
1

The essence of
"Clean Coder"
A heavily paraphrased summary of the book
Robert C. Martin: Clean Coder: A Code of
Conduct for Professional Programmers, Pren-
tice Hall 2011, 210 pages
(Lutz Prechelt, 2014)

Ch. 1: Professionalism
Being a professional means taking full re-
sponsibility for one's actions. "What would
happen if you allowed a bug to slip through a
module, and it cost your company $10,000?
The nonprofessional would shrug his shoul-
ders, say 'stuff happens', and start writing the
next module. The professional would write the
company a check for $10,000!" [real disaster
story about field-failure of a routine each test
of which took hours]
The first rule of professionalism for a software
developer is not doing harm to the function
nor the structure of the software. You will
always make occasional mistakes, but you
must learn from each. Promptly.
You should be certain about all code you re-
lease and firmly expect QA to find nothing
wrong with it. Test it. Test it again. Automate
your tests. Demand 100% coverage. Design
your code to be easy to test.
You should follow the Boy Scout rule and al-
ways leave a module a little cleaner than you
found it so that it becomes easier to change
over time, not harder. Suitable automated
tests can allow you to not be afraid to change
the code and continually changing it makes
sure it stays that way.
Your career is your responsibility, not your
employer's. Spend 20 hours a week beyond
your normal work to improve your knowledge
and skills. Read, experiment, practice (kata),
talk to others, collaborate, look over the
fence, mentor. It should be fun.
Also, know your domain, identify with your
customer (no "us vs. them", ever), be aware
of the arrogance inherent in programming
and learn to be humble, too.

Ch. 2: Saying No
[real disaster story about premature deploy-
ment of a totally immature distributed sys-
tem]
"Professionals speak truth to power. Profes-
sionals have the courage to say no to their
managers."
Managers and developers have roles that are
often adversarial, because on the short term,
their goals tend to conflict. The manager will
defend her objectives, but will also expect
you to defend yours for the best overall out-
come (which is: reaching the largest goal that
you and the manager share, which may be
tricky to determine [fictious examples of how
not and how to do it]).
The higher the stakes, the more valuable a
"no" becomes – and the harder to say.
[fictious example of how a tough instance
may look]
Good teams will successfully work towards a
yes – but only a right yes, that will later work
out in practice. Saying "no" is often a prereq-
uisite for getting to that right yes.
[real disaster story (from a blog post) about a
developer who failed to say no]

Ch. 3: Saying Yes
There are three parts to making a commit-
ment:
1. You say you’ll do it.
2. You mean it.
3. You actually do it.
It is OK to clearly(!) stop before step 1 (see
previous chapter), but a professional will not
stop after step 1 or step 2. We need to learn
to recognize it when others do (watch out for
terms such as need, should, hope, try, we,
let's).
Unconditional commitment always takes a
form equivalent to "I will achieve goal X until
time Y". Commitment means taking full re-
sponsibility. Most results depend on condi-
tions you cannot fully control, so you will of-
ten only commit to actions (not results) or
commit only conditionally.
Your commitments must respect the limits of
what you expect (based on your experience)
you can and cannot do. If you recognize you
will probably not be able to meet a commit-
ment, you need to raise a red flag immediate-
ly.

2

[fictious examples of negotiation with and
without proper commitment]

Ch. 4: Coding
Coding "requires a level of concentration and
focus that few other disciplines require." A
clean coder codes only if s/he can guarantee
enough focus. Distractions (personal, envi-
ronmental, or whatever) are a problem. Over-
time is a problem.
[story where code written at 3 am created
huge problems for a long time.]
Flow ("the Zone") is not as good as people
think: You will be locally productive, but will
often lose sight of the bigger picture and pos-
sibly produce not-so-good designs.
Music may be a distraction (even if you don't
think so).
Interruptions are bad distractions. Pair pro-
gramming is helpful to cope with them. TDD
helps to make the pre-interruption context
reproducible.
If you have writer's block, start pair pro-
gramming.
Make sure you take in enough creative input,
e.g. reading fiction books. Find out what
works for you.
You have to find ways to minimize the time
spent debugging. The only one I know is TDD.
Coding is a marathon, not a sprint, so con-
serve your energy and creativity. Go home
when it's time, even in the middle of some-
thing important. Showers and cars are prob-
lem-solving resources, too!
Continuously re-estimate your
best/likely/worst completion time and speak
up as soon as you recognize you will likely be
late. Do not allow anyone to rush you (see
above). Consider overtime only for a short
stretch (2 weeks max.) and only if there is a
fallback plan as well. Use a proper definition
of "done", with sufficiently high quality re-
quirements.
Programming is too hard for anyone, so get
help and provide help to others, in particular
(but not only) in mentoring style. Don't pro-
tect your turf, don't shy away from asking,
don't shove away others who ask.

Ch. 5: Test-driven Development
1. You are not allowed to write any produc-

tion code until you have first written a
failing unit test.

2. You are not allowed to write more of a
unit test than is sufficient to fail—and not
compiling is failing.

3. You are not allowed to write more produc-
tion code than is sufficient to pass the
currently failing unit test.

The cycle is only about 30 seconds long.
It
- provides certainty not having broken any-

thing when making changes,
- reduces defect injection rates often 2-10x,
- provides courage for cleaning up messy

code,
- documents how code is to be used, and
- makes you create designs with low cou-

pling.
TDD is not a cure-all and is impractical or
inappropriate in some (rare) cases.

Ch. 6: Practicing
Professionals practice: Musicians, football
players, doctors, lawyers, soldiers. We
should, too.
Our computers have become so powerful that
we can have negligible turnaround times: We
do things quickly (rather than sit down and
think carefully about them) and that requires
practice to make enough things unconscious,
as in martial arts training.
What to do in a martial arts training room
("Dojo"):
Kata: A programming Kata is a precise set of
choreographed keystrokes and mouse move-
ments that simulates the solving of some
programming problem. You aren’t actually
solving the problem because you already
know the solution. Rather, you are practicing
the movements and decisions involved in
solving the problem: IDE usage, TDD, CI.
(See examples on
http://katas.softwarecraftsmanship.org)
Wasa: A two-person Kata, done in ping-pong
pair-programming style (TDD with rapid actor
changes).
Randori: An N-person Wasa solving a new
problem or a known Kata problem with new
constraints.
Another approach to practicing is to broaden
your experience, e.g. by participating in Open
Source projects (akin to some pro-bono work
of lawyers and physicians).
All professionals practice.

http://katas.softwarecraftsmanship.org/�

3

Ch. 7: Acceptance Testing
To avoid "garbage in, garbage out", make
sure you understand the requirements – and
expect your customer to initially not under-
stand them. Creating this understanding
means removing ambiguity.
The best way to do this is defining acceptance
tests: Ask the customer for all conditions they
will plausibly want the software behavior to
fulfill and turn them into automated tests.
(They often will not want to answer all your
questions, so developers or testers will have
to guess, in particular for the failure cases,
and then validate the result with them.) Suc-
cess of those tests constitutes the definition
of 'Done'.
Code implementation should start only when
test implementation is complete. Look out for
silly, awkward, or plain incorrect tests and
work with the test authors to improve them.
Unlike unit tests (which are for programmers
only), the audience of acceptance tests are
both business and developers. The prime
purpose of both kinds is specification, testing
is only secondary.
Test GUIs mostly one level below the actual
GUI (on abstractions of the GUI elements) to
reduce test volatility.
Run all tests in a continuous integration and
immediately fix any failures that may occur.

Ch. 8: Testing Strategies
Develop such that the QA people find no
problems. Consider them part of the team.
They act as specifiers (writing acceptance
tests, including the failure cases and corner
cases) and perform exploratory testing.
Obey the testing pyramid:
Most tests are unit tests (by programmers,
for programmers, in programming language,
executing (almost) every statement of any
class and asserting its behavior).
Many tests are component or integration tests
(by QA or business assisted by programmers,
for business and developers, in a component-
testing framework, executing all relevant
paths through larger combinations of clas-
ses). Component tests mock away other parts
of the system and assert correct business
rules. Integration tests may or may not mock
and assert correct choreography of the piec-
es.

Some tests are automated system tests of
the whole, usually at GUI level with the re-
spective tools.
A bit more testing is done manually at system
level in creative, exploratory fashion.

Ch. 9: Time Management
SW development, especially in management
roles, requires good time management disci-
pline.
Meetings are necessary, but are also often
huge time wasters, so do not attend meetings
that have no clear benefit (or leave under-
way) – this is a professional obligation. Meet-
ings must have an agenda and a clear goal;
agile stand-up meetings can be an efficient
format. Iteration planning should take <5%
of the iteration (2 hours for a one-week itera-
tion).
Any argument that can’t be settled in five
minutes can’t be settled by arguing, so don't
try to; make measurements, flip a coin, or
vote.
Concentration (focus) is a scarce resource;
use it well when present and recharge with
simpler tasks (e.g. meetings) and breaks in
between. Sport helps. Creative input helps.
The Pomodoro technique helps.
Professionals work on their real tasks, in a
sensible priority order, even if they don't like
some of them. They admit when they have
chosen the wrong path and leave it quickly.
They recognize messes (whether their own or
others') and never accept them; they clean
up. Nothing brings down productivity more
than a mess.

Ch. 10: Estimation
Estimation is the source of most distrust be-
tween business people and developers, be-
cause the latter provide estimates which the
former treat like commitments – and both are
insufficiently aware that the estimate really is
a probability distribution, not a fixed number.
The PERT technique computes and uses such
distributions based on a best-case, nominal,
and worst-case estimate for the project or,
better, each task.
Wideband Delphi (e.g. "planning poker" and
many other variants) is an estimation proce-
dure where several estimators iteratively
work towards agreement. Can be combined
with PERT.

4

Ch. 11: Pressure
The professional developer is calm and deci-
sive under pressure, adhering to his training
and disciplines, knowing that they are the
best way to meet the pressing deadlines and
commitments. [Great story of Bob Martin get-
ting it wrong and then seeing the light.]
Avoid situations that cause pressure, e.g.
make only commitments you can fulfil, keep
your code clean. Work in such a way that you
need not change it when in crisis. Don't panic.
Make a plan (and talk with your team). Don't
rush. Trust your disciplines. Pair.
Offer pairing to others in crisis.

Ch. 12: Collaboration
Not all but most programmers like working
alone. But we need to understand the goals of
the people around us, including business
folks. This requires communication. Likewise
within the development team: Only collective
code ownership and pairing produce a good
level of communication. Programming is all
about communication.

Ch. 13: Teams and Projects
Teams need time (months!) to gel: To really
get to know each other and learn to truly
work together. Thus, assigning fractional
people to projects is a bad idea, as is break-
ing up a good team at the end of a project.
Assigning several projects to one team can
work well.

Ch. 14: Mentoring, Apprenticeship,
and Craftsmanship
Young programmers (academic education or
not) need mentoring. Mentoring can be im-
plicit (e.g. by reading a good manual or ob-
serving someone working) or explicit.
Medicine has established a system of appren-
ticeship for new practitioners (a full year!) in
which mentoring is likely to occur – and an-
other 3 to 5 years of apprenticeship are re-
quired to become a professional in a medical
specialty.
Given that we entrust software with all as-
pects of our lives, a reasonable period of
training and supervised practice would be
appropriate. A system of masters, journey-
men and apprentices as in the crafts might be
suitable. We currently do not impose on the

elders a responsibility to teach the young. We
are missing the mindset of craftsmanship and
so the elders fail to consciously act as the role
models that would make the young adopt the
craftsmanship attitude as well.

App. A: Tools
Short, subjective, and insightful essays about
various categories of tools. Also recommends
specific tools.

· Version management: enterprise tools,
CVS, SVN, git, branching

· editors/IDEs: vi, Emacs, IntelliJ,
Eclipse, Textmate

· Issue tracking: Pivotal tracker, Light-
house, Wiki, bulletin board, issue
dumps

· Continuous build: Jenkins
· Unit testing tools: JUnit, RSpec, NUnit,

Midje, CppUTest
· Component testing tools: FitNesse,

RobotFX, Green Pepper, Cucumber,
JBehave

· Integration testing tools: Selenium,
Watir

· UML/MDA: code vs. detail as the main
problem

	Ch. 1: Professionalism
	Ch. 2: Saying No
	Ch. 3: Saying Yes
	Ch. 4: Coding
	Ch. 5: Test-driven Development
	Ch. 6: Practicing
	Ch. 7: Acceptance Testing
	Ch. 8: Testing Strategies
	Ch. 9: Time Management
	Ch. 10: Estimation
	Ch. 11: Pressure
	Ch. 12: Collaboration
	Ch. 13: Teams and Projects
	Ch. 14: Mentoring, Apprenticeship, and Craftsmanship
	App. A: Tools

