
acm International Collegiate
Programming Contest

event
sponsor2004

ACM International Collegiate Programming Contest 2004
South American Regional

November 13th, 2004

(This problem set contains 8 problems; pages are numbered from 1 to 16)

Participating countries:

• Argentina

• Brazil

• Chile

• Colombia

• Peru

• Venezuela



ACM International Collegiate Programming Contest 2004 – South American Regional 1

Problem A
Land Division Tax

Source file name: tax.c, tax.cpp or tax.java

International Concrete Projects Company (ICPC) is a construction company which specializes
in building houses for the high-end market. ICPC is planning a housing development for new
homes around a lake. The houses will be built in lots of different sizes, but all lots will be on the
lake shore. Additionally, every lot will have exactly two neighbors in the housing development:
one to the left and one to the right.

300

100 100

500

100

200

Development plan indicating the sizes of the
lots (in units of area) in the new housing 
development.Lake

ICPC owns the land around the lake and needs to divide it into lots according to the housing
development plan. However, the County Council has a curious regulation regarding land tax,
intended to discourage the creation of small lots:

1. land can only be divided using a sequence of land divisions ;

2. a land division is an operation that divides one piece of land into two pieces of land; and

3. for each land division, a land division tax must be paid.

Denoting by A the area of the largest resulting part of the division, the value of the land division
tax is A×F , where F is the division tax factor set yearly by the County Council. Note that due
to (2), in order to divide a piece of land into N lots, N − 1 land divisions must be performed,
and therefore N − 1 payments must be made to the County Council.

For example, considering the figure above, if the division tax factor is 2.5 and the first land
division separates the lot of 500 units of area from the other lots, the land division tax to be
paid for this first division is 2.5 × (300 + 200 + 100 + 100 + 100). If the next land division
separates the lot of 300 units together with its neighbor lot of 100 units, from the set of the
remaining lots, an additional 2.5 × (300 + 100) must be paid in taxes, and so on. Note also
that some land divisions are not possible, due to (2). For example, after the first land division
mentioned above, it is not possible to make a land division to separate the lot of 300 units
together with the lot of 200 units from the remaining three lots, because more than two parts
would result from that operation.

Given the areas of all lots around the lake and the current value of the division tax factor, you
must write a program to determine the smallest total land division tax that should be paid to
divide the land according to the housing development plan.



ACM International Collegiate Programming Contest 2004 – South American Regional 2

Input

The input contains several test cases. The first line of a test case contains an integer N and
a real F , indicating respectively the number of lots (1 ≤ N ≤ 200) and the land division
tax factor (with precision of two decimal digits, 0 < F ≤ 5.00). The second line of a test
case contains N integers Xi, representing the areas of contiguous lots in the development plan
(0 < Xi ≤ 500, for 1 ≤ i ≤ N); furthermore, Xk is neighbour to Xk+1 for 1 ≤ k ≤ N − 1, and
XN is neighbour to X1. The end of input is indicated by N = F = 0.

The input must be read from standard input.

Output

For each test case in the input your program must produce a single line of output, containing
the minimum total land division tax, as a real number with precision of two decimal digits.

The output must be written to standard output.

Sample Input

4 1.50

2 1 4 1

6 2.50

300 100 500 100 100 200

0 0

Output for the Sample Input

13.50

4500.00



ACM International Collegiate Programming Contest 2004 – South American Regional 3

Problem B
Petanque

Source file name: petanque.c, petanque.cpp or petanque.java

Petanque, a game which uses balls (some boules and one coche), was developed in the small
town of La Ciotat, near Marseilles, France. The aim of the game is simple. If playing football
is kicking a ball into the opposite goal and keeping it out of your own, playing petanque is
placing your boules nearer to the coche and keeping your opponent’s boules away.

One simplified version of the game is played between two players, one against the other, with
three boules each. The players are located in a plane and one of them starts the game by
throwing the coche forward. The player who throws the coche also throws the first boule. The
opposing player throws the second boule. From then on, the player who has not thrown the
boule which is the nearest to the coche throws the next boule (you may assume that there will
be only one boule nearest to the coche). This continues until one player has thrown all his
boules. After this, the other player throws all his remaining boules. The winner is the player
who has thrown the ball which in the end is nearest to the coche (again, you may assume that
there will be only one boule nearest to the coche). The winning player claims as many points
as there are boules thrown by him nearer the coche than any other opposing boules.

You are invited to simulate some games of Petanque. For simulation purposes, we will consider
that the playing floor is a plane and the balls are adimensional (they can be considered as
points). You will be given the names of the two players. The first player given will be the
first to play. For each ball (coche or boules) thrown, you will be given the starting position
of the ball, its direction and how many meters it will roll. You may assume that the starting
position of the balls are inside the playing floor, the balls will never leave the floor and the
starting position of a ball will never coincide with the current position of another ball in the
playing floor. The direction of each ball is given in degrees where the east direction (x-positive)
corresponds to zero degrees and the degrees increase in the counter-clockwise direction, as
shown in the figure below. When a ball that was thrown knocks another ball in its way, the

Direction

Illustration of the direction of the balls

thrown ball stops. The ball which was still starts moving in the same direction for an amount
of meters equal to the quantity of meters that the thrown ball would still roll if there was no
ball in its way (this amount will NEVER be zero meters). If this ball encounters another one,
the procedure is repeated (here again the amount of meters still to roll will never be zero).



ACM International Collegiate Programming Contest 2004 – South American Regional 4

Input

The input consists of several test cases. The first line in the input contains an integer N
specifying the number of test cases (1 ≤ N ≤ 10000). The first line of a test case contains the
name of the two players separated by one space. A player name is composed of at most 20
letters from the English alphabet (from ‘A’ through ‘Z’ and ‘a’ through ‘z’). The next seven
lines describe the seven balls in the order they are thrown in the game (first the coche and then
the boules thrown by the players according to the rules above). Each line contains four integers
X, Y , θ and D representing respectively the starting position of a ball (-1000 ≤ X,Y ≤ 1000),
its direction (0 ≤ θ ≤ 360) and the distance (0 < D ≤ 100) it will roll if it does not encounter
any other ball in its way.

The input must be read from standard input.

Output

For each test case in the input, your program must produce one line containing the name of
the player who won the game and how many points she/he scored separated by a single space.

The output must be written to standard output.

Sample Input

2

Alex BobNelson

0 0 90 30

0 0 90 20

0 0 0 10

-5 0 0 5

0 40 270 18

0 10 90 13

-1 24 315 1

Alice Alex

0 0 90 50

0 0 90 20

0 0 180 20

-5 0 0 5

0 40 270 18

0 10 90 13

-1 24 315 1

Output for the Sample Input

Alex 3

Alice 1



ACM International Collegiate Programming Contest 2004 – South American Regional 5

Problem C
Long Night of Museums

Source file name: longnight.c, longnight.cpp or longnight.java

The city of Vienna is called the “City of Culture” because (among other things) there are more
than 100 museums in the city. As a consequence, it is very difficult (and very expensive) to
visit all of them no matter how long you stay in the city. Fortunately, there is a special night,
called the “Long Night of Museums”, when you can visit many museums with just one ticket,
from 6:00 pm to 1:00 am of the next day.

Nevertheless, it is impossible to visit every museum of the city for two main reasons. First,
some museums in Vienna don’t get involved into this event because they close at 5:00 pm.
Second, there is not enough time in 7 hours to go to every museum, watch ALL their insides
(otherwise, it would be a waste of time), and then go to the others.

Given the number of museums participating in the Long Night of Museums, the time needed
to watch the insides of each museum, and the time that it will take to get from each museum
to the others, you have to find the best tour to visit as many museums as you can during the
Long Night of Museums.

Input

The input contains several test cases. The first line of a test case contains one integer N , which
indicates the number of museums participating in the event (1 ≤ N ≤ 20). Each museum has
a unique identification number ranging from 1 to N . The second line of a test case contains
N integers indicating the time, in minutes, needed to visit each museum, from 1 to N . Then
there are N lines describing the times to go from one museum to every other. The i-th line
contains N integers Mk (1 ≤ k ≤ N) representing the time, in minutes, to go from museum i
to museum k. You may assume that the i-th integer in the i-th line is equal to zero. The end
of input is indicated by N = 0

The input must be read from standard input.

Output

For each test case in the input, your program must produce one line containing the maximum
number of museums that can be visited during the Long Night of Museums.

The output must be written to standard output.



ACM International Collegiate Programming Contest 2004 – South American Regional 6

Sample Input

2

500 500

0 120

200 0

2

220 220

0 30

20 0

2

150 150

0 120

200 0

0

Output for the Sample Input

0

1

2



ACM International Collegiate Programming Contest 2004 – South American Regional 7

Problem D
Magic Trick

Source file name: magic.c, magic.cpp or magic.java

A magician invented a new card trick and presented it in the prestigious American Conference
of Magicians (ACM). The trick was so nice it received the ‘Best Magic Award’ at the conference.
The trick requires three participants: the magician himself, a spectator and an assistant. During
the trick the spectator is asked to shuffle a deck of 52 cards and pick randomly 5 cards out of
the deck. The five cards are given to the assistant (without the magician seeing the cards) who
looks at them and shows four of the five cards one by one to the magician. After seeing the
four cards the magician magically guesses the missing fifth card!

The trick works because once the assistant has the five cards he can always choose four of them
and use those to ‘code’ information about the fifth one. The code is based on an ordering of
the cards. Cards are ordered first by their suits and then by their face value. We will use the
following order:

• H < C < D < S (Hearts, Clubs, Diamonds, Spades) for suits; and

• 1 < 2 < ... < 9 < T < J < Q < K for face values, where T, J, Q and K stand for Ten,
Jack, Queen and King, respectively.

Assume the spectator chose the cards JD, 8S, 7H, 8C, QH (Jack of Diamonds, 8 of Spades, 7
of Hearts, 8 of Clubs and Queen of Hearts). The strategy for the assistant is the following:

• Find a suit s which appears at least twice in the set of chosen cards (Hearts in the
example). If more than one suit appears two times, choose the one with lowest order.

• Hide the card x with suit s that is at most six positions ahead in the cyclic order 1 <
2 < ... < T < J < Q < K < 1 < 2 < ... of another card y of the same suit. That is
always possible since there are only thirteen cards with the same suit (in the example the
assistant hides QH). If two or more cards satisfy the criteria above, choose the one with
the smallest face value.

• Show y to the magician. At this point the magician knows the suit of the hidden card,
and also knows that the face value of the hidden card x is at most six positions in front
of the face value of y.

• With the three cards the assistant has left, he must code a number between 1 and 6.
That can be done as follows. Say the three cards z1, z2, z3 are in the order z1 < z2 < z3.
Each of six possible orders in which these three cards can be shown may be interpreted
to convey information about a number.

– z1, z2, z3 means 1,

– z1, z3, z2 means 2,

– z2, z1, z3 means 3,

– z2, z3, z1 means 4,

– z3, z1, z2 means 5,



ACM International Collegiate Programming Contest 2004 – South American Regional 8

– z3, z2, z1 means 6.

In this way, once the magician is shown the four cards one by one, he has enough information
to “magically” guess the fifth one!

Your job is to develop a program that, given the four cards shown by the assistant, informs the
magician which is the hidden card.

Input

The input contains several test cases. The first line in the input contains an integer N specifying
the number of test cases (1 ≤ N ≤ 10000). Each test case is composed by one line, which
contains the description of the four cards, separated by a space, in the order they were presented
by the assistant.

The input must be read from standard input.

Output

For each test case in the input your program must produce one line of output, containing the
description of the hidden card.

The output must be written to standard output.

Sample Input

2

7H 8S 8C JD

TC 2D 1S 5H

Output for the Sample Input

QH

1C



ACM International Collegiate Programming Contest 2004 – South American Regional 9

Problem E
Two-Stacks Solitaire

Source file name: 2stacks.c, 2stacks.cpp or 2stacks.java

Card games for one player are called Patience in Britain and Solitaire in the United States. One
very difficult (some say maddening) solitaire game is called Two-Stacks and has the following
rules:

Tableau

The tableau consists of a stock pile, two intermediate piles and one foundation pile.

Cards

A game may use up to four complete decks, or parts of those four decks. A complete
deck contains 52 cards; since all cards in a deck can be ordered, in this description we
will forget about faces and suits and we will use the numbers from 1 to 52 to represent
the cards in a deck.

Dealing

Once the cards to be used in the game have been chosen, they are dealt face up in the
tableau, one on top of the other, forming the stock pile.

Moving cards

Cards may be moved one at a time. A card can be moved from the stock pile to one
of the intermediate piles, or from one intermediate pile to the foundation pile. In a pile
(stock or intermediate) only the topmost card can be moved, although all the others are
visible.

Object

The goal is to have all cards used in the game in non-decreasing order, from bottom to
top, constituting the foundation pile.

As you may have noticed by now, even when a solution exists, chances of winning a Two-Stacks
solitaire game are very low. But your grandmother has just learned the game and loved it. She
has asked you to help her to learn playing the game, by writing a program that would coach
her through her first tries, showing which movements to make.

Input

The input consists of several test cases. The first line of a test case contains a single integer
N (1 ≤ N ≤ 208), representing the number of cards in the game. The second line of a test
case contains a sequence of N integers (between 1 and 52), separated by single blank spaces,
representing the cards. The cards will be dealt in the order they appear in the input, so that
the topmost card in the stock pile is the Nth card in the line. Notice that each number from



ACM International Collegiate Programming Contest 2004 – South American Regional 10

1 to 52 will appear at most 4 times in each test case. The end of input is indicated by a test
case with N = 0.

The input must be read from standard input.

Output

For each test case in the input your program must produce an answer. The first line of an answer
must contain a test case identifier, in the form ’#i’ where i starts from 1 and is incremented for
every test case. Then, if it is possible to win the game, print a sequence of movements to win
the game. Each movement must be described in a separate line, in the form ‘push x’ or ‘pop
x’ where ‘x’ is 1 or 2; ‘push x’ moves the topmost card from the stock pile to intermediate pile
x, and ‘pop x’ moves the topmost card from intermediate pile x to the foundation pile. If more
than one solution exists, print any one. If it is not possible to win the game, print a line with
the word ‘impossible’.

The output must be written to standard output.

Sample Input

4

4 1 3 2

4

1 4 3 2

4

2 2 2 1

0

Output for the Sample Input

#1

push 1

push 2

push 1

pop 1

pop 1

push 1

pop 2

pop 1

#2

impossible

#3

push 1

push 2

push 1

push 2

pop 2

pop 2

pop 1

pop 1



ACM International Collegiate Programming Contest 2004 – South American Regional 11

Problem F
Zing Zhu’s Oyster Farm

Source file name: oyster.c, oyster.cpp or oyster.java

Zing Zhu owns an island that is a piece of flat land. Everyday, when the tide rises, the island
is flooded by sea water. After much thinking and asking advice from members of his family,
Zing Zhu decided to set up an oyster farm in the island. Zing Zhu uses a sophisticated system
of plastic watertight modular fences to control the areas that will be flooded and the areas that
will not be flooded during the rise of the tide. The fences used by Zing Zhu are either horizontal
or vertical and come in strips that have different lengths and heights. Two fences can intersect
in at most one point, not necessarily in their ends.

You have been contacted by Zing Zhu to calculate, given the height the tide will reach and the
position and height of all fence strips, the total area of land which will not be flooded during
the high tide. You may assume that the widths of fence strips are so thin compared to the size

Map of fence strips installed in the farm,
showing fence strip heights in centimeters

Non-flooded areas (shown in white) if the
tide rises 110 centimeters

400

120

400

20
0

25
0

10
0

20
0

11
0

of the land that, for the purpose of calculating the total area, fence strips may be considered
as having widths equal to zero.

Input

The input contains several test cases. The first line of a test case contains an integer N
indicating the number of fence strips in the island (1 ≤ N ≤ 2000). Each of the next N lines
contains five integers X1, Y1, X2, Y2 and H, representing respectively the start point of the strip
(X1, Y1), the end point of the strip (X2, Y2) and the strip height (H). The last line of a test case
contains an integer W representing the tide height. Coordinates are given in meters, heights in
centimeters. Furthermore, X1 = X2 or Y1 = Y2 (but not both); −500 ≤ X1, Y1, X2, Y2 ≤ 500;
and 1 ≤ W,H ≤ 1000. The end of input is indicated by N = 0.

The input must be read from standard input.

Output

For each test case in the input your program must produce one line of output, containing one
integer representing the total area (in m2) of the land which will not be flooded.



ACM International Collegiate Programming Contest 2004 – South American Regional 12

The output must be written to standard output.

Sample Input

4

-20 20 20 20 200

20 20 20 -20 200

0 0 0 20 100

-10 0 20 0 200

100

4

-20 20 20 20 200

20 20 20 -20 200

0 0 0 20 100

-10 0 20 0 200

101

0

Output for the Sample Input

400

0



ACM International Collegiate Programming Contest 2004 – South American Regional 13

Problem G
Grandpa is Famous

Source file name: grandpa.c, grandpa.cpp or grandpa.java

The whole family was excited by the news. Everyone knew grandpa had been an extremely
good bridge player for decades, but when it was announced he would be in the Guinness Book
of World Records as the most successful bridge player ever, whow, that was astonishing!

The International Bridge Association (IBA) has maintained, for several years, a weekly rank-
ing of the best players in the world. Considering that each appearance in a weekly ranking
constitutes a point for the player, grandpa was nominated the best player ever because he got
the highest number of points.

Having many friends who were also competing against him, grandpa is extremely curious to
know which player(s) took the second place. Since the IBA rankings are now available in the
internet he turned to you for help. He needs a program which, when given a list of weekly
rankings, finds out which player(s) got the second place according to the number of points.

Input

The input contains several test cases. Players are identified by integers from 1 to 10000. The
first line of a test case contains two integers N and M indicating respectively the number of
rankings available (2 ≤ N ≤ 500) and the number of players in each ranking (2 ≤ M ≤ 500).
Each of the next N lines contains the description of one weekly ranking. Each description is
composed by a sequence of M integers, separated by a blank space, identifying the players who
figured in that weekly ranking. You can assume that:

• in each test case there is exactly one best player and at least one second best player,

• each weekly ranking consists of M distinct player identifiers.

The end of input is indicated by N = M = 0.

The input must be read from standard input.

Output

For each test case in the input your program must produce one line of output, containing the
identification number of the player who is second best in number of appearances in the rankings.
If there is a tie for second best, print the identification numbers of all second best players in
increasing order. Each identification number produced must be followed by a blank space.

The output must be written to standard output.



ACM International Collegiate Programming Contest 2004 – South American Regional 14

Sample Input

4 5

20 33 25 32 99

32 86 99 25 10

20 99 10 33 86

19 33 74 99 32

3 6

2 34 67 36 79 93

100 38 21 76 91 85

32 23 85 31 88 1

0 0

Output for the Sample Input

32 33

1 2 21 23 31 32 34 36 38 67 76 79 88 91 93 100



ACM International Collegiate Programming Contest 2004 – South American Regional 15

Problem H
Cutting Edge

Source file name: cut.c, cut.cpp or cut.java

Uncle Jeff owns a glass shop, which sells glass panes for windows and picture frames. As you
probably know, a glass pane can only be cut if the cut goes from edge to edge of the pane in
a straight line. The figure below shows how a glass pane can be cut into three smaller glass
panes.

(a) a whole glass pane (b) first cut (c) second cut

Uncle Jeff normally operates as follows. He first collects various orders for small rectangular
glass panes, for windows or picture frames. He then marks the position of each small rectangular
pane onto a big rectangular glass pane, such that no two marked rectangles overlap. Finally,
he performs a sequence of horizontal and vertical cuts, always from edge to edge of the pane
being cut, so as to produce glass panes for all the customers.

Since the last phase (the actual cutting of the big glass pane into pieces) is the most boring
thing one could ever imagine, uncle Jeff is asking you for help. He wants a program which
given a big rectangular glass pane and lower-left and upper-right coordinates of each marked
rectangle determines the order in which the edge-to-edge cuts can be performed. This list of
cuts will be fed into a machine which will do the boring cuts for him!

Input

The input contains several test cases. The first line of a test case contains an integer N
indicating the number of windows and picture frames in the test (2 ≤ N ≤ 2000). Each of the
next N lines contains four integers X1, Y1, X2, Y2, where (X1, Y1) and (X2, X2) represent the
lower-left and upper-right coordinates marked by uncle Jeff on the big glass pane (−5000 ≤
X1, Y1, X2, Y2 ≤ 5000; X1 < X2 and Y1 < Y2). You should assume the following of each test
case:

• The marked rectangles do not overlap (but may intersect on the border points) and divide
the big glass pane completely into rectangular regions, so that no glass is wasted. This
means that the lower-left and upper-right coordinates of the big glass pane can be inferred
from the coordinates of the marked rectangles.

• It is possible to split up the big glass pane into the small marked rectangles through a
sequence of edge-to-edge cuts.



ACM International Collegiate Programming Contest 2004 – South American Regional 16

The end of input is indicated by N = 0.

The input must be read from standard input.

Output

For each test case in the input your program must produce an ordered list of cuts that must
be performed to separate the big glass pane into the desired smaller panes. Each cut must
appear in a different line. A cut is described by four integers X1, Y1, X2, Y2, where (X1, Y1) and
(X2, Y2) specify the endpoints of the cut, with X1 < X2 and Y1 = Y2 for a horizontal cut and
X1 = X2 and Y1 < Y2 for a vertical cut. As more than one ordering of cuts may be possible,
your program must print the list in a particular order. If at some point more than one cut is
possible, print first the cut with smaller X1; if more than one cut is still possible, print first the
one with smaller Y1. Print a blank line after each test case list.

The output must be written to standard output.

Sample Input

3

0 0 20 30

20 0 40 20

20 20 40 30

6

1 2 2 4

2 3 3 5

1 4 2 5

2 2 3 3

3 2 4 3

3 3 4 5

0

Output for the Sample Input

20 0 20 30

20 20 40 20

2 2 2 5

1 4 2 4

2 3 4 3

3 2 3 3

3 3 3 5


