
Software-/Programmierpraktikum WS07
Abalone

Nicolai Kamenzky, Christopher Oezbek, Olufemi Rosanwo, Jan Siwy
{kamenzky, oezbek, rosanwo, siwy}@inf.fu-berlin.de

Institut für Informatik
Freie Universität Berlin

Berlin, Germany
http://www.inf.fu-berlin.de/inst/agse/

February 2007

Version 1.1

Abstract

This document contains the requirements for the game client to be built by the participants of the
software/programming laboratory class winter term 2007. The two player game to implement is called
Abalone and is played on a hexagonal playing field. The client is to be written within 3 weeks by a
team of 10 people. The homepage of the class can be found at projects.mi.fu-berlin.de/w/bin/view/SE/
ProgrammierPraktikum2006. This document is written in English as an additional challenge for the
class.

http://projects.mi.fu-berlin.de/w/bin/view/SE/ProgrammierPraktikum2006
http://projects.mi.fu-berlin.de/w/bin/view/SE/ProgrammierPraktikum2006

Contents

1 Introduction 3
1.1 Theme/purpose of the Abalone Game Client . 3
1.2 Requirements priorities and notation . 3
1.3 Definitions and Terms . 3

2 Functional requirements: Use Cases 5
2.1 Sign-Up and Configuration . 5
2.2 GASP compliant network client . 5
2.3 Offline play . 5
2.4 Artificial Intelligence Autoplay . 6
2.5 Playing online . 6
2.6 Saving and Loading a Match . 7
2.7 Replay . 7

3 Non-functional requirements 8
3.1 User interface & Usability . 8
3.2 Platform compatibility . 8
3.3 Scalability & Session timeout . 8
3.4 Persistence . 9
3.5 Programming style & License . 9
3.6 Website . 10

4 Rules for development 11
4.1 What is allowed . 11
4.2 What is not allowed . 11
4.3 Requests for Clarificiation and Updates . 12
4.4 Final Delivery . 12

5 Clarification and Updates 13

2

1 Introduction

1.1 Theme/purpose of the Abalone Game Client

The Abalone game client is supposed to be a simple gaming application which allows users to play
the game Abalone both off- and online against other players and artificial intelligences. For playing
online, the client implements the GAme Server Protocol (GASP) which is specified in a separate
document and can be found on the homepage.

1.2 Requirements priorities and notation

The requirements described in this document are categorized into three different priority levels and
each requirement is marked accordingly:

MUST marks an essential requirement. Unless all MUST-requirements in all MUST use cases are MUST
implemented, the system is considered inacceptable.

SHOULD marks an important requirement. If some of these requirements are not implemented, the SHOULD
system is considered incomplete, but acceptable.

MAY marks an optional requirement. These requirements are considered nice-to-have but need not MAY
be implemented when time is short or if their cost-benefit ratio is considered too high.

Each requirement is marked by exactly one of these three terms, followed by a subscript number that
is the unique reference number of that requirement (also repeated in the margin).

If a compound requirement (a use case) is marked MUST, SHOULD or MAY, it will be considered
realized only if all of the MUST requirements contained in it are realized. It does not mean that all of
its subrequirements must be realized.

Phrases in italics in the use cases below are references to further use cases, the corresponding section
number is appended in parentheses as a hyperlink.

1.3 Definitions and Terms

The following terms are used in this requirements document with a specific meaning:

• A client is short for client application and refers to a piece of software running on the machine
of a user with the possibility to connect to a server.

• A user is a human being using an application.

3

1 Introduction

• A server is short for server application is a piece of software running at a remote site and
handling the interaction of several clients.

• A player is a user that is playing a game.

• A team is a set of students within this class that have to implement the client.

• The organizers refers to the Übungsleiter and tutors for this class.

• A match is an instance of a game.

• A dialog is a window presented to the user that either asks for input or informs him/her about a
problem/state/etc.

4

2 Functional requirements: Use Cases

The following main scenarios exist:

• The user configures the application and possibly creates a user account (2.1) before connecting
to the server (2.2) and playing online (2.5).

• The user plays offline against other players, an artificial intelligence or watches two AI players
play against each other (2.3) .

• The client is run in autoplay mode (2.4).

• The user saves a match and loads it later on in offline mode (2.6).

• The user looks at a saved match in replay mode (2.7).

2.1 Sign-Up and Configuration

MUST1 M 1
The client MUST2 have a dialog to configure the server used to connect to, MUST3 have a dialog M 2

M 3for signing up a new user account with the server, and MUST4 have a dialog to configure the user to
M 4connect with.

2.2 GASP compliant network client

The client MUST5 have a full implementation of the GASP-protocol as specified in GASP.txt which M 5
can be found on the homepage.

2.3 Offline play

MUST6 M 6
The user must be able to play offline against another player (so-called “Hotseat” mode because both
players switch back in front of the same computer, MUST7), play against an AI (MUST8) or watch M 7

M 8two AIs play against each other (MUST9). It must be possible to save the currently ongoing match
M 9(see 2.6). If two artificial intelligences are playing against each other, it MAY10 be possible to pause
m 10the match and it MAY11 be possible to step the match (i.e. the next AI will execute a single move and
m 11then the match is paused again).

It MUST12 be possible to decide which player has which color (with Abalone white always begins M 12

5

2 Functional requirements: Use Cases

the match).

The following requirements also must be implemented for 2.5 (playing onlilne): The users MUST13 M 13
be able to see the current number of stones captured by both players, MUST14 be able to see whichM 14
player’s turn it is, MUST15 be able to see the current board and after the match is over, MUST16 beM 15

M 16 able to see who won the match.

2.4 Artificial Intelligence Autoplay

MUST17M 17
It MUST18 be possible to start the client in artificial intelligence autoplay mode using the followingM 18
command line string:

<app> autoplay <server:port> <user> <pass> [<# of matches>]

The client MUST19 then connect to the server using the provided credentials, and MUST20 play by us-M 19
M 20 ing the AUTOPLAY command of the GASP protocol (and following the defined sequence afterwards).

After finishing a match, the player MUST21 directly start another match (again using AUTOPLAY)M 21
until the given number of matches is reached.

After the client has played the matches, it MUST22 output each match played in the format given inM 22
the Abalone specification (Abalone.txt) to standard output. The client then MUST23 output aggregateM 23
statistics about the matches played containing number of matches won, lost, that ended in error and
the total number of matches played.

To play in a tournament the autoplay command-line mode also MUST24 accept that the number ofM 24
matches parameter is ommitted. In this case the client MUST25 play indefinitely (using the AUTO-M 25
PLAY command) until it is sent the BYE command by the server after a match.

The client SHOULD26 make use of the ‘resume match’-feature of the GASP-protocol for instanceS 26
when the connection to the server was lost or the client crashes (this is highly recommended since the
client must not assume a reliable connection / server).

The client SHOULD27 open a graphical user interface that SHOULD28 show the currently ongo-S 27
S 28 ing match and SHOULD29 display statistics about the results of the previous matches. The user
S 29 SHOULD30 be able to cancel the autoplay in progress. The client MAY31 provide a way to start the
S 30
m 31

autoplay mode from the GUI in addition to the command-line.

2.5 Playing online

MUST32M 32

If the user wants to play on the server, the client MUST33 provide a way to connect and SHOULD34M 33
S 34 have an indicator about the status of the connection. The client then MUST35 display to the user a
M 35 list of all users currently available to play against on the server (refreshed every 15 to 60 seconds). It

MUST36 be possible to ask these users to play a match, and it MUST37 be possible to accept or rejectM 36
M 37 such a request by another user. Playing online against another user follows the same Abalone rules as

on a single machine. The client SHOULD38 provide the possibility to reconnect to a interrupted matchS 38
(for instance because of a lost internet connection) and MUST39 provide the possibility to answer theM 39

6

2.6 Saving and Loading a Match

request to resume a interrupted match. The user MUST40 the possibility to resign from a match andM 40
MUST41 the possibility to disconnect from the server. M 41

2.6 Saving and Loading a Match

MUST42 M 42

It MUST43 be possible for the user to save a match that is currently on-going at any time (i.e. during M 43
the match or after the match is done) to disk using the match-format described in the Abalone.txt
file. It MUST44 be possible to load a stored match that has not been finished, even if created with a M 44
different client but in conformance to the format definition, and resume the match in off-line mode
against an artificial enemy or using the hotseat mode. Games that are stored after they have finished
are only interesting for the replay feature described in 2.7.

2.7 Replay

MAY45 m 45

It would be a nice feature if the client supports loading any match in replay mode. It MUST46 be M 46
possible to step through the match move by move, rewind to the start (MUST47) and go to the end M 47
(MUST48). It MAY49 be an interesting feature for AI developers to take a stored match and go to a M 48

m 49specific move in the match and then let the artificial intelligence make a next move (to see if it comes
up with a better response now).

7

3 Non-functional requirements

3.1 User interface & Usability

The user interface MUST50 conform to the above-mentioned requirements (as far as they are realizedM 50
at all) in a sensible way with respect to the arrangement and markup of the user controls, views, labels,
prompts and explanations that guide the user. Within those limits each group is free to organize and
design the interface as seen appropriate.

The user interface SHOULD51 provide sufficient explanation of all uncommon concepts to guide aS 51
user who does not have prior knowledge about these topics, for instance as how to play the game,
save and load matches, etc. Make use of external links where needed. You MUST52 not includeM 52
copyrighted material without permission of the copyright holders. All copyrighted material that you
do use (for instance material under a software license that is compatible with yours) MUST53 beM 53
mentioned in the about dialog.

The user interface SHOULD54 match general usability guidelines and be simple to use. The userS 54
interface certainly MAY55 be fancy, creative or special, just make sure that you cover the MUSTsm 55

first.

Error handling of the application SHOULD56 be nonintrusive to the user, i.e. that only those messageS 56
should be displayed to the user that are important and cannot be handled by the application itself.

3.2 Platform compatibility

The client MUST57 work fully under Linux and Windows. The client MUST58 provide webstartM 57
M 58 functionality if supported by the programming language and platform. It MUST59 be possible to
M 59 install and run the client on a machine on which the user does not have admin rights (installation may

be local for the user in this case).

3.3 Scalability & Session timeout

The GUI client MUST60 run at acceptable speed (comparable to other GUI applications) on an averageM 60
PC with more than 1 GHz and 512 MB of RAM.

The artificial intelligence MUST61 support a mode where it returns a move within 10 seconds (for theM 61
tournaments). In (non-tournament) autoplay mode on the server, the artificial intelligence MUST62M 62
return a move within 30 seconds. For offline play, the artificial intelligence SHOULD63 return a moveS 63
within 10 to 30 seconds.

If the connection to the server is lost, the client MUST64 reconnect within 60 seconds to prevent losingM 64

8

3.4 Persistence

the match. If the server is restarted, clients MUST65 try to reconnect every 60 seconds. If a client doesM 65
not reconnect within 5 minutes after server-startup the match is lost in autoplay mode. The number of
resumes and time-violations is limited to 10 per match. A time-violation occurs if the client requires
more than 3 seconds longer than the given deadline or a multiple of the deadline (on a 10 second time
limit, a violation occurs at 13 seconds, 23 seconds, 33 seconds ...).

3.4 Persistence

The following information must be stored persistently:

• All connection information like username, password and server setting (MUST66). M 66

• Information necessary to resume an interrupted match (MUST67). M 67

3.5 Programming style & License

Both all identifiers and all comments in the source code and helper files MUST68 be either completely M 68
in English OR German. The group should make a decision about this at the beginning of the project.

Prior to commit to the version repository the source-code MUST69 be formatted using the Eclipse M 69
standard format options (in a Java editor do right-click, Source, Format).

The project must contain user documentation (how to run, install, uninstall, use the application,
MUST70) and developer documentation (how to check-out, build, develop and create a new release, M 70
MUST71) in a top-level folder called docs. M 71

Each non-trivial public program element (such as a method) MAY72 be documented (purpose, us- m 72

age) and every source code file SHOULD73 be documented at least globally (purpose, usage, role in S 73
design).

The project MUST74 be licensed under an OSI certified Open Source license. It SHOULD75 be M 74
S 75licensed under the GPLv2. All source code project files MUST76 bear the license header of the chosen
M 76license (for the GPL you can find this information at the bottom of the license http://www.gnu.

org/licenses/gpl.txt) and the associated copyright. It is recommended to make this choice
at the beginning of the project and modify the templates for source code files in the IDE accordingly.

If you include third party material you MUST77 ensure that you do not violate copyright restrictions M 77
and you MUST78 mark all such third party material by using the name of the original authors and a M 78
sentence that declares that this was not your work.

Each member of the group SHOULD79 commit code to the repository using his or her own splineforge S 79
handle, pair programming being the only reason that this is a SHOULD and not a MUST. Groups in
which only one or two developers write all the code will not be tolerated.

All programming artifacts MUST80 be written in the Java programming language using a JDK version M 80
1.5 or below (unless it is specifically permitted by the organizers to do otherwise).

9

http://www.gnu.org/licenses/gpl.txt
http://www.gnu.org/licenses/gpl.txt

3 Non-functional requirements

3.6 Website

Each group MUST81 have a representative website with at least the following content:M 81

• Possibility to download source code (SHOULD82) and binaries (MUST83).S 82
M 83

• Link to bug-tracker (MUST84), repository (MUST85), mailing-list (MAY86), user documenta-M 84
M 85
m 86

tion (MUST87), etc.

M 87
• List of all developers, their contact-details and responsibilities (MUST88).

M 88 • Screenshots of the application (MUST89).
M 89

• A link to the website of the class (MUST90).M 90

10

4 Rules for development

4.1 What is allowed

During the three weeks of the class you may:

• Use any tool, library, framework, and other software you find helpful to write the software
described above unless it is Abalone specific, which is not allowed.

• Discuss with all other participants about the requirements, solutions and implementation possi-
bilities.

• Use any development process you deem useful as long as you keep to the daily stand-up meet-
ing.

• Ask the organizers any question you like regarding the requirements, priorities, implementation
possibilities, technical and managerial problems (see 4.3). We are there to help you.

4.2 What is not allowed

During the contest you must not:

• Disturb other teams in their work.

• Attack or sabotage the development of other teams, the webserver or the game server. If you
suspect vulnerabilities you are encouraged to publically disclose them on the mailing-list.

• Include work products (code, documentation, etc.) from other teams in your solution without
explicit permission unless the code is publically posted in either the forum or the mailing-list,
you mark the sections in your solution appropriately (“The following code was taken from the
email by ... on Monday, the ”... “End Included Code”) AND the total length of third party
source code (excluding source-code of precompiled binaries from outside the class) does not
exceed 5% of the total number of formatted source code lines. If in doubt, check with the
organizers.

Teams which are in violation of one of these points risk losing their certificate for the class.

11

4 Rules for development

4.3 Requests for Clarificiation and Updates

If problems arise with this specification or any of the sub-documents you should contact the organizers
directly or even better using the mailing-list so that everybody benefits from uncertainties found.

We will happily answer questions regarding clarification of the meaning of requirements (but beware:
if our advice and this document should ever be in conflict, it is this document that is relevant for the
grading, not the advice). The organizer team will discuss with you questions regarding requirements
priorities or regarding which of two concrete solution ideas would be better anytime, but prefer if this
discussion takes place during the technical sessions, the forum or mailing-list.

We will issue clarifications to the mailing-list and post new document versions on the homepage if
necessary, so make sure that you are subscribed to the mailing-list.

4.4 Final Delivery

You are allowed to finish your development at any time you think appropriate, but no later than tuesday
13.03.2007 midnight 16:00.

Send an email to {oezbek, siwy, rosanwo, kamenzky}@inf.fu-berlin.de containing the following and
complying with the following requests:

1. The version number of the SVN repository that we should consider to be the final one.

2. A url to the website where users can download your application, report bugs, look at screenshots
etc.

3. A copy of the developer documentation mentioned in 3.5.

4. All members of your team SHOULD91 participate in the Lehrevaluation at Institute für Infor-S 91
matik. Tokens will be emailed to you within the last week of the laboratory class and should be
used by 18.03.2007. If you want to give personal or direct feedback, please feel free to stop by
in room 008 or email oezbek@inf.fu-berlin.de. Thanks!

5. YOU ARE DONE. Go and sleep or party or bang your head against a wall — whatever you feel
most like doing. We hope you had fun!

12

5 Clarification and Updates

• Version 1.0 - 19.02.2007 - 12:00 - Initial Release

• Version 1.1 - 26.02.2007 - 14:47 - Documentation Clarification

– All identifiers and comments in the source code and helper files must be either in English
OR German is relaxed to the following interpretation: You can either have (1) both the
comments and identifiers in English or (2) both in German or (3) the identifiers in English
and the comments in German or (4) the comments in English and the identifiers in German.

13

	Introduction
	Theme/purpose of the Abalone Game Client
	Requirements priorities and notation
	Definitions and Terms

	Functional requirements: Use Cases
	Sign-Up and Configuration
	GASP compliant network client
	Offline play
	Artificial Intelligence Autoplay
	Playing online
	Saving and Loading a Match
	Replay

	Non-functional requirements
	User interface & Usability
	Platform compatibility
	Scalability & Session timeout
	Persistence
	Programming style & License
	Website

	Rules for development
	What is allowed
	What is not allowed
	Requests for Clarificiation and Updates
	Final Delivery

	Clarification and Updates

