, which even continued:



Lutz Prechelt, prechelt@inf.fu-berlin.de 51

Divide and conquer: War story (6)

• After the breakout box repair, all Macs were working fast 
again – except one (Number 8)

That also had been the slowest of all before

• 1. After another soldering attempt, the technician 
started over by looking at the communication log again

it now showed errors for outgoing data only

• 2. Opened the serial connector plug at the breakout box
the outgoing signal looked OK

• 3. Guess: The problem must be "downstream".
Opened the connector at the client end of that cable.
Found that one of the wires was not even connected.

Cable had 6 wires; only 4 had to be used.
Blue had been connected instead of purple.

• 30 m of cable length induced enough electrical coupling



Lutz Prechelt, prechelt@inf.fu-berlin.de 52

Divide and conquer: The essence (2)

Debugging as binary search for a cause:
• The rules' purpose is

to help understand what the range is
to help understand what useful halfs may be
to pick the more likely half
to simplify the checking
to make sure your check works
to help interpreting the check result
to help you find another range entirely in case you went 
wrong altogether (or have no idea at all)
etc.

• We will come back to this view later



Lutz Prechelt, prechelt@inf.fu-berlin.de 53

Divide and conquer: War story revisited

As neat and clean as the divide and conquer looks
our technician used other rules as well:

• He understood the system
used debug logs, then zoomed in on the hardware part

• He quit thinking and looked
rather than starting to replace lots of hardware
(which probably would have failed miserably)

• He made the system fail frequently
In fact, the regular "I am still here"-traffic between clients 
and server did it for him
But he made sure he really saw the failure (by measuring 
resistance)



Lutz Prechelt, prechelt@inf.fu-berlin.de 58

The nine rules

1. Understand the system

2. Make it fail

3. Quit thinking and look

4. Divide and conquer

5. Change one thing at a time

6. Keep an audit trail

7. Check the plug

8. Get a fresh view

9. If you don't fix it, it ain't fixed



Lutz Prechelt, prechelt@inf.fu-berlin.de 60

Change one…: Audio war story

• A system handling audio data, involving special 
hardware, our own SW, third party SW, and a speaker.

Audio is processed in chunks
Sometimes these chunks are 'framed', sometimes raw

• The resulting audio sounded bad



Lutz Prechelt, prechelt@inf.fu-berlin.de 61

Change one…: Audio war story (2)

• 1. Guess: The engineer suspected that at one point in 
the process framing was missing

• 2. He added framing in the SW at that point
The audio still sounded bad.

• 3. He could not think of other reasons and called in a 
debugging wizard (DW)

DW insisted they tried with simple, known data and 
instrument the SW

• 4. After some work, they could see the data getting 
clobbered and traced the cause to a pointer defect

They fixed the defect and found that the test data got 
through the defect spot unharmed

• 5. They tried real audio and it still sounded bad.



Lutz Prechelt, prechelt@inf.fu-berlin.de 62

Change one…: Audio war story (3)

• 6. They took an hour to reconfirm that their fix would 
really fix the problem

• 7. They went to reconfirm that their test system was 
really running the corrected version of the SW

At this point, the engineer recognized that he had not taken 
out his previous, useless 'fix' that inserted framing
After taking it back out, the system ran perfectly.



Lutz Prechelt, prechelt@inf.fu-berlin.de 63

Change one thing at a time: The essence

• "In debugging, always use a rifle, never a shotgun"
If you change multiple things at once, you learn little about 
the effect of each one

It may be still better to change nothing at all, until you 
really understand what is going on as good as possible:

• Subrule: Grab the brass bar with both hands!
According to legend, nuclear submarines have a horizontal 
brass bar in front of the power station control panel
The engineers are trained to grab 
that bar with both hands when 
any status alarms go off
They have to hold on until they 
have analyzed and understood all 
information presented on the panel

• Overcome the urge to do something



Lutz Prechelt, prechelt@inf.fu-berlin.de 67

The nine rules

1. Understand the system

2. Make it fail

3. Quit thinking and look

4. Divide and conquer

5. Change one thing at a time

6. Keep an audit trail

7. Check the plug

8. Get a fresh view

9. If you don't fix it, it ain't fixed



Lutz Prechelt, prechelt@inf.fu-berlin.de 69

Keep an audit trail: Plaid shirt war story

• Debugging a video compression chip used for video 
conferencing

Setup used live signals from a camera
Target data rate: 30 frames per second; usually possible

• Sometimes, the chip would slow down to 2 fps
and stay there until it was restarted

• The failure cause had nothing to do with uptime
sometimes it failed quickly, sometimes not for hours

• Once the chip did not fail a whole day
The tester considered different room temperature as the 
cause
Tried heating and cooling the chip – no effect



Lutz Prechelt, prechelt@inf.fu-berlin.de 70

Keep an audit trail: Plaid shirt war story (2)

• Then suddenly the tester noted the chip failed just when 
the tester got up from his chair.

• In fact this failure was repeatable
He sat back down, restarted the chip, got up: it failed
It also worked the other way round: restart while standing, 
then sitting down: it failed

• But then why had it not failed all day yesterday?
He had gotten up multiple times then, too

• What might be the actual technical cause?



Lutz Prechelt, prechelt@inf.fu-berlin.de 71

Keep an audit trail: Plaid shirt war story (3)

Solution:
• The tester usually wore plaid flannel shirts
• Yesterday was an exception: plain blue formal shirt
• The chip gave up when it tried compressing a very 

complex signal (the moving plaid pattern)
Lesson:
• The seemingly 

insignificant does
matter!

At least sometimes
But you never know 
when or what



Lutz Prechelt, prechelt@inf.fu-berlin.de 72

Keep an audit trail: Everyday application

• When you have a food allergy, the doctor will make you
protocol

all that you eat and drink (when, what, how much) and 
the symptoms you get (when, what, how much)

• The food list alone is not very useful
• The symptoms list alone is almost useless
• Even both lists together, but without the times, will be

not very useful

• The audit trail must
be complete and detailed about all relevant events
and must correlate events



Lutz Prechelt, prechelt@inf.fu-berlin.de 73

Keep an audit trail: Write it down

• Subrule: Write down what you did, in what order, and 
what happened

Or else your short-term memory will be overloaded
In your head, you cannot analyze for more than your 
current hypothesis or focus – much work will be lost

• Subrule: The shortest pencil is longer than the longest 
memory

Written audit trails can be copied, 
attached to logs, 
forwarded and shown to other people, and 
reproduced weeks later when investigating something else



Lutz Prechelt, prechelt@inf.fu-berlin.de 74

Keep an audit trail: Be specific

Subrule: Be specific!
• e.g. when a program crashes, do not just write down 

"crashed"
Did it produce a proper UI-level error message? Which?
If yes, did it terminate afterwards?
Did it stop with an exception message, stack trace, 
memory dump? Contents?
Did it freeze? In which observable state?

• if more than one machine is involved, always indicate
which one you are talking about

• if a symptom has describable nature, describe it
e.g. size, intensity, color, duration, shape etc.



Lutz Prechelt, prechelt@inf.fu-berlin.de 75

Keep an audit trail: Correlate

Subrule: Correlate events
• Often you have some information in a log and 

other information is directly observed
• Make sure you know where the observations fit into the

log
Time stamps are a good way of doing this
Synchronize clocks as precisely as you can
In particular if multiple machines keep logs

• If you can't, instrument accordingly



Lutz Prechelt, prechelt@inf.fu-berlin.de 79

The nine rules

1. Understand the system

2. Make it fail

3. Quit thinking and look

4. Divide and conquer

5. Change one thing at a time

6. Keep an audit trail

7. Check the plug

8. Get a fresh view

9. If you don't fix it, it ain't fixed



Lutz Prechelt, prechelt@inf.fu-berlin.de 81

Check the plug: Old house war story

• 90 year-old house; most things were present twice
• Heating: Previous owner had added an oil furnace as a 

backup to the primary furnace heated with wood
• The new owner took the wood furnace out of service



Lutz Prechelt, prechelt@inf.fu-berlin.de 82

Check the plug: Old house war story (2)

• Problem: When showering, the water would quickly turn 
cold

• Idea 1: Hot-water pressure drops
Possible solution: A pressure-balanced valve
But such a thing was already in place!

• Idea 2: Not enough hot water available
But the system was instantaneous: It cannot run out of hot 
water, as it heats it just-in-time

• Idea 3: Hot water production temperature not set hot 
enough (at heat exchanger)

But it was set to 60˚C, enough even for the dishwasher

• Solution: Oil furnace was set to only 74˚C rather than
the required 88˚C

Reason: It had been meant as a backup only!



Lutz Prechelt, prechelt@inf.fu-berlin.de 83

Check the plug: Old house war story (3)

Analysis:
• A wrong assumption was at work: 

That the furnace would produce enough heat
• Consequently, the divide-and-conquer approach started

with a range that was too narrow
• The assumption was discovered only when the radiators

also did not work well in autumn
thus pointing to a different kind of problem than previously
considered

• This kind of "foundation factor" is particularly likely to be
overlooked

We are often too deep into details to consider the basics



Lutz Prechelt, prechelt@inf.fu-berlin.de 87

The nine rules

1. Understand the system

2. Make it fail

3. Quit thinking and look

4. Divide and conquer

5. Change one thing at a time

6. Keep an audit trail

7. Check the plug

8. Get a fresh view

9. If you don't fix it, it ain't fixed



Lutz Prechelt, prechelt@inf.fu-berlin.de 89

Get a fresh view: Brake light war story

• A car blew the fuse of the brake lights whenever you put
the transmission into reverse gear

• Several attempts made it clear that this was repeatable
• Reason???
• Owner mentioned the problem to somebody familiar with

repairing this brand of car
• Immediate answer: "The dome light is pinching a wire

against the
frame of the car. 
Insulate that
wire and you
will be fine."



Lutz Prechelt, prechelt@inf.fu-berlin.de 90

Get a fresh view: What would have happened?

What would have happened if one had applied only the
other rules:

• Understand the system
Obtain(!) and study car wiring diagrams

• Make it fail ; Quit thinking and look
He did this alright

• Divide and conquer
Rip out the car's wiring in parts?
Or obtain measurements throughout the wiring?

• Check the plug
There was no assumption that could be questioned



Lutz Prechelt, prechelt@inf.fu-berlin.de 95

Get a fresh view: Subrules

• Subrule: Don't be proud
Asking someone is not a sign of weakness (if you've done
your part before), but rather of good judgement

• Subrule: Do not assume you are an idiot and the expert
is a god

Mistrust expert judgement just like your own

• Subrule: Report symptoms, not theories
or you would reduce your chances of getting new insight
And if you are the helper: Don't get poisoned. Cover your
ears and loudly sing LA-LA-LA-LA-LA.

• Subrule: Include observations you have not understood
If it is confusing for you, it may be just where somebody
else can help



Lutz Prechelt, prechelt@inf.fu-berlin.de 96

The nine rules

1. Understand the system

2. Make it fail

3. Quit thinking and look

4. Divide and conquer

5. Change one thing at a time

6. Keep an audit trail

7. Check the plug

8. Get a fresh view

9. If you don't fix it, it ain't fixed



Lutz Prechelt, prechelt@inf.fu-berlin.de 98

If you don't fix it, …: Used car war story

After buying a used car:
• Event 1: While going up a hill, suddenly the engine

stopped
After stopping in the breakdown lane, the motor started
again at the first attempt
During the slow drive up the rest of the hill, the car did not
fail again

• Event 2: After filling up at a dubious little gas station on 
a bitter-cold day, the engine stopped again while going
up a hill

Again, it started again at the first attempt
Driver thought: Maybe water in the fuel line. Applied
drygas spray.



Lutz Prechelt, prechelt@inf.fu-berlin.de 99

If you don't fix it, …: Used car war story (2)

• Event 3: Engine stopped while driving fast on a perfectly
flat road

Did not start on first attempt; but did start on the second

• Experimentation found that the engine would stop after
going at more than 80 km/h for some short while

• Driver took the car to a repair shop
They replaced some wires and told him it was an electrical
problem. Cost: 75 Dollars.
The car failed again the next day; just as before

• Idea: Maybe the carburettor does not receive enough
fuel in high-load situations?

Get a fresh view: Asked a colleague at work. 
Answer: "Dirty fuel filter.".
The repair cost 50 cents.



Lutz Prechelt, prechelt@inf.fu-berlin.de 100

If you don't fix it, …: Subrules

• Subrule: Check that it's really fixed
You made it fail before, did you? Try again.

• Subrule: Check that it's really your fix that fixed it
After checking that it was fixed, take out your fix and make
it fail
Note: Sometimes this is unecessary, too risky, or too
cumbersome

• Subrule: It never just goes away by itself
If it stops failing without a proper fix, put in 
instrumentation to understand the failure next time
or analyze the differences to the failing version if you can

• Subrule: Fix the cause
Look behind the first-level cause of the failure and try fixing
its root cause.



Lutz Prechelt, prechelt@inf.fu-berlin.de 103

The nine rules: Summing up again

1. Understand the system

2. Make it fail

3. Quit thinking and look

4. Divide and conquer

5. Change one thing at a time

6. Keep an audit trail

7. Check the plug

8. Get a fresh view

9. If you don't fix it, it ain't fixed



Lutz Prechelt, prechelt@inf.fu-berlin.de 113

Small virtual debugging exercise

• Assume you move into a rather old house
• On the first day, your partner comes and tells you s/he 

tried to use the vacuum cleaner, but
when s/he switched it on, it did not start. 
Instead, the room lights turned on.

• What do you do?

• Now I am the house.
• Debug me!



Lutz Prechelt, prechelt@inf.fu-berlin.de 114

Solution to the exercise



Lutz Prechelt, prechelt@inf.fu-berlin.de 116

Summary: The nine rules

1. Understand the system

• even if that is hard

2. Make it fail

• even if that is hard

3. Quit thinking and look

• even if you think you know 
what is the matter

4. Divide and conquer

• and do not jump to 
conclusions

5. Change one thing at a time

• Even if it seems too simple

6. Keep an audit trail

• in writing!

7. Check the plug

• at least after a while

8. Get a fresh view

• at least after a while

9. If you don't fix it, it ain't
fixed

• so fix it and make sure



Lutz Prechelt, prechelt@inf.fu-berlin.de 117

Thank you!


