
The essence of
"Pragmatic
Programmer"
A heavily paraphrased summary of the book
Andrew Hunt, David Thomas: The Pragmatic
Programmer: From Journeyman to Master,
Addison-Wesley Professional 1999 (321
pages)
(Lutz Prechelt, 2013)

Ch. 1: A Pragmatic Philosophy
"Pragmatic Programmers […] think beyond
the immediate problem, always trying to
place it in its larger context, always trying to
be aware of the bigger picture." They think
critically.
They take responsibility for everything they
do, refuse doing it if they cannot, and have
no fear of appearing weak or incompetent.
If something goes wrong, they act
constructively and offer options, not excuses.
When they see how things ought to be, they
work as catalysts to make it happen (e.g.
using the stone soup trick).
They understand the context in which they
work and so understand what is sufficient:
What makes good-enough software. They
explicitly trigger requirements discussion on
quality levels.
But they will immediately repair (or at least
board up) any "broken window" they find:
anything in the software that is not clear and
orderly.
They keep learning explicitly all the time and
also continually strive to become better at
communicating and understanding their
audience. They treat learning like financial
investment, with notions of diversification,
making both low-risk and high-risk
investments, buying low and selling high, and
rebalancing the portfolio.

Ch. 2: A Pragmatic Approach
There are some ideas how to approach
software development that apply at many
different levels and in any software
development domain:

7. "Every piece of knowledge must have a
single, unambiguous, authoritative
representation within a system.", or shorter:
Don't repeat yourself (DRY).
Some duplication may seem unavoidable (e.g.
because the same thing must be expressed in
more than one notation), sometimes it
happens because of inattentiveness or
laziness of one developer or because several
people introduce the same knowledge
independently, but all of these types can be
avoided: e.g. by code generators, by
recognizing that duplication will usually
become costly later on, by making modules
easy to reuse, and by a sound software
architecture and strong communication.
8. Orthogonality: Eliminate effects of one
thing onto an unrelated thing. This will make
changes local, make parts testable
individually and more reusable, make the
overall system more robust. Even team
members can be more or less orthogonal to
each other. Also, avoid relying on things you
cannot control. Use refactoring to constantly
move towards more nearly orthogonal code.
Testing and bugfixing provide good indicators
of successful orthogonality: Can you easily
write tests that test only a single module?
Does fixing a bug usually involve a single file
only? Then the system's orthogonality is high.
9. Reversibility: There are no final decisions.
Make sure that reversing a decision is cheap.
Introducing suitable abstractions goes a long
way for that.
10. Tracer Bullets: Write your system in such
a way that your code helps to find out quickly
and easily how close to the target you are –
and (unlike prototyping) supports getting
closer. The actual solution must be
operational long before it is fully functional:
to provide something to show the users, to
provide an architecture and integration
platform for the developers, and to provide a
definite measure of progress.
11. Prototypes: Prototypes are vehicles for
understanding a few particular aspects of a
system, e.g. of visual design, a workflow, a
critical performance issue, or the behavior of
some technology. They are built in the
cheapest possible manner (which needs not
involve program code) and are thrown away
after the question is solved, because they are
about the lesson learned only. Make sure
everybody involved understands they will be
thrown away.
12. Domain-specific languages: Program close
to the application domain. Use domain

http://en.wikipedia.org/wiki/Stone_soup

vocabulary at least. If domain experts use
unambiguous language, emulate its
semantics and perhaps also its syntax (either
for specification only or even in executable
fashion). Consider different mini-languages
for different types of users. There can be
mere data languages (often using rather
simple formats), executable languages, or
metaprogramming (generating or
manipulating parts of the application).
13. Estimating: Make it a habit to estimate
how large things are going to be: Memory
requirements, disk space requirements,
bandwidth requirements, run times,
development times, event frequencies (both
at run time and in the development process)
and so on. This avoids surprises.
Consider the accuracy required and use
suitable units. Draw on the experience of
others if possible. Make assumptions explicit.
Build models. If the estimate is difficult but
important, produce multiple estimates with
different approaches. For project estimates,
that very same project can be a source of
estimation knowledge if incremental
development is used. When asked for an
estimate, answer "I'll get back to you" and
take your time.

Ch. 3: The Basic Tools
Every craftsman needs high-quality tools.
Their skilled use improves only over time but
you should still constantly look for better
tools, too.
14. Plain text: Our material is knowledge, its
best representation is human-understandable
structured or semi-structured plain text,
because that is best for analysis and
manipulation (except sometimes when small
size and high processing speed of binary
format prevails), is most interoperable, does
not become obsolete, and is best supported
by tools.
15. Shell: The shell is to a programmer what
a work bench is to a woodworker: The center
of work. GUI tools are just too inflexible to
make the shell obsolete. On MS Windows, use
Cygwin.
16. Editor: Know one editor really well; it
should be multi-platform, extensible, and
programmable.
17. Version control: Is required to undo
multiple days of changes when needed, to
find out who changed what when, to measure
the amount of change over time, to find
hotspots of change, to automate builds, etc.

Use it for all development (even throw-away
stuff) and version all relevant files, not only
source code.
18. Debugging: Debugging is just problem
solving; treat it as such.
• Focus on the problem, not on blaming.
• Don't panic. Think.
• Fix the cause of the failure, not its

symptoms.
• Fix any compiler warnings first. Reproduce

the failure then (get help if you cannot)
and automate the reproduction.

• Preferably use a good debugger program
with data visualization capabilities.

• Use binary search to narrow problems
down.

• Use tracing/logging where the debugger
does not work well and use or make
software that helps to wade through the
tracing output.

• Explain partial insights to someone else to
complete them.

• Suspect your project's code first, not
compilers or external libraries, but
changes to those (or the OS) may break
your code without you doing anything.

• Don't assume, check.
• Once you found the problem, add the test

that would have caught it and look for
further similar problems. If the failure
happens far away from the defect, add
more integrity checks to the code.

• If the defect was due to a
misunderstanding, make sure to clear that
up with the author and find a way to avoid
similar misunderstandings in the future.

• If debugging took long, reflect why.
19. Text manipulation: Learn Python, Ruby,
or Perl for sifting through and processing
plain text. Use it for automating many things.
20. Code generators: Write code that writes
code, either for subsequent manual editing
(passive generators: for convenience; the
code needs not be complete or perfect) or for
immediate use (active generators: for
following the DRY principle).

Ch. 4: Pragmatic Paranoia
You cannot write perfect software. Therefore,
do not waste energy trying; be pragmatic.
Code defensively: Don't trust the code and
data of others -- nor your own!
21. Design by contract: Specify preconditions
and (simplified) postconditions explicitly.
Perform run-time checking for them, using
assert if you have nothing else or using a

stronger mechanism (that includes
inheritance and object invariants) if available
for your language. Preprocessors tend to be
messy.
22. Crash early: Check many things that
"cannot happen" or absolutely must not
happen and crash the program if they
happen.
23. Assertions: Check many things that
"cannot happen" or absolutely must not
happen and do not be intimidated by the
runtime overhead prematurely. Turn off only
those assertions that are really too slow.
Make very sure your assertions have no side
effects.
24. Exceptions: Use exceptions to free the
code from too much intermingled problem
handling in order to make the main execution
path clearly visible. Use exceptions for
unwanted conditions that are at least
somewhat surprising, not for fully regular
ones.
25. Resource management: Whenever you
can, "finish what you start", i.e. the routine
that allocates a resource should be
responsible for deallocating it. Deallocate in
the opposite order of allocation. Use standard
allocation orders to avoid deadlock. Wrap
resource use in classes so the destructor can
clean up left-over resources. In Java, finally
is your friend for cleaning up reliably. Where
"finish what you start" is not applicable, the
resource should become part of some
container that is responsible for deallocation.

Ch. 5: Bend or Break
The world changes constantly, so code must
be flexible, too.
26. Decoupling and the Law of Demeter:
Couple your classes to no more other classes
than reasonably necessary: your instance
variables, method arguments, and new local
objects (the Law of Demeter). Have those
objects perform a complete service for you
rather than giving you an object with which
you can perform the service. This will require
many delegation-only methods, though.
27. Metaprogramming: Provide many
configuration option to avoid change
programming. Put abstractions in code,
details in metadata. If you drive this far
enough, you may even be able to implement
different systems using the same application
engine, just with different metadata. Business
rules and workflows are good candidates for

business data. Great applications can change
them even without requiring a restart.
28. Temporal coupling: Design for maximal
concurrency, avoid introduce unneeded
ordering constraints on steps. This may help
your design quality, too, e.g. because you
may ask yourself why that global variable
that you now need to lock exists at all.
29. Events and views: Event-based control is
a good decoupling mechanism, e.g. in a
publish/subscribe (observer) structure. In
particular, separate views from models, e.g.
in a model-view-controller (MVC) structure,
whether in the context of GUIs or elsewhere.
You can stack them: One structure's view
becomes the next-higher structure's model.
30. Blackboards: An even stronger form of
decoupling, where only data structures (or
objects) are shared but no call coupling is
explicit is a blackboard storage (tuple space,
e.g. JavaSpace), asynchronous and possibly
transactional, were events are created by the
fact that an object with certain properties
appears in the storage (written by some other
participant). Often combined with rules
engines to coordinate workflows.

Ch. 6: While You Are Coding
31. Programming by coincidence: To make
sure your program works tomorrow, you must
thoroughly understand why it works today. If
you don't, your code may be slow, confusing,
only partially correct, error-prone to change,
and prone to collapse if the objects change
that it is calling. Know what you are relying
on. Don't rely on anything you need not rely
on.
32: Algorithm speed: O-Notation and runtime
complexity classes. Complexity estimation
rules-of-thumb. Estimate. Then test your
estimates. Be pragmatic about algorithm
choice.
33. Refactoring: Building SW is more like
gardening than like construction; a constant
process of monitoring and care. Regularly
refactor your SW to push back duplication,
non-orthogonal design, outdated knowledge,
and performance degradation. Refactor early,
refactor often – and avoid telling your clients
you do it. Make small steps and do not
change functionality at the same time. Have
automated tests to safeguard your changes.
34. Code that's easy to test: Write automated
tests for each module that test against its
contract (self-testing code). Use assertions in
the code. Test lowest-level modules first and

higher-level modules later (to simplify defect
localization). Co-design code and its tests.
Store the test code close to the module code.
Tests also serve as documentation. Use a test
harness. Do not throw away the ad-hoc tests
you invented during debugging. Make sure
you can test your software during production,
too. Log files and semi-official debugging
console windows or built-in webservers are
helpful. Establish a standardized test culture
(as e.g. on the Perl platform).
35. Evil wizards: If you use a Code
Generation Wizard, make sure you
understand the code produced, because it will
be interwoven with your application.

Ch. 7: Before the Project
36. The requirements pit: "Requirements
rarely lie on the surface. Normally, they’re
buried deep beneath layers of assumptions,
misconceptions,and politics." Identify policies
(e.g. access privilege rules) that come as part
of requirements and expect them to be
volatile; make them configurable. Identify
user interface details that come as part of
requirements and initially treat them as
manner of speaking only. Understand and
document why users want certain things, not
just what. To understand the domain, become
a user yourself for a week – it helps build
trust and rapport, too. To document
requirements, use a suitable Use Case
format. Do not overspecify, stick to what's
strictly needed. Track all requirements
changes to avoid creeping featurism. Maintain
a glossary and stick to those terms. Use
hypertext and internally publish the
requirements.
37. Solving impossible puzzles: The key to
coping with seemingly impossible problems is
discriminating real constraints from perceived
ones. Are you even solving the right problem?
Then, enumerate all conceivable (not:
possible) routes and carefully explain for each
why it cannot work. Find your weak
arguments: There are your possibilities.
38. Not until you're ready: Don't start as long
as you have doubts, but start when you are
ready. How to discriminate real doubts from
mere procrastination? Prototyping will often
reveal the problem behind your doubts or
quickly get you to readiness.
39. The specification trap: Don't write highly
detailed specifications.
40. Circles and arrows: Don't become a slave
to formalized methods. Beware of

requirements specification notations your end
users do not understand, beware of developer
overspecialization, beware of methods that
restrict the flexibility of your designs (e.g.
regarding the use of metadata for configuring
behaviors). Never underestimate the learning
cost for a new method. Each method should
be a tool in your toolbox, selected and used
when appropriate and its use constantly
refined.

Ch. 8: Pragmatic Projects
41. Pragmatic teams: All the above advice
applies even more strongly at the team level.
Teams must not accept broken windows,
must constantly look out for deteriorating
conditions, avoid duplication. A team should
create a brand for itself and communicate
consistently to the outside. Appoint topic
experts. Use groupware. Communicate and
discuss lively within the team. Organize
around functionality, not job roles. Isolate
sub-teams from each other by design by
contract, Law of Demeter, orthogonality. Even
good teams need a technical head and an
administrative head, larger ones also a
librarian and a tool builder.
42. Ubiquitous automation: Avoid manual
procedures. Automation is more efficient,
more consistent, and more accurate. Use
scripts (such as buildfiles) to automate
routines and cron to automate even their
occurrence. Apply this even to tasks with
manual aspects in them, e.g. by manually
annotating code with "needs review" and then
automating the review management only.
43. Ruthless testing: Test early, test often,
test automatically. Use unit tests to catch
local defects and integration tests to catch
non-local ones. A good project may have
more test code than production code. Besides
functional testing there are requirements
validation tests(*), error-and-recovery tests,
performance tests, load tests, usability
tests(*), and others. Except for (*), they are
automatable: automate them. Use artificial as
well as real data. Avoid testing at the GUI
level much. Test your tests by planting
defects intentionally and see how many are
caught. Assess your tests' coverage,
preferably state coverage, not just code
coverage. Add an automated test for it when
you manually found a defect.
44. It's all writing: Treat documentation as an
integral part of your project. Apply all the
other principles: Treat English as just another
programming language, avoid duplication,

automate, etc. Code comments should
explain WHY something is done and anything
else that is not obvious. Consider generating
code or operations from documents, not just
the other way round. Prefer documentation
based on plain text formats (e.g. DocBook)
over complex word processor formats.
45. Great expectations: In reality, project
success means to fulfill the users'
expectations; some of them too high, others
too conservative. Understand and then groom
and manage these expectations. Avoid big
surprises but try to surprise and delight them
a little: go the extra mile.
46. Pride and prejudice: Sign your work. This
guards against sloppiness. Collective code
ownerships works well in XP (because of pair
programming) but is problematic elsewhere.
But don't become territorial either.

Further material
The book contains a quick reference guide
with a three-line summary of each of the 70
tips contained in the book.
The guide also provides 11 short, itemized
checklists representing criteria embedded in
some of the tips.
The book contains a number of exercises
(with solutions in an appendix).
It suggests a number of books for reading
and explains why. It suggests becoming a
member of ACM and IEEE (and perhaps a
national association) and reading several
specific ones of their magazines.
It recommends a number of specific tools [but
that list is fairly dated by now].

	Ch. 1: A Pragmatic Philosophy
	Ch. 2: A Pragmatic Approach
	Ch. 3: The Basic Tools
	Ch. 4: Pragmatic Paranoia
	Ch. 5: Bend or Break
	Ch. 6: While You Are Coding
	Ch. 7: Before the Project
	Ch. 8: Pragmatic Projects
	Further material

