
The essence of
"Clean Code"
A heavily paraphrased summary of the book
Robert C. Martin: Clean Code: A Handbook of
Agile Software Craftsmanship, Prentice Hall
2008, 431 pages
(Lutz Prechelt, 2013-2014)

Ch. 1: Clean Code
We will always develop on the code level
because all the details matter.
Good, clean code matters: Bad code
eventually brings a product down, because
during further development, productivity
gradually approaches zero.
Programmers must stand up for clean code
just like managers stand up for requirements
and schedules. But managers rely on
programmers, not vice versa. And in order to
go fast, we must have clean code.
Definitions of clean code by Bjarne Stroustrup
(C++), Grady Booch (UML), Dave
Thomas, Michael Feathers, Ron Jeffries
(XP), Ward Cunningham (XP, Wiki, Design
Patterns): Clean code is elegant, simple,
efficient, straightforward, crisp, clear, literate,
readable by others, unsurprising, has minimal
and explicit dependencies, has automated
tests, minimizes the number of classes and
methods, expresses its design ideas, handles
errors, has nothing obvious that one could do
to make it better, looks like the author has
cared.
Code gets read a lot (at least whenever
someone is writing more code), so any school
of clean code should emphasize readability.
Cleaning up a little wherever you go is
required to keep code clean.

Ch. 2: Meaningful Names
Use meaningful, intention-revealing,
pronounceable names
Avoid disinformation (accidental similarities
with something else entirely or too-subtle
name differences) and puns
Larger scopes require longer names (for
successful searching)

Class Names should be noun phrases, method
names verb phrases
Use the same word for a concept consistently
Use problem domain names for solution
domain concepts and technical terms for
solution domain concepts.
Don't be afraid to globally change bad names
(including their uses, of course).

Ch. 3: Functions
Functions (methods) should be small and do
only one thing. All statements should be
exactly one level of abstraction below the
concept represented by the function, that is,
should be worth mentioning in a summary of
the implementation. This implies avoiding
nested control structures, switch statements,
and most if-else-if chains.
Order the functions thus broken down in
depth-first order, so that the overall code can
be read top-to-bottom. It is hard to
overestimate the importance of descriptive
and consistent names and of the absence of
surprising side-effects.
Parameters make functions harder to grasp
and often are on a lower level of abstraction,
so avoid them as best you can, e.g. by
introducing conceptual helper classes or
turning arguments into member variables.
Avoid duplication.
All this describes a good end result. Initially,
you may well have long, ill-named, complex,
parameter-rich functions that do many things.
This is no problem, as long as you then go
and refactor, refactor, refactor.

Ch. 4: Comments
"The proper use of comments is to
compensate for our failure to express ourself
in code." Comments do not make up for bad
code, rather, we should express ourselves in
the code.
Types of good comments are: legal
comments, informative comments,
explanations of intent, warning of
consequences, TODO, marking as important,
documenting public API.
Types of bad comments are: unclear
mumbling, redundant comments, misleading
comments, mandated comments, changelog
comments, a comment instead of putting
code into a separate function, banners,
closing-brace (etc.) comments, attributions

1

and by-lines, commented-out code, HTMLified
comments, nonlocal information, too much or
irrelevant information, comments needing
explanation, documenting non-public API.

Ch. 5: Formatting
Adequate and uniform is required if you
intend to communicate orderliness to your
code's readers and to provide readability. Use
a formatting tool.
Avoid too-long files; ~200 lines is fine.
Good files are like newspaper articles, with a
heading, the important stuff first, and details
later.
Use blank lines to separate separate stuff and
no blank lines to group related stuff. Keep
somewhat-related stuff nearby in the file;
functions below their calls. Affinity should
produce nearness.
Don't let lines get too long (80 or 120 is OK).
Use horizontal whitespace to indicate
relatedness and separateness (but aligning
columns emphasizes the wrong things).
Indent properly and line-break even short
constructs.
Use team-wide formatting rules.

Ch. 6: Objects and Data Structures
Decide consciously what to hide in your
objects. It depends on what changes are
expected (and sometimes bare public data
structures will be just fine).
Preferably, call only methods of your own
class, of objects you have just created, of
parameters, and of instance variables, not
further methods reachable through these
objects (Law of Demeter).

Ch. 7: Error Handling
Error handling is important and there is often
a lot of it, but it must not obscure the main
intentions of the code, so use exceptions (not
return codes) and treat try-catch blocks like
transactions.
Your exceptions should provide intent,
context and error type detail. Classify
exceptions by how they are caught and
handled. Wrap third-party APIs to remap their
exceptions as needed.
Null checks are cumbersome, just like return
codes; use exceptions or do-nothing objects
rather than returning or accepting null.

Ch. 8: Boundaries
Keep boundaries clean between code
originating from different teams, e.g.

- do not widely pass around (in your
code) over-flexible or change-prone
objects of third-party libraries;

- learn, document, and change-control
third-party libraries by writing learning
tests for them.

Ch. 9: Unit Tests
Automated tests should cover every detail of
our code's functionality, should accompany
the code in the archive, and be easy to
execute.
They should be built with Test-Driven-
Development (TDD):

- You may not write production code
until you have written a failing unit
test.

- You may not write more of a unit test
than is sufficient to fail (not-compiling
is failing).

- You may not write more production
code than is sufficient to pass the
currently failing test.

This style produces a cycle of maybe 30
seconds in which we develop all our
production code. The tests must be as clean
as the code, as they will have to change, too,
so always refactor both as needed. Each test
should check a single concept.
F.I.R.S.T. rule: Tests should be fast,
independent of each other, repeatable, self-
validating, and timely (i.e. written just before
the corresponding code).

Ch. 10: Classes
Ordering: Constants before variables before
methods (within each: public before private,
but private methods used only once follow
right after their usage).
Keep variables and utility methods private
unless that gets in the way of testing; then
use protected or package.
Classes should be small: Have only one
responsibility (Single Responsibility Principle
(SRP): have only one reason to change). If a
25-word description of the class
responsibilities uses the term "and", be wary.
Smaller classes do not increase the number of
concepts relevant for understanding:
Responsibilities. There will be more classes,

2

but their purpose will be clearer and the need
to wade through irrelevant aspects of a class
smaller.
Cohesion: A method that accesses more of
the class's variables is more cohesive to the
class. Overall-low cohesion (e.g. from
promoting local variables to instance
variables when extracting sub-methods)
tends to be bad and may indicate the class
should be split.
p.141-146: Example of splitting a long one-
method class PrintPrimes into three classes;
explains the responsibilities.
Splitting classes also tends to support the
Open-Closed Principle (OCP) of avoiding to
modify existing classes when extending the
program's functionality.
Dependency Inversion Principle (DIP): Rather
than hard-coding calls to dependent services,
rely on an abstraction (interface) only and
pass a concrete service (object) in as a
parameter.

Ch. 11: Systems
Obey the Separation of Concerns principle.
Never let convenient idioms lead to
modularity breakdown, e.g. by hard-coding
dependencies; the startup process is a major
concern. Use factories and Dependency
Injection (DI), which applies the Inversion of
Control (IoC) principle: Delegate the creation
of dependencies to objects that are
specialized to that task (either explicitly or,
preferably, via suitable constructor
parameters or setter methods). This also
supports the Single Responsibility Principle.
Proper Separation of Concerns will allow to
grow even the architectural structure of a
system. It is most difficult for Cross-Cutting
Concerns. Those can sometimes be handled
by Aspect-Oriented Programming (AOP).
Spring is a pure-Java AOP framework that
relies on nested decorators. AspectJ can help
in those few cases where Spring is
insufficient.
Full decoupling (with mostly technology-free
POJOs) will allow architectural changes (e.g.
exchanging persistence and communication
technologies) easily. It also simplifies
decentralizing or postponing decisions.
DSLs help to keep application logic concise,
readable, modifiable, and technology-free.
Never forget to use the simplest thing that
can possibly work.

Ch. 12: Emergence
Good designs can be produced by letting
them emerge from the use of Kent Becks four
rules of Simple Design at any time. A simple
design
(1) runs all the tests, i.e. everything is being
tested (realistic with SRP-style, DIP'ed classes
only) and nothing fails,
(2) contains no duplication (realistic with
stubborn refactoring only),
(3) expresses the intent of the programmer
(realistic with small-scale, straightforward,
unit-tested code with long, convention-
obeying names plus stubborn refactoring
only), and
(4) minimizes the number of classes and
methods (requires not overdoing SRP, de-
duplication, etc, and avoiding element-
generating dogmas in general).

Ch. 13: Concurrency
Concurrency decouples what is done from
when it is done and can improve or
complicate the structure, understandability,
and efficiency of a system. Program state
evolution, however, becomes much more
complicated. Correct concurrency is complex,
even for simple problems.
Strictly obey the SRP: Keep concurrency
management separate from other code.
Severely limit access to data. Prefer copies
over sharing and message passing style over
threads using copies or sharing.
Know your library: thread-safe vs. non-
thread-safe, blocking vs. non-blocking,
executor framework, synchronization helpers.
Know basic concepts: bound resources,
mutual exclusion, starvation, deadlock,
livelock.
Know basic programming models: producer-
consumer, reader-writer, dining philosophers
situations.
Keep locked sections small.
Graceful shutdown can be difficult
(deadlocks).
Test with variations ("jiggling": #threads,
speed, yielding, #processors, problem sizes,
OSs, etc.) and track down each and every
failure. Consider AOP-based instrumentation
or tools for jiggling. Get non-threaded code
working reliably first.

3

Ch. 14: Successive Refinements
Design style example Args (commandline-
argument parsing).
Presents a well-designed solution
(unfortunately without showing
StringArrayArgumentMarshaler, the reason
why Marshalers are set with Iterator
arguments)
States that this cannot be written in one pass,
but by drafting and then successively cleaning
and improving.
Presents a messy earlier version of Args that
has everything in one class (p.201+).
Presents a still earlier version that only
handles Boolean args and is still reasonably
tidy (p.206+) and a subsequent version that
handles Boolean+String (p.208+) and gets
visibly messy. Explains why he started
refactoring after the Boolean+String+Integer
version (p.212) and how he recognized the
concept of ArgumentMarshaler class then
[whose getValue method is static to allow for
different result types: ugly!].
Explains many of the refactoring steps, made
in TDD must-never-break mini-step style
(p.213-242, based on a test suite shown only
in one form on p.242-245). Good discussion.
"Nothing has a more profound and long-term
degrading effect upon a development project
than bad code. […] the solution is to
continuously keep your code as clean and
simple as it can be. Never let the rot get
started."

Ch. 15: JUnit Internals
Presents the test suite for the
ComparisonCompactor class from JUnit, then
the class itself, then critiques it.

Ch. 16: Refactoring SerialDate

Ch. 17: Smells and Heuristics

A: Concurrency II

4

	Ch. 1: Clean Code
	Ch. 2: Meaningful Names
	Ch. 3: Functions
	Ch. 4: Comments
	Ch. 5: Formatting
	Ch. 6: Objects and Data Structures
	Ch. 7: Error Handling
	Ch. 8: Boundaries
	Ch. 9: Unit Tests
	Ch. 10: Classes
	Ch. 11: Systems
	Ch. 12: Emergence
	Ch. 13: Concurrency
	Ch. 14: Successive Refinements
	Ch. 15: JUnit Internals
	Ch. 16: Refactoring SerialDate
	Ch. 17: Smells and Heuristics
	A: Concurrency II

