
Doing Scrum Rather Than Being Agile:
A Case Study on Actual Nearshoring Practices

Franz Zieris, Stephan Salinger
Freie Universität Berlin
Institut für Informatik

Takustr. 9, 14195 Berlin, Germany
Email: zieris|salinger@inf.fu-berlin.de

Abstract—Previous research in the field of Agile Distributed
Software Development often focused on the asynchronicity of
working hours due to different time zones, as if this was the only
risk when developing software in non-co-located environments.
This case study reflects a nearshoring setting in which this
primary impediment does not exist and investigates a broader
range of risks now standing out more clearly. We observed two
Polish Scrum teams working for a German company, which has
been successfully applying Agile Methods for over four years. We
present the actual process and practices of the external teams and
contrast them to the intended way of proceeding.

Main result: Agile nearshoring is feasible and may produce
high satisfaction amongst Product Owners, but this satisfaction
might be delusive if process deviations due to misunderstandings
of what Agile development means go unnoticed.

Keywords—agile process, agile mindset, roles, practices,
nearshoring

I. INTRODUCTION

The conceptual pair “Agile Processes” and “Distributed
Software Development” shapes an area of both scientific inter-
est and practical relevance. One the one hand, Agile Develop-
ment methods with their approach to overcome “the heaviness,
commonly associated with traditional software-development
methodologies” [1] which relies on frequent and direct face-
to-face communication, had their advent in the late 1990s and
have been subject to numerous scientific studies since. On the
other hand, the distribution of software development processes
has become popular because of “the three key advantages [. . . ]
(1) lower cost of labor, (2) capture talent not available locally,
and (3) increase and decrease project size without layoffs” [2].

Consequently, there is a strong attraction emanating from
the combination of both. Practitioners ask how to transfer
the advantages of Agile Development to a distributed setting
and look for the recipe for success or at least a set of best
practices. Researchers are tempted to debate on the immanent
contradiction and its implications, and are striving for a better
understanding of Agility itself (the distributed and the co-
located variant).

Hence, one access to this field was opened through experi-
ence reports or, in a more systematic way, through case studies.
Often these studies reflected extreme forms of distribution in
which the involved persons were separated by up to 12.5 hours
[3], [4]. Maybe this was due to the pure availability of settings,
maybe the authors aimed at a maximized contrast for deeper
insights. However, this sampling explains the strong focus on

time-zone-related problems and how to solve (or circumvent)
them, e. g. by using “strict communication plans” or by certain
technical infrastructure (source code management, wikis, etc.)
[3], [5], whereas other issues were rather incidental remarks.
This is obviously the right way to start, since this temporal
distance, at least in farshoring settings, is a prevalent charac-
teristic. But as Berczuk [6] pointed out “the distribution often
amplifies existing process issues rather than being the issue
itself”.

We suppose Agile Development, and all the more Dis-
tributed Agile Development, to be difficult enough, even
without the major impediment of shunted working hours.
We conducted an exploratory case study which reflects a
nearshoring setting in which no time zones but only corporate
and national borders were crossed. This way, other issues stand
out more clearly. Furthermore, the gained insights may also
help farshored distributed and co-located Agile teams.

In their tertiary study on the Research on Agility in Global
Software Engineering [7], Hanssen et al. noted a lack of
common understanding of the concept of Agile. Surprisingly,
only two out of twelve secondary studies turned out to be
devoted to Agile. The first one, a systematic literature review
by Hossain et al. [8], closes with a remark on the gap in
literature when it comes to the actual Scrum processes in
distributed software development. The other one, conducted by
Jalali and Wohlin [9], praises the value of experience reports,
but all the more demands for more rigorous research methods.
The case study we present here aims at both narrowing the
gap of actual process descriptions and applying a concise and
comprehensible research process.

The remainder of the article is structured as follows. We
will describe our methodology and the contextual background
of this case study in Section II. The results are presented in two
steps: Section III discusses the actual practices and contrasts
them to their intended purposes; Section IV puts these pieces
together to a conclusive picture to ease the understanding of
the practices’ interplay. We summarize our work in Section V.

II. CONTEXT OF THE STUDY AND METHODOLOGY

The study presented here can be characterized as a case
study with a distinctive exploratory orientation, which means
in particular that it was not led by preconceived hypotheses.
Rather, its purpose was to answer the following question:
“How does a Scrum-oriented software development process
in a nearshoring setting work in practice?”



In order to gather the appropriate data to answer this
question, we utilized the GQM method [10]. One of our
demands was to use a triangulation approach to incorporate
multiple vantage points. We achieved this diversity by using
different data sources and types, and by engaging multiple
observers. The analysis of the collected data was conducted
using a process following the principles of the Grounded
Theory Methodology by Strauss and Corbin [11].

A. Context

The company at stake runs a large German online portal.
The required software is developed and maintained by 180
in-house developers in the company’s headquarter in Berlin.
The developers almost exclusively work in small Agile teams
(usually using Scrum) with up to six members. In accordance
with the Agile Principles [12], the teams are granted with high
responsibility. However, a smaller fraction of the development
is out-sourced. At the time of our observation, three external
Polish teams worked for the German company which were
rented from a large IT Service Company (approx. 16,500
employees). These teams do not work in isolation from the
in-house development. Rather they are embedded through a
customized Scrum process, e. g. the Product Owners, who are
situated in Berlin, take part in the teams’ Daily Scrums using
a videoconference system (we will describe the details of the
applied practices later on, see Section III).

In the context of this study we observed two of the three
external teams, hereinafter referred to as Team A and B, which
have been working together with the German company for a
little less than three years. We observed their daily work and
sounded them on their current situation. At the time of our
data collection, the teams’ situations were as follows:

• Team A consists of five developers and one QA engineer,
co-located in one workspace. The team has been in
this form for several months, having only one developer
passed over from Team B a few weeks ago. Thus, Team A
can be characterized as rather stable.
Team A was the only team working on a certain range of
the German company’s products. The team temporarily
had two Berlin-based Product Owners which were in the
midst of a handover.
In their daily work, the team incorporated a Kanban-like
board [13] for organizing their Stories which were broken
down into Tasks. The team used different templates for
Story cards and Task cards, both containing elaborated
checklists for certain kinds of quality assurance. The
applied practices include Continuous Integration (CI),
Pair Programming (PP), Test-Driven Development (TDD)
and Reviews (see Section III for details).

• In contrast to Team A, the history of Team B was more
dynamic. At the time of our observation it consisted of
four developers and one QA engineer, two of the devel-
opers being quite new to the team. The Scrum Master
accordingly pointed out that “the team is still not in the
Performing state, it’s still somewhere Storming/Norming”
and “the team changes the way they work [. . . ] it’s still
not working fully”1.

1According to the psychologist Bruce W. Tuckman [14], a group goes
through several states including Forming, Storming, Norming, Performing.

Team B previously also worked on a project of its own.
With this project being basically finished and waiting
for further plans, Team B currently supported Team A
with its products. Physically, both teams shared the same
workspace. The team itself already had a Product Owner
of its own, but because of practically working for Team A,
the team also had contact with the two Product Owners
of the other team.
Just like Team A, Team B also used a Kanban-like board
for its Stories and Tasks. However, its Task cards were
merely hand-written sticky notes, without any checklists.
The list of applied practices of Team B does not notably
differ from that of Team A: CI, PP, and TDD.

Both teams share one Polish Scrum Master who is with
the teams all the time. Prior to our observation, he was the
local team leader of the three external teams and took over the
role as the Scrum Master two weeks ago because the previous
one left the external company. He was to fulfill the role in the
interim until a new Scrum Master was hired.
In addition to this primary Scrum Master, there is a second
“Scrum Master for External Teams” who is situated in Berlin.
This additional role bears the overall responsibility for the
cooperation between the internal and the external teams.
Whereas the Polish developers spoke little or no German at
all, using their mother tongue for internal, and English for
external purposes, the additional Scrum Master was fluent in
English, German, and Polish. The main Scrum Master was
an employee of the external company; the additional one was
employed by the German company.

B. Preparation and Data Collection

The research objective already sketched above reads as
follows in its detailed form: Characterization and preliminary
evaluation of appropriateness, effectiveness, efficiency, consis-
tency, maturity, acceptance, and completeness of the ongoing
Scrum process as seen by the Scrum team. The focus of the
evaluation is on the identification of problems and leadoff
hypotheses regarding direct an indirect causes. Particular
attention is to be directed on aspects related to the nearshoring
situation. Therefore, the actual state was to be observed and
evaluated.

Following the GQM method, we broke down this goal
into questions to be answered. These questions included the
following:

Q1 What is the current situation of the project?

Q2 Which amendments to Scrum have been made (e. g.
with other management techniques, process models, or
development practices)?

Q3 How well does the process fit the project’s conditions,
i. e. the distribution?

Q4 Which problems were mitigated or eliminated by the
actual applied process?

Q5 Which problems evolved due to the actual applied pro-
cess?

Q6 How satisfied are the involved persons?



After formulating these questions, we specified our tools
for data collection and devised how to answer the questions.
As stated above, we wanted our study to be exploratory, i. e.
open-minded and unbiased. Therefore, we took care that our
instruments allowed us to react on unexpected but interesting
phenomena, e. g. leading to surveys containing a fair amount
of 15 open questions (compared to 40 questions in total).

The following instruments were specified:

• We devised semi-structured interviews with individual de-
velopers, Scrum Masters, and Product Owners for topics
from which follow-up questions are expected.

• We designed an online survey for covering simpler as-
pects and a larger number of people.

• “Fly on the Wall”: In order to ease interpretation and
combination of subjective data retrieved from the other
instruments and to get aware of additional phenomena, we
decided to passively observe the everyday work including
the Daily Scrum, the Sync meeting (see Section III-F) and
the developers’ interaction with their working environ-
ment. In the same way we observed Sprint Retrospectives
and Sprint Planning Meetings.

The actual data collection took place in Poland (two days)
and Germany (two days). Additionally, we discussed our
findings with the respective teams eight weeks later. We will
refer to the observations we made and the feedback we got
during these discussions throughout this paper.

The vast majority of the interviews and the observations
were carried out jointly by at least two researchers. This
served two purposes: We wanted to avoid missing of possibly
important phenomena and to eliminate personal biases. All in
all we gathered over 50 pages of notes and sketches, 5 1/2 hours
of recorded interviews, and additional 3 hours of recorded
discussions.

It should be noted that we already investigated two internal
teams of the same company one year prior to the study
presented here. Back then, one of these teams worked together
with Team B on their – now finished – product. We also con-
ducted extensive interviews with members of the management,
which eased our comprehension of the current constraints and
recent phenomena for the study at hand.

C. Analysis

The analysis of our collected data followed the princi-
ples of the Grounded Theory Methodology by Strauss and
Corbin [11], especially for identifying and working out central
process-related phenomena. As we did not want to formulate
a general theory of Agile Nearshoring, not all GTM practices
were employed. E. g. our “theoretical sampling” was limited to
enquiries towards the German company if certain phenomena
or constraints were unclear to us. Furthermore, instead of
directly starting off with “open coding”, our first step right
after the collection of data was to summarize and consolidate
our impressions. This led to preliminary hypotheses which
we scrutinized on the basis of our actual data (see Figure 1
for Team B’s initial hypotheses). However, not all of the
hypotheses proved to be tenable, and not all insights presented
here originate from these hypotheses. Nevertheless, this first

model helped us to structure our research process and to avoid
drowning in details.

no project of 
their own

less responsibility

fluctuation

less initiative / 
motivation

uninteresting tasks

isolation of 
code-buddy

lower 
performance

ScrumMaster: lack 
of experience

Product Owner: 
lack of 

engagement

little interest in 
processes

Fig. 1. Preliminary hypotheses for explaining the situation of Team B. Boxes
are a rough description of complex phenomena, arrows can be read as “leads
to”. Both the boxes and the arrows are hypothetical and sometimes, e. g. in
case of the “uninteresting tasks”, turned out to be untenable.

III. AIMED OBJECTIVES & ACTUAL PRACTICES

In this section we will discuss the actual practices we
observed and contrast them to the intended way of proceeding.
In each subsection we will first summarize the key points
of the management’s and/or the team members’ (developer,
Scrum Master, Product Owner) description of the intention
of particular practices. We will use the notions of Schwaber
and Sutherland’s Scrum Guide [15] when our investigation
yielded no particular indications of idiosyncratic conceptions.
Afterwards, we compare this idealized notion to the actual
observations we made. Occasionally, we will also differentiate
between the two Teams A and B.

Please note that these differences are neither good nor
bad per se. If possible, we will discuss the origins and the
consequences of the differences. Most of these claims are
neatly grounded in our data. However, some of them are rather
hypotheses to explain certain phenomena. If possible, we close
with an evaluation, based on the outcomes of the subsequent
feedback phase.

A. Sprints, Starting and Finishing Ceremonies

Both external teams were performing Sprints with a length
of three weeks. To support direct communication with the
Product Owners, the teams stayed in Berlin for two consecutive
days for finishing one Sprint (holding Sprint Review and
Sprint Retrospective) and starting a new one (Sprint Planning
Meeting).

A side-effect of these stays was that the Polish developers
had the chance to meet their German colleagues face-to-face.
One developer recalled: “We were in Berlin, and there was
a problem that we had, so I wrote an e-mail to a group
and after 15 minutes a guy that I haven’t seen before, came
and said ‘Hi, I can help you’ ”. Furthermore, these personal
contacts were likely to ease overcoming possible inhibitions to
subsequently phone each other. According to the developers,
Product Owners, and Scrum Masters, communication has
improved a lot over the last year.



B. Scrum Masters

According to the Scrum Guide: “The Scrum Master is
responsible for ensuring Scrum is understood and enacted”
[15]. He is often described as a “servant leader” and he serves
the development team, but also the Product Owner and the
organization [15].

Aside from being fairly new in the role of the Scrum
Master (he only fulfills it in the interim because the previous
Scrum Master left the external company), the only “service”
we observed was for the development team. In particular,
the Scrum Master neither had contact with the other Scrum
Masters working for the German company nor with the teams’
Product Owners (aside from the Sprint Planning Meeting and
Daily Scrums). Furthermore, throughout our observation his
dealing with the developers lacked the typical traits of a
Scrum Master. Probably both the missing integration into the
German company and the inexperienced behavior were due
to his newness, and indeed, both clearly improved until our
discussion event eight weeks later.

Furthermore, there was a Scrum Master for External
Teams who resided in Berlin. In the past, he was responsible
for setting up the communication between the two sites, i. e.
by “building bridges where needed”. To initially shape the
flow of information, he channeled all communication, delib-
erately making himself a bottleneck. Afterwards he gradually
withdrew to allow direct communication, intervening only if
needed. E. g. the majority of the German company’s elec-
tronic in-house communication was written in German, thus
excluding the external teams from both formal and informal
information flow, so the additional Scrum Master repeatedly
reminded the internal teams to switch to English and took the
lead in doing so.
In principle, the Polish Scrum Master on-site is the main point
of contact for the German Product Owners in case the delivered
quality is not satisfying. However, occasionally the Germans
still simply talk to the External Scrum Master when meeting
him in the hallway. And vice versa: The External Scrum Master
supports the Polish Scrum Master, e. g. if he needs to get in
contact with multiple German stakeholders at once.
However, over the past two years, the cooperation between the
two sites improved so much that the External Scrum Master
became able to serve an additional internal team. Nevertheless,
he still bears the overall responsibility for the cooperation
between the internal and the external teams and visits the
external teams on-site every three to four weeks.

C. Code Buddy

Although the external teams worked on dedicated products,
their work was not completely independent from the work of
the internal teams. Since the German company worked with
a considerable amount of legacy code, a perfect separation of
concerns was nearly impossible.

Twelve months prior to our observation, the management
introduced a new role named Code Buddy for facilitating
the cooperation between the German and the Polish teams.
Every other week one developer from each Polish team stays
in Berlin for five days to work close by the German teams. In
particular, the Code Buddy role is meant to serve the following
purposes:

• He represents his team in Berlin. If a German developer
needs to get in contact with one from the Polish teams,
he can walk over to the Code-Buddy’s desk and talk to
him face-to-face instead of calling Poland.

• And vice versa: His Polish team members can ask him to
talk to a certain German developer or to the in-house IT,
who are difficult to reach by phone.

Hence, the Code Buddy can be viewed as a bi-directional
proxy. That does not mean he needs to channel all communi-
cation, rather he introduces people to enable direct communi-
cation and is a fallback if this direct contact is temporarily not
available.

In these regards, the portrayals of the management who
introduced this role, and the developers who actually worked
together with the Code Buddy (or fulfilled the role themselves)
were in conformity. (We did not interview German developers
though.)

Reflecting on these points, the Code Buddy role has two
different aspects: technical ones and rather social ones (these
aspects are also schematically shown in Figure 2).

On a technical level, the Code Buddy is supposed to facil-
itate the inter-team communication between his team and the
internal German teams. In some way, the role therefore tries to
fulfill the purpose of a (Distributed) Scrum of Scrums (linking
Scrum teams to encourage “communication, cooperation, and
cross-fertilization” [2]), but fails to do this with the same
efficiency because of his communication events being purely
need-driven rather than institutionalized. Nevertheless, there
were plans at the German company to let the Code Buddy
attend the Daily Scrums of other teams, thus approaching an
institutionalized communication between internal and external
teams.

On the social level, the mere presence of a Polish developer
in Berlin should help the German developers to see the external
developers as equal, which in turn should ease their integration
into the company. According to the Product Owners, the appre-
ciation of the Polish developers in Berlin indeed improved over
time, at least partially because of the Code Buddy’s physical
presence. On the personal level, the Polish developers seemed
to enjoy being in Berlin (e. g. the company rented an apartment,
for the Code Buddy). We consider this enjoyment of the stays
to be a healthy sign.

Code Buddy

Polish proxy 
for Germany

German proxy 
for Poland

technicalsocial technical

Integration into company

Degenerated Scrum of Scrums

being the 
Code Buddy

social Being 
isolated from 

rest of team

Enjoying 
stay in 
Berlin

Fig. 2. Technical and social aspects of the Code Buddy role, including
both purposes and side-effects. The color of the frames characterizes the
favorableness of certain (group of) phenomena (red/dashed = undesired,
green/dotted = welcome). See Subsection III-C for details.



However, the Teams A and B differ in various ways when
it comes to the details of the role “implementation”:

• The Product Owners of Team A regarded the Code Buddy
as a normal developer working on the same Stories as the
rest of his team.
Yet, during the Daily Scrum the Code Buddy seemed
slightly isolated because he did not know which Tasks to
work on. The rest of his team reacted adeptly by sending
him a list of open Tasks related to their current Stories
– the Code Buddy was to pick one and inform the team
about his choice.
As stated by both developers and Product Owners, the
Code Buddy provided technical support during the ac-
ceptance tests (e. g. changing database entries directly in
order to see the changes in the user interface) and hence
profits from immediate feedback (see the “War Room”
practice in Subsection III-G for a similar effect).

• In contrast, the Product Owner of Team B emphasized the
first proxy property mentioned above (“The Code Buddy
is here for me”), and was said to be working on Stories
of his own.
During the retrospective the Code Buddy of Team B
proclaimed he felt isolated from the rest of his team
during his stay in Germany. This also had technical
consequences: the Code Buddy started a new Story on
his own because the team saw no possibility to integrate
him into their actual development process.
The acceptance tests were conducted at a stretch at the
end of the Sprint, and without assistance of the Code
Buddy.

We will summarize the evaluation of Code Buddy role in
Subsection IV-D.

D. Sprint Retrospective

Scrum Guide: The Sprint Retrospective “is an opportu-
nity for the Scrum Team to inspect itself and create a plan
for improvements to be enacted during the next Sprint” [15].
During this meeting, the “Scrum Master encourages the Scrum
Team to improve [. . . ] its development process and practices
to make it more effective and enjoyable for the next Sprint”
[15].

In practice, the Product Owners were not present during the
Retrospectives, which were, for the developers’ convenience,
usually conducted in their mother tongue Polish. However, for
the purpose of our observation, the teams switched to English.

Since both teams shared the same Scrum Master, their
Retrospectives had some things in common. They started
with the team members (including the Scrum Master himself)
individually writing “good” and “bad” aspects of the recent
Sprint onto separate cards. Each member shortly explained
his cards and stuck them on a flip chart, grouping them on-
the-fly. The Scrum Master afterwards determined the “most
important points” without consulting the rest of the team.
However, some additional cards were chosen on developers’
request. For each of these points, the team discussed if and how
this point should be approached and usually to-dos including a
responsible person were formulated. However, we do not know
what happened with these to-dos afterwards. Furthermore,

there was no evaluation of the previous Retrospective in means
of determining whether the former goals have been achieved.

Aside from these similarities, the Retrospectives of the two
teams still showed a number of differences:

• Team A clearly demonstrated awareness of self-defined
rules, e. g. by recalling “not to discuss one-time-things”.
The formulated to-dos had the potential to actually im-
prove the next Sprint (e. g. consider effort for bug-fixes
because of belated tests during the last Sprint, or split
Stories with too long acceptance criteria). Finding re-
sponsible persons went smooth.
The departure of the previous Scrum Master was men-
tioned by almost every developer, revealing a high appre-
ciation.
The atmosphere was relaxed and left room for humorous
cards like “Good: Cookies during meeting”.

• Team B showed no interest in institutionalizing practices
(“We don’t want to do War Rooms for every Story like
Team A. We decide this by gut instinct”).
For many of the discussed points, the team did not see
the need for formulating a to-do because they simply
“will take care in the future”. Additionally, finding a
responsible person for once formulated to-do proved
difficult.
The previous Scrum Master was not mentioned once.
The atmosphere was a bit more strained than Team A’s,
though not tensed. All of the positive cards were purely
technical.

Roughly speaking, throughout the Retrospective Team A
clearly showed more interest in taking responsibility and
improving their process, whereas Team B simply wanted to
get the technical stuff done.

E. Sprint Planning

Scrum Guide: During a Sprint Planning meeting, the
“Product Owner presents ordered Product Backlog items to the
Development Team and the entire Scrum Team collaborates on
understanding the work of the Sprint” [15]. This description
held for both external teams: The items presented by the
Product Owners (“Stories”) were discussed, and changes to the
acceptance criteria were made until everyone was satisfied.

In contrast, the next step was not in the scope of the Sprint
Planning Meetings we attended: “After the Development Team
forecasts the Product Backlog items it will deliver in the Sprint,
the Scrum Team crafts a Sprint Goal” [15]. Both teams only
estimated the effort for the Stories presented by their Product
Owner(s) rather than also committing to a subset of them,
which was caught up in a “Sprint Planning II” we did not
observe. The estimation was done by means of “Story Points”,
a non-standardized metric for estimating effort, instead of an
absolute metric like ideal working days.

We observed a number of differences between Teams A
and B in the way of holding these meetings, including the
following:

• At the end of the meeting the Product Owners of Team A
summarized all Stories discussed in the meeting, and



reiterated the priorities of the Stories, thus drafting a
“Sprint Goal light”.
The Product Owner of Team B did nothing comparable.

• During the discussions in Team A, the developers recalled
an issue from their previous Retrospective (the team
agreed on asking the Product Owner for crucial aspects
in the Story acceptance criteria in order to adjust their
Smoke Tests accordingly).
In contrast, Team B showed no such “reflective” behavior
– lacking appropriate to-dos from their Retrospective after
all.

The Sprint Plannings of the teams did not differ much on
the content level on which they were both carried out effec-
tively. However, Team A’s meeting seemed more enjoyable for
all participants and the reasons for this are probably beyond
the scope of this study.

F. Daily Scrum & Sync Meeting

Scrum Guide: “The Daily Scrum is a 15-minute time-boxed
event for the Development Team to synchronize activities and
create a plan for the next 24 hours.” It “is not a status meeting,
and is for the people transforming the Product Backlog items
into an Increment.” Finally, it “eliminates other meetings”
[15].

The Daily Scrums of Teams A and B were held via a
videoconference system and were attended by all members
of the Scrum team, i. e. all developers (including the Code
Buddy), the Scrum Master, and the Product Owner(s). The
External Scrum Master only attends when he resides in Poland
– he does not participate when in Germany. This practice is
meant to reduce the intra-team communication risks as it brings
the two sites together. The attendance of the Product Owners
in the Daily Scrum is not a novelty due to the distribution, it is
rather the usual way to conduct these meetings in the German
company. The Daily Scrum is the only time of the day when
the cards on the teams’ boards are altered or moved.

In addition to the commonly known Daily Scrum both
teams applied a practice they called Synchronization Meeting
(“Sync” in short). The Sync starts 15 minutes ahead of the
Daily Scrum and has the following properties:

• The purpose of the meeting is to clarify technical aspects
of the team’s work that the Code Buddy needs to know
before starting the actual Daily Scrum. The idea is to keep
technical details out of the Daily Scrum.

• The Product Owner does not participate. For the devel-
opers attendance is not mandatory, but usually everyone
is present.

• There are no rules comparable to those of the Daily
Scrum: neither are there predefined questions to answer,
nor any need to say something at all. The whole meeting
is driven by the developers’ needs and continues until no
more questions pop up. Hence, there is no time-boxing:
If need be, the Sync will be resumed right after the Daily
Scrum, practically occupying all developers.

The Sync meeting contrasts with the Daily Scrum in two
ways:

• The commonly held (i. e. including the Product Owner)
Daily Scrum was intentionally introduced from corporate
management to reduce the communication risks, whereas
the Sync meeting evolved from the teams themselves as
a consequence of the Code Buddy being separated from
the rest of his team and feeling the need to stay in touch.
However, both teams did not recall how, when, and by
which team this practice was initially introduced.

• Thus the Daily Scrum follows commonly known and
accepted rules, whereas the Sync meeting clearly lacks
deliberate consideration.

First of all, the Sync Meetings obviously did not answer
all of the Code Buddy’s questions since the Code Buddies of
both teams did not know on which Task/Story to work until
their respective Daily Scrum. Apart from that, according to
the developers, the Sync meeting somewhat replaced the Daily
Scrum, which in turn degenerated into a plain status report for
the Product Owner (“just to show the Product Owner that we
do stuff”) instead of being a planning meeting. This clearly
contradicts the Scrum Guide and, much worse, is disliked by
the developers because they already know almost everything
they are going to hear. But instead of dunning this kind of
Daily Scrum, they accept it because they feel as an “external
company that needs to show progress”.

One the one hand, the Product Owner gets the impression
to be well informed and is satisfied because she always gets a
furbished report of what is going on. On the other hand, this
might make the teams consider themselves safe because they
always manage to keep the 15-minute-time-box, whereas the
actual purpose of this limit is undermined by the rule-abolished
Sync meeting.

If both introduction and execution of practices are subject
to conscious reflection, the evolvement of new practices is an
indication of a healthy Agile process. However, we consider
both the current Daily Scrum and the newly introduced Sync
meeting to be undesired deviations.

G. The War Room

The War Room is a practice the teams introduced some
iterations prior to our visit (and again, the teams did not
recall by whom it was introduced). Before a Story is given
to the Product Owner for acceptance, the whole development
team sits together and tries to “break” the new feature, thus
discovering several failures earlier in the process without
requiring the Product Owner’s time.

The Product Owners claimed to receive much better results
since the teams had applied this practice because “they think
about their products from the end-users’ perspective”. While
in a co-located team the Product Owner might directly explain
or show the fault he found, in a distributed setting he uses
the phone, e-mail or bug tracking system. By discovering the
failures earlier during the process, the need for this indirect
communication drops. Thus, the teams’ overall velocity did
not decrease because of this additional task; effectively, it
increased because of the saved feedback loops between the
developers and Product Owner.

Overall, the War Room is a practice to avoid communica-
tion between the two sites by cutting off the underlying needs.



H. Pair Programming & Test-Driven Development

The developers stated they are “encouraged to do Pair Pro-
gramming and Test-Driven Development” since it increased
the code quality, difficult problems could be solved more
easily, and the overall velocity did not drop, in fact, it maybe
was even higher. Most of the work is said to be done in pairs,
excluding only small tasks. The decision whether to pair or
not is said to be made during the Sync meeting.

During the Retrospectives and the interviews, and in the
online surveys multiple developers of both teams praised
pair programming as a “really cool” practice. In the teams’
workspace we counted more chairs than developers, thus
easing spontaneous pairings, which actually happened more
than once. During our field observation we did not recognize
differences worth mentioning in the occasions and applica-
tions of this practice. However, Test-Driven Development is
perceived as a more ambiguous practice, mainly because of
resentments against ultra-high code coverage.

Interestingly, the teams additionally apply practices they
both call “Simultaneous Programming”, which have slightly
different meanings depending on the applying team. Both
practices involve multiple (more than two) persons. In Team A,
there are three persons working on two computers (two fixed,
and one oscillating between them). It is a practice they seldom
apply and which is probably rather a spontaneous extension of
Pair Programming sessions which a third developer, working
on a task of his own, interrupts by pulling out one of the
pair members. In Team B, three or four developers crowd in
front of one big screen, e. g. to deal with hard-to-understand
legacy code. They said they do this quite often, and despite
initial doubts, it “really works well”. However, neither of
these variants could be observed in action and the economic
efficiency is, if not precarious, at least worth considering.

IV. PUTTING THE PIECES TOGETHER

The previous section discussed the various practices the
two teams applied in their daily work, focusing on the differ-
ences between the intended way and the actual process. So
far, these practices were discussed in isolation, whereas in this
section we will continue investigating their interplay.

Albeit we observed two external teams, we found the most
interesting issues combined in only one of them: Team B.
Therefore, this section will primarily talk about Team B’s
situation, using our findings from Team A merely for a better
contrast.

A. Hanging of Team B

The product Team B previously worked on was basically
finished and the decision whether to implement additional
features or to start a new project was still open. Furthermore,
a previously announced decision deadline was not met due
to unsettled organizational assignments, resulting in an even
longer lean period. However, the project of Team A continued
and aid work was possible, so the decision was made to let
Team B support Team A, leaving Team B “on stand-by” until
the decision is finally made.

We will now emphasize some aspects of this situation:

• This constellation had a drawback which originates from
the company’s culture to rather statically assign teams
to their Product Owners. Since Team A already had two
Product Owners (in the midst of a handover) and both
teams now basically worked on the same project, Team B
actually worked together with three Product Owners,
complicating both coordination and communication.
During the events we attended both teams only had con-
tact with their direct Product Owners. However, according
to a Team B developer, during the recent Daily Scrums
his team had contact with all three Product Owners “and
it happens that there are really strange people that I don’t
know”.

• Consequently, there was no clear separation of the topics
and the sovereignties of the two Teams A and B. E. g.
during the Sprint Planning of Team B, developers of
Team A needed to be called in to clear up the depen-
dencies between two Team-B-Stories.

• Additionally, Team B’s dedicated Product Owner, who at
her own judgment already had “eight irons in the fire”,
now was in charge of a foreign topic. E. g. during the
same Sprint Planning Meeting, the Product Owner could
not speak with full confidence, and referred to what she
heard from the Product Owners of Team A.

• Finally, Team B was not provided with a clear vision,
which was also criticized but not really discussed in their
Retrospective (“messy roadmap”, “no own product”).
The Product Owner’s omission of a Sprint summary
during the Sprint Planning was a further indication of
her not feeling at home in this topic.

From our point of view, this kind of constellation has
two major drawbacks. Both of them lack clear empirical
evidence, and are merely hypotheses which could guide further
studies. Nevertheless, we still find them important enough to
be discussed here.

The first problem is a lack of intrinsic motivation [16].
The developers of Team B complained about their uncertain
future, which indicates how difficult it may be for the Product
Owner to formulate a clear vision under these circumstances.
The exceeded decision deadline makes it harder for the team
to preserve their trust in the company’s will to alter these
circumstances. With intrinsic motivation falling apart, only the
extrinsic motivation (i. e. professionalism) remains. A team like
this might still perform well for a while, but not for long.

The second problem is closely related to the first: A lack
of responsibility. A team without a dedicated product has
no good reason – professionalism aside – to feel responsible
for it. With responsibility being a core ingredient of Agile
processes, this poses a considerable risk for the team’s long-
term performance. A possible manifestation of this problem
might be the reluctance to take over responsibility during the
Retrospective.

Confronted with this point of view during the final dis-
cussion, Team B and their Product Owner claimed that (1)
there had not been a state of being “on stand-by” (despite the
statements in the interviews and the Retrospective) and (2)
either way, the team did not have the choice to do anything
differently. Given this mindset, we saw no opportunity to



discuss this topic any further.

In a non-distributed setting, the odds for this to happen
might be lower because the moans we heard when being
on-site were probably too subtle to be heard in the upper
organizational levels in Germany.

The secondary study of Hossain et al. [8] revealed the
practice of quarterly presentations of the Product Vision to
be useful in some projects. Maybe the Product Owner’s strong
need to be able to present such a vision could start an upward
cascade, seizing the levels of organization that caused this long
lean period.

B. Possible Performance Misconception

During our analysis we stumbled upon an interesting
discrepancy. One the one hand, the Product Owner of Team B
was very proud of the team, praised their velocity using
superlatives and even recalled a recent leap forward. The
developers themselves were proud to always deliver what they
had committed to.

On the other hand, there had been recent personnel changes
in Team B – members left, new ones joined. The Scrum
Master accordingly pointed out that the team is not in the
“Performing” state yet.

Given these circumstances, technically both the perceived
consistently high performance and the recent performance
boost are unlikely to be accurate.

We presented an alternative explanation for the Product
Owner’s impression during our discussion session: The devel-
opment team worked on a different topic than before, hence
the velocity is expected to drop. The Product Owner herself
also worked in a different field, which tends to decrease the
performance evaluations’ accuracy. Furthermore, the Product
Owner worked on far more than one topic and naturally had
less time for both providing valuable guidance and evaluating
the performance. Hence, the satisfaction might have been
delusive and the team might not have performed as good as
perceived by the Product Owner.

The Product Owner tried to weaken our points with two
arguments. Firstly, the effort was measured by using Story
Points which were “independent of the topic”.
The problem of measuring effort with a relative measure like
Story Points is obvious: The team needs experience in the
particular field of work to estimate accurately. Story Points
are a highly subjective metric, and are not independent of the
topic.

Secondly, she admitted that she had indeed worried about
dropping performance upon fluctuation, but in the past that had
never actually happened.
But even if the second point was true, two problems remain.
First, the developers might struggle hard after a fluctuation to
sustain their performance level (e. g. in order to not jeopardize
the cooperation contract). This point was not fully rejected
during the discussion session. Second, even if the developers
do not struggle to maintain their level with fewer employees,
the question remains why they do not perform higher when
fully staffed. Again, in a non-distributed environment, the
situation would be slightly different, since the Product Owner

would probably scent the risen exertion after a personnel
change.

From our point of view, the whole team (not only the
developers) was lacking a pro-active approach towards the
issue of fluctuation, performance, and expectations towards
performance.

C. Little Sensitivity for Process Issues

Throughout our observation, Team B’s focus was primarily
adjusted on technical issues. Although the ability to concen-
trate on the actual work is important to achieve a high velocity,
it is an important ingredient of Agile processes to “inspect
& adapt” [12]. The developers need to step back, switch the
perspective, and think about the process itself.

The very Scrum ceremony for this is the Retrospective at
the end of each Sprint, which, at least in the case of Team B,
was clearly dominated by technical issues. The interim Scrum
Master did not shift the focus, instead he afterwards said
“the Retrospective was this technical because I’m a technical
person”. This is a dangerous statement: The overall direction
of the Retrospective should be set by the whole team. The role
of the Scrum Master is to enable the team to be Agile, i. e. to
think about the process.

From the developers themselves we got statements like
“there are no process problems in such small teams” and
“there is no need for continuous improvement.” The overall
conviction was like: “We as developers are not responsible
for the process. That’s other people’s business.” That attitude
is even more dangerous because it is the very duty of the
whole team to forge the Agile process, and not a task which is
confined to a particular person or role, like the Scrum Master.

Throughout the final discussion, Team B reinforced their
attitude, e. g. by seconding their former statements. Finally, the
session itself was less a vivid discussion than a presentation
of hypotheses from our side, and shielding and rejecting from
the team’s side, revealing little critical faculties (see a further
discussion on this in Subsection V-C).

Team B did all the Scrum practices (Daily Scrum, Sprint
Planning, Review and Retrospective), and introduced new
ones (e. g. Sync Meeting), but at least three of them did not
serve their intended purpose – or even lack a well thought
out intention. These deviations did not attract much attention
because their effect on the performance – however big or small
– was not clearly perceived. Neither were they the subject of
internal inspections by the team itself. Therefore, the team
somehow did Scrum, but was not Agile.

This lack of reflection (or at least lack of sensitivity for
process issues) might also explain why the possible overbur-
dening of Team B (especially after fluctuation, see previous
subsection) was not recognized or at least not brought up.
Another reason might be that both teams (not only Team B)
considered themselves too much as a service provider for
the German company instead of an equally treated, self-
organizing Agile team. The silent acceptance of the “Status”
Daily Scrum, the “need to show progress”, and the negation
of an unpleasant “hanging mode” affirm this hypothesis. Either
way, an open discussion between the involved parties would
probably improve the overall situation.



D. Isolated Code Buddy

The very practice that reflects the distributed setting of this
case study is the Code Buddy role. Therefore, the observed
phenomenon of Team B’s Code Buddy feeling isolated de-
scribed above is of particular interest.

During the Daily Scrum, the Code Buddy could not follow
the line of thought of the rest of his team (“Which Stories
are you talking about?”) and also stated that he did not know
what to work on. Eventually, the team decided to start a new
Story solely for the Code Buddy, thus decreasing the need for
intra-team communication.

In the Retrospective one week later, this exclusion from the
team was discussed shortly without yielding any solution. The
developers explained to their Scrum Master that any attempt
to improve the communication with the Code Buddy would
be in vain, because the Code Buddy sat “next to the Product
Owners yelling at their phones”. This stalling position was
defended during the final discussion as we proposed to give
Distributed Pair Programming (e. g. using Saros2 or a similar
tool) a try to improve the integration of the Code Buddy into
his team.

Ironically, the Code Buddy role was meant to facilitate
communication, but he himself suffered from a shortage of
communication. However, we did not hear anything like this
from the other team which applied the same practice. The
only difference worth mentioning lies in the history of the
role implementation: In Team A the same developer fulfilled
the Code Buddy role for a long period of time, whereas in
Team B the role rotated. Even if this led to more intense
personal contacts in Berlin, we were not able to explain how
this difference affects the cohesion of the team. Either way,
during the closing discussion Team B made clear, that for
them being the Code Buddy multiple times in a row was out
of question.

In summary, the Code Buddy role is clearly a neat practice
for ice-breaking and warming up. The absence of direct team
members forces the Code Buddy to get in contact with the in-
ternal teams himself. Nevertheless, a year after its introduction
the role conception itself might be worth reconsidering. The
company’s management should ask itself what they expect of
this role, and what this role is capable of. Maybe it is no longer
the best practice to achieve the actual objective of integrating
internal and external teams.

V. CONCLUSION

In the first subsection we will answer our the questions
raised in Section II-B and then summarize our insights. Fur-
thermore, we provide additional Lessons Learned on both the
content level and regarding the research process.

A. Answering the GQM Questions

Q1 What is the current situation of the project?
We investigated a nearshoring setting in which two Polish
Scrum teams (A and B) worked for a German company. In
principle, the external teams worked on dedicated products,

2An Eclipse plug-in for Distributed Collaborative Editing (see
http://www.saros-project.org)

and each team had a so-called “Code Buddy” who facilitated
the residual integration work by spending five consecutive days
in the company’s headquarter. However, Team B’s work was
done for now, so it supported Team A until further notice.
This situation and the yet unclear future of Team B may have
resulted in weakened motivation and responsibility. Recent
personnel changes in Team B and a partially isolated Code
Buddy might have lowered the team’s potential. In addition,
working in a foreign topic (for both developers and Product
Owner) may have hampered the accuracy of the performance
assessment so that an unrecognized underachievement seemed
possible.

Q2 Which amendments to Scrum have been made?
In addition to local practices borrowed from eXtreme Program-
ming (e. g. Pair Programming and Test-Driven Development),
there were several practices reflecting the distributed nature of
the projects. First of all, the Daily Scrums were conducted
in a distributed manner, also involving the Product Owner
via a videoconference system. Furthermore, there were two
additional roles, namely the “Code Buddy” (as described
above), and the “Scrum Master for External Teams” who bears
the overall responsibility for the cooperation. A home-grown
practice named “Sync Meeting” – which is conducted without
the Product Owner – reflected the Code Buddy’s need to stay
in touch with the rest of his team.

Q3, Q4, & Q5 How well does the process fit the project’s
conditions? Which problems were mitigated or eliminated by
and which evolved due to the actual applied process?
The Sync Meetings lacked the rules other events have (e. g.
time-boxing) and took over the planning trait from the Daily
Scrums, which in turn degenerated into a demonstration of
progress to the Product Owner. Hence, the Product Owner
might had gotten the impression of being in the thick of the
actual process (which the Product Owners of internal teams
really are), but in fact retrieved only a furbished status report.
Combined with the seemingly constant performance (measured
in obfuscating Story Points) this might have conveyed the
delusive feeling of mitigated nearshoring risks.
Team B’s attitude was maybe co-determined by the position
of being a service provider, so they felt no urge to change
themselves, since the final outcome appealed to the purchasing
company. Accordingly, the process-critical Sprint Retrospec-
tive was minimally constructive and revealed little potential to
improve the subsequent Sprint. The yet inexperienced Scrum
Master was not able to draw the developers’ attention to
process-related issues. Overall, Team B technically did Scrum,
but without being Agile.

Q6 How satisfied are the involved persons?
Instead of yielding a simple answer, our research led us to
further questions: What does satisfaction mean, i. e. how does
a Product Owner know that his team actually performs well?
Clearly, measuring effort with Story Points cannot yield accu-
rate performance ratios, and Product Owners need to be aware
of this deficiency. In the end, they have to decide whether
they want to look under the hood (but hereby must not fool
themselves) or if they trust the developers as a self-organizing
team.
Throughout the observed events, the developers of Team A
seemed more relaxed and enjoying their jobs, whereas Team B
seemed a bit tensed, as if the unanimously positive descriptions



of their current situation (e. g. in the surveys) were telling only
half the story. But that might be an error in “measurement”,
because the silent observation of their daily work revealed no
according indications. Maybe the developers did not felt them-
selves in a valuation situation when communicating informally
using their mother tongue (see the remarks on the research
process below).

B. Further Lessons Learned

The principle of “inspect & adapt” should be applied
on multiple levels. Not only should the teams evaluate their
own decisions and react accordingly, but also should the
higher organizational levels which introduced the roles of the
Code Buddy and the External Scrum Master, and have kept
them since. Both had their particular purposes and achieved
beneficial effects. However, one should not lean back but re-
consider these decisions (e. g. within the scope of high-level
Retrospectives), and draw conclusions if need be.
Admittedly, in a perfect Agile World, such decisions from the
outside would not exist. The teams themselves would decide
upon the necessity of new roles and their implementation
details. However, it is well comprehensible that certain foun-
dations need to be laid by a higher authority (i. e. renting an
apartment for the Code Buddy is no decision to be made by the
teams on their own). But maybe the time has come to grant the
teams more decision-making competence, starting with making
them aware of the fact that they can contribute to these kind
of things instead of only being the receivers.

C. Summary

In this case study we presented a nearshoring setting
in which two Polish Scrum teams worked for a German
company. We contrasted the process elements self-imposed by
the German company’s management and the teams with the
actual process and the applied practices.

The overall goal of the study was to devise a broad
characterization and preliminary evaluation of the actual Scrum
process regarding different aspects (appropriateness, effective-
ness, efficiency, consistency, maturity, acceptance, and com-
pleteness), to make proposals for improvements, and to guide
potential specialized follow-up studies.

Agile nearshoring is feasible and may produce high satis-
faction amongst Product Owners since the deliverables meet
the expectations regarding functionality and quality (effec-
tiveness). However, the analyzed constellation did not ensure
an actual Agile process (consistency, completeness, maturity).
The involved teams need to develop “process awareness” or
“agility” (acceptance, consistency) in order to achieve the
desired project goals (appropriateness) and to keep hidden
costs low, which are entailed by a lack of self-reflection and
hence adaptability (efficiency).

To determine the actual magnitude of friction loss in the
investigated setting, a longitudinal observation of the teams
and their environment would be required.

Let us close by sharing an additional insight we gained
during data gathering. The observed teams ought to be well
informed about what is going on. We got the impression,
especially since we worked with external teams, the teams

sometimes felt evaluated “from above” instead of perceiving
our questions and feedback as an opportunity to improve their
own process. It might be a good idea to let the management
clarify that the examination is without consequences for the
team members. Otherwise, we as researchers are possibly
perceived as a threat, which might explain the impression of
some persons keeping a low profile.

ACKNOWLEDGMENT

The authors would like to thank the observed teams for
their patience and feedback.

This work was partially supported by a DFG grant.

REFERENCES

[1] J. Erickson, K. Lyytinen, and K. Siau, “Agile modeling, agile software
development, and extreme programming: The state of research,” Journal
of Database Management, vol. 16, pp. 88–100, 2005.

[2] J. Sutherland, G. Schoonheim, and M. Rijk, “Fully distributed scrum:
Replicating local productivity and quality with offshore teams,” in
Proceedings of the 42nd Hawaii International Conference on Systems
Sciences, 2009, pp. 1–8.

[3] B. Drummond and J. F. Unson, “Yahoo! distributed agile: Notes from
the world over,” in Proceedings of the Agile Conference, 2008, pp.
315–321.

[4] E. Therrien, “Overcoming the challenges of building a distributed agile
organization,” in Proceedings of the Agile Conference, 2008, pp. 368–
372.

[5] M. Vax and S. Michaud, “Distributed agile: Growing a practice to-
gether,” in Proceedings of the Agile Conference, 2008, pp. 310–314.

[6] S. Berczuk, “Back to basics: The role of agile principles in success with
an distributed scrum team,” in Proceedings of the Agile Conference,
2007, pp. 382–388.

[7] G. K. Hanssen, D. Šmite, and N. B. Moe, “Signs of agile trends in global
software engineering research: A tertiary study,” in 6th International
Conference on Global Software Engineering Workshop (ICGSEW),
2011, pp. 17–23.

[8] E. Hossain, M. A. Babar, H. Paik, and J. Verner, “Risk identification and
mitigation processes for using scrum in global software development:
A conceptual framework,” in Proceedings of the 16th Asia-Pacific
Software Engineering Conference, 2009, pp. 457–464.

[9] S. Jalali and C. Wohlin, “Agile practices in global software engineering
a systematic map,” in Proceedings of the 5th International Conference
on Global Software Engineering, 2010, pp. 45–54.

[10] V. R. Basili and D. M. Weiss, “A methodology for collecting valid
software engineering data,” IEEE Transactions on Software Engineer-
ing, vol. 10, no. 6, pp. 728–738, Nov. 1984.

[11] J. M. Corbin and A. Strauss, “Grounded theory research: Procedures,
canons, and evaluative criteria,” Qualitative Sociology, vol. 13, no. 1,
pp. 3–21, 1990.

[12] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunning-
ham, M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries,
J. Kern, B. Marick, R. C. Martin, S. Mellor, K. Schwaber, J. Suther-
land, and D. Thomas, “Manifesto for agile software development,”
http://www.agilemanifesto.org, 2001, last access: 2013-02-22.

[13] D. J. Anderson, Agile management for software engineering: Applying
the theory of constraints for business results. Prentice Hall, 2004.

[14] B. W. Tuckman, “Developmental sequence in small groups,” Psycho-
logical Bulletin, vol. 63, no. 6, pp. 384–369, 1965.

[15] K. Schwaber and J. Sutherland, “The Scrum Guide – The Definitive
Guide to Scrum: The Rules of the Game,” http://www.scrum.org/Scrum-
Guides, October 2011, last access: 2013-02-18.

[16] J. E. Barbuto, Jr. and R. W. Scholl, “Motivation sources inventory:
Development and validation of new scales to measure an integrative
taxonomy of motivation,” Psychological Reports, vol. 82, no. 3, pp.
1011–1022, 1998.


