A Tutorial on dSelf

Kai Knubben

27th September 2001

Contents

1 Installation

1.1
1.2

1.3

2 The
2.1

2.2

3 The
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

Requirements
Starting dSelf
1.2.1 Using the jar-file for execution . .
1.2.2 Using the class-file for execution .
The contents of the jar-file.

dSelf Virtual Machine and Compiler
The dSelf Virtual Machine
2.1.1 Starting the dSelf Virtual Machine
2.1.2 Using the dSelf Virtual machine .

2.1.2.1 The Terminal

2122 TheGUI
The Compiler
2.2.1 How to start the compiler

dSelf Language

Distributed dSelf Objects
Prioritized multiple inheritance
Method-holder-based privacy semantics .
Binary Methods
Primitive Objects
Mirrorobjects L.
Local Data Slots
Local Methods
The primitive Messages

3.9.1 Primitive Messages for Objects of Type Integer
3.9.2 Primitive Messages for Objects of Type Short
3.9.3 Primitive Messages for Objects of Type Long
3.9.4 Primitive Messages for Objects of Type Float
3.9.5 Primitive Messages for Objects of Type Double
3.9.6 Primitive Messages for Objects of Type String
3.9.7 Primitive Messages for Objects of Type ByteVector
3.9.8 Primitive Messages for Objects of Type ObjectVector

3

4 CONTENTS

3.9.9 Primitive Messages for Ordinary Objects 40
3.9.10 Primitive Messages for the Debugger 42
3.9.11 Other primitive Messages 43
4 The Grammar 45

5 Further Information 47

Chapter 1

Installation

This small tutorial describes step-by-step how to install and use dSelf. For infor-
mations about the distribution rough draft please read [1]. As dSelf is a derivate
of SELF you will find an overview about the language in [2] and informations
about its basic design philosophy in [4]. The design and implementation of dSelf
is described in more detail in [9].

1.1 Requirements

At first you need a file called dSelf vi 0 2.jar (the version numbers may
change in future releases), which is available at http://www.cs.tu-berlin.
de/"tolk/dself/.

If you just want to use the precompiled version of dSelf as it is delivered in
the jar-file, you only need the Java Runtime Environment [11]. The necessary
version depends on your usage. If you want to start the dSelf Virtual Machine
with a GUI, you will need the version 1.2 of the Java Runtime Environment (or
update an old version for Swing-support), but when you only need a terminal for
working, an older version may be sufficient. Anyway, to have the latest release
of Java certainly will be the best choice.

If you want to compile dSelf by yourself, you will need some additional tools:

JDK The Java Development Kit, Standard Edition, v 1.3 [12]
JFlex A tool for generating the scanner of dSelf[7]
CUP A tool for generating the parser of dSelf[6]

JavaDeps A tool for automatic dependency tracking[8]

gmake The GNU Make utility [13]

6 CHAPTER 1. INSTALLATION

1.2 Starting dSelf

There are two ways for using dSelf. You can either start the dSelf Virtual
Machine directly without extracting the jar-file, or by calling its class-file after
extracting it. In the latter case you also have access to the compiler of dSelf
and so it is recommend to extract it. Anyway, both ways will be described in
the next two sections. For both approaches please make sure that the class-path
variable of Java is set correctly to the directory that contains dSelf.

1.2.1 Using the jar-file for execution

If you execute the jar-file directly, the dSelf Virtual Machine will be started.
You have to start the Jave Virtual Machine with the option -jar, just like in
the following example:

java -jar -Djava.security.policy=dSelf.policy dSelf_v1_0_2.jar -t -cr

As you can see, there are some additional informations about the security poli-
cies necessary, given by the option -Djava.security.policy= . Its argument
must be a Java Security Policy File that can be created by using policytool
which is part of the Java distribution. Alternatively you can extract one from
the distributed dSelf file, by typing :

jar xf dSelf_v1_0_2.jar dSelf.policy

But be aware that this policy permits everything !

The options -t and -cr are processed by the dSelf Virtual Machine and will
be described in a later section.
1.2.2 Using the class-file for execution

If you want to start the class file of the dSelf Virtual Machine directly, you
first need to extract the jar-file with tool jar that is delivered with the Java
environment. To do this, type the following line:

jar xf dSelf_v1_0_2.jar

Now you will find a file called dSelfVM.class in the current directory, that can
be executed by calling the Java Virtual Machine like this:

java -Djava.security.policy=dSelf.policy dSelfVM -cr

1.3 The contents of the jar-file

When you have extracted the jar-file, you will find several files and directories.
The most interesting contents are:

1.3. THE CONTENTS OF THE JAR-FILE 7

dSelfVM.class The dSelf Virtual Machine
dSelfComp.class The dSelf Compiler

gpl-license The license of the GPL

dSelf/ A directory with the implementation files of dSelf

doc/ A directory with the descriptions of the implementation, generated by
javadoc

CHAPTER 1. INSTALLATION

Chapter 2

The dSelf Virtual Machine
and Compiler

This section describes the usage of the dSelf Virtual Machine and the dSelf
Compiler. All start-parameters are explained and the basic elements of the
dSelf Virtual Machine-GUI are explained in detail.

2.1 The dSelf Virtual Machine

The dSelf Virtual Machine is main component of dSelf. It evaluates the scripts
and makes it possible to change the state of the system interactively by providing
a shell. The shell can be started either in terminal or GUI mode.

2.1.1 Starting the dSelf Virtual Machine

The previous sections already described how to start the dSelf Virtual Machine,
so here only the options will be enumerated. All possible options are:

-h gives a little help about the usage

-V verbose, give informations when starting
-t start with terminal front-end

-cr create registry when not found

-f <name> load script when starting
-b <name> bind the VM to the given name (default: dSelfVM)
-r <name> re-bind the VM to the given name

-ds activate debugger of scanner at start

9

10 CHAPTER 2. THE DSELF VIRTUAL MACHINE AND COMPILER

-de activate parser-debugger(CUP) at start

-dp activate parse-tree debugger (with parenthesis)
-di activate parse-tree debugger (with indention)

-dl activate search path debugger (lookup algorithm)

Printing the Usage

The option -h prints a little list with all possible options that can be used. It
looks similar to the list above.

Verbose mode

With -v you can start in verbose mode to obtain some additional information
about the state of the dSelf Virtual Machine. The output that will be generated
looks like this:

Name of VM......coviiiininiininninenen. "vm" (bound)

Chosen front-end............... ... GUI

Load file...... ..., "smallWorld.dSelf"
debugger of scanner................... disabled

debugger of parser(CUP)............... disabled

Generate flat parse-trees............. enabled

Generate indented parse-trees......... disabled

Show search path of lookup algorithm..disabled

Try to bind the name of the VM to the RMI-Registry..... 0K
Initialize the dSelf-world.......... ..., 0K
Generate the GUI.......ttt 0K

This information can be very useful if something went wrong at start time.

Choosing a view

The default view of the dSelf Virtual Machine is a GUI that was created with
Swing. If you want for some reason (e.g. you haven’t installed Swing) to start
with a terminal instead, you can do this with the option -t.

Creating a RMI-Registry

As dSelf is a distributed language, there must be a way to connect to another
dSelf Virtual Machine by using some kind of middleware. The middleware used
for dSelf is Java-RMI. In order to locate remote machines, dSelf must be con-
nected to a registry. You can do this by starting a new registry manual by
starting the program rmiregistry that is provided by Java environment. Alter-
natively you can advise the dSelf Virtual Machine to create a new one itself by
using the option -cr if there is no registry already running. This can be useful

2.1. THE DSELF VIRTUAL MACHINE 11

when you start some instances of dSelf, each with an own registry, which are all
located on different hosts and therefore using separate address spaces.

Note that the life time of an automatically created registry is bound to the life
time of the dSelf Virtual Machine that created it ! So if you start two instances
of dSelf on one machine by using the option -cr, the first one will create a new
registry and the second one will use it, too. If the first one terminates, the
second one won’t find the registry any more, because it terminated with the
first dSelf Virtual Machine ! As you can expect this will lead to undesirable
situations. In case of some instances that are located on the same machine,
starting the registry manual is the best choice.

Binding to the Registry

In the previous section one saw how to create a RMI-Registry. Now we want
to use it with the options -b <name>> or -r <name>. When several dSelf
Virtual Machines were started, one would like to connect them. In order to
connect them, one first needs a name to identify it. The IP-address of its
location provides not enough information, because there could be more instances
of dSelf on the same computer. With option -b <name> one can bind dSelf
Virtual Machine the with a given name to the registry. It might happen that for
some reason the preferred name is already bound to the registry, while no other
program is using it. E.g., when one kills the dSelf process, its virtual machine
has no chance to unbind its name at the registry. In case of such a situation, one
can re-bind the name to the registry by using the option -r <name>>, while
the old binding is deleted.

If both options are omitted, the default name “dSelfVM” is used, but then
one should be sure that only one dSelf Virtual Machine is running on the same
computer.

Starting a script

After the dSelf Virtual Machine has booted, one can advice it to start a script
with the given name immediately with the option -f <name>>. This has the
same effect as typing this input directly after booting:

’<name>’ _RunScript

The debuggers

The dSelf Virtual Machine offers several debuggers to the user. They provide
information of the current state of the scanner, parser or lookup algorithm of
dSelf.

The debugger of the scanner

With option -ds, the debugger of the scanner will be enabled. It will print all
scanned tokens on the standard output stream.

12 CHAPTER 2. THE DSELF VIRTUAL MACHINE AND COMPILER

The debugger of the parser

With option -de, the debugger of the parser (CUP) will be enabled. It will
print all actions (shift/reduce) that were done by the parser. For further infor-
mation about it refer to the documentation of [6]. This option is very useful in
combination with option -ds.

Printing the parse tree

Do you have problems by analyzing the grammar of dSelf ? With option -dp
the parser will generate a parse tree for each parsed input. The structure of this
tree is represented by using parenthesis. The grammar can be found in [9].

Printing the parse tree with indention

The previously mentioned option printed the parse tree in a compact but not
very readable way. Option -di prints the same tree more attractive by using
indention for displaying its structure.

Printing the search paths

dSelf uses - like SELF - an lookup algorithm for resolving the inheritance de-
pendencies of objects. By using option -dl one can advice the dSelf Virtual
Machine to print the search path, when an object is delegating a message to
another object. This might be useful for debugging and learning purposes. As
the lookup algorithm of dSelf is equal to its counterpart in SELF, please refer
for a description to [2].

2.1.2 Using the dSelf Virtual machine

There are two possibilities for working with the dSelf Virtual machine. The first
one is a terminal that needs only few resources and the second one is a more
comfortable GUI. The latter one needs Swing and could be a bit slow on older
computers.

2.1.2.1 The Terminal

When the dSelf Virtual machine is started in terminal mode, one will get a shell
like this:

Welcome to dSelf !

#dSelf[0]> _Print

lobby: (| systemObjects* = systemObjects. vm* = vm. |)
-> nil

#dSelf[1]> _AddSlots: (|

x=(la.b.cl)

1

-> lobby

2.1. THE DSELF VIRTUAL MACHINE 13

#dSelf[2]> x _Print

an object: (| a <- nil. b <- nil. ¢ <- nil. |)
-> nil

#dSelf[3]>

After the dSelf Virtual machine has been started, one will find a prompt that is
waiting for some input. Now one can enter any (syntacticly correct) command.
After pressing the enter key, the input will be evaluated and executed directly.

An input can be split over more than one line. The terminal uses internally
a parenthesis counter, that recognizes the end of an input when the number of
the open parentheses matches with its closed counterparts.

2.1.2.2 The GUI

When one starts the dSelf Virtual machine without the option -t, a window will
appear:

lecome to d3e1F !
p—
_Frint % G
lobby: | systemObjects* = systemObjects. wm* = vm. |2

- nil @---'H
BT

E |LaddsTots: (] x. v. z. 1)

| »

F_l

1]

The window consists of several elements:

[A] The title bar contains an text of the form "dSelfVM <name>",
where <name> is the name that was specified by the options -b
<name>> or -r <name>>.

[B] This text field accepts the input of the user. In contrast to the
terminal, it treats the enter key not as an “end of input” signal and

14 CHAPTER 2. THE DSELF VIRTUAL MACHINE AND COMPILER

there is no parenthesis counter. The input is evaluated by clicking
on the input button (see [D]) .

[C] This text field displays the output of the dSelf Virtual Machine. For
ease of reading, each user-input is declared with a leading hash-mark
sign (“4”). Previously generated outputs can be reached by using
the scrollbar.

[D] By clicking on the input button one advises the dSelf Virtual Ma-
chine to evaluate the content of the input field. Alternatively one
can press the enter key in combination with the ALT key for accel-
erated input.

[E] By clicking on the up-array button one can respell the previously
entered inputs. The GUI has an history function that remembers
previous inputs.

[F] The down-arrow button offers the opposite effect of the up-arrow
button.
[G] This button opens the slot browser of the dSelf Virtual Machine

that is described in a later section.

[H] Opens a dialog for choosing a script that will be loaded and eval-
uated. Has the same effect as ’<script name>’ RunScript on the
input text field.

[I] Opens a dialog for changing the preferences like color and fonts.

[J] Exit the dSelf Virtual Machine.

2.1. THE DSELF VIRTUAL MACHINE 15

The Slot Browser

Slot browser [EEREN

@ Jlobby
& [systemObjects*

§@ Cdvm*
§ 1 local

[lobiby
@ Hx
[il

Update

By using the slot browser one can explore the slot contents of the objects of
dSelf. The tree can be expanded by clicking on the nodes, where the rood node
represents the lobby. The slot browser don’t updates its contents automatically,
so one can force it to update its nodes by clicking on the button that is located

at the bottom.

16 CHAPTER 2. THE DSELF VIRTUAL MACHINE AND COMPILER

The Preferences Window

Output area text

This i= an example
far the cutput area
of the dS=1F-%M.

Input area text

This s an examle
for the input area
of the dSelf-wM.

[%] Preference settinas

Cls]

Background calar

Fareground calar

Fant

Background caolar

Fareground calar

Fant

Ok Apply Cancel Load Save

|

The window for the preference settings offers the user the possibility to
customize the appearance of the dSelf Virtual Machine. The colors of the text
fields and the chosen fonts can be selected. The text fields give an impression
about the choices made by the user without changing the current settings of the

main window.

2.2 The Compiler

The compiler of dSelf offers two interfaces.

One for the user as a separate

program and one for the dSelf Virtual Machine as an class that evaluates inputs
“on-the-fly”. As the purpose of this tutorial is not to introduce into compiler
techniques, the latter is not explained here. For further information on this

topic, the reader is referred to [9].

2.2.1 How to start the compiler

The compiler can be started by typing this the command line of a shell:

java dSelfComp [options] <filename>

The compiler of dSelf can be started with several options:

-h prints the usage

2.2. THE COMPILER 17

-r recognizer (don’t generate code)

-j invoke java-compiler and generate class file

-jc <name> the name of the java-compiler (default: javac)

-jm <size> set preferred size for methods(default: 10000 Bytes)

-¢ <path> set the CLASSPATH for java compiler (default: ".")

-ds print debug-information of scanner

-dc print debug-information of parser (CUP)
-dp print the parse-tree (with parenthesis)
-di print the parse-tree (with indentation)

Printing the Usage

The option -h prints a little list with all possible options that can be used. It
looks similar to the list above.

Recognizer

When the compiler starts with option -r it will generate no code. This is useful,
if the user just wants to check the syntax of a script.

Invoke the Java Compiler

As a default setting, the compiler of dSelf only generates code for a new Java
class in a Java file (“filename.java”) and the compiler of Java must be called by
the user in order to get a class file (“filename.class”) . With option -j, this work
is done by the compiler is of dSelf.

Preferred Java Compiler

With option -jc <name> the user can specify the name of the preferred Java
compiler. As default setting “javac” is called.

Class path for Java Compiler

With option -¢ <path> the user can specify the class path, that is needed by
the Java compiler.

18 CHAPTER 2. THE DSELF VIRTUAL MACHINE AND COMPILER

Method length

The dSelf compiler generates as its result the source code for a new Java class
that represents the translated dSelf program. By creating methods for this class
it might happen that the generated code becomes huge. Due to limitations of
some Java Virtual Machines, it is not possible to create methods, whose size is
larger than 64 kBytes. To handle this problem, the user can specify with the
option -m <size> the preferred size of the generated methods. Without this
option, the size of the generated methods is about 10 kBytes and shouldn’t be
a problem for a Java Virtual Machine.

The debuggers

The dSelf Virtual Machine offers several debuggers to the user. They provide
information of the current state of the scanner and the parser of dSelf.

The debugger of the scanner

With option -ds, the debugger of the scanner will be enabled. It will print all
scanned tokens on the standard output stream.

The debugger of the parser

With option -de, the debugger of the parser (CUP) will be enabled. It will
print all actions (shift/reduce) that were done by the parser. For further infor-
mation about it refer to the documentation of [6]. This option is very useful in
combination with option -ds.

Printing the parse tree

Do you have problems by analyzing the grammar of dSelf ? With option -dp
the parser will generate a parse tree for each parsed input. The structure of this
tree is represented by using parenthesis.

Printing the parse tree with indention

The previously mentioned option printed the parse tree in a compact but not
very readable way. Option -di prints the same tree more attractive by using
indention for displaying its structure.

Chapter 3

The dSelf Language

In this chapter the language dSelf itself will be described. As dSelf is a derivate
of SELF, only the differences to SELF are explained. So the reader is expected
to know SELF and its basic concepts which are described in [2, 3, 4] 1.

dSelf was developed with the claim to be as close to SELF as possible.
Unfortunately this was not possible for each detail because of the distribution
of dSelf, so we were forced to implement some features in a different manner.
Hence, dSelf is a derivate of SELF and not a 100% compatible clone, because
the semantics of some language constructs differ in a distributed context(e.g.,
boolean objects). Furthermore, some features of SELF weren’t implemented in
dSelf because they didn’t prove them self in practice like prioritized multiple
inheritance or the method-holder-based privacy semantics®. The differences to
SELF are explained in the next sections.

3.1 Distributed dSelf Objects

Distribution in dSelf means that objects referenced in slots can be located on
remote dSelf Virtual Machines. Thus, the system introduces navigable remote
references to objects located on another dSelf Virtual Machine.

In order to access a remote object, a connection to its remote Virtual Ma-
chine and its lobby object must be established. Two provides two primitive
messages are understood by all objects for this purpose:

1. AddSlot: <slotname> ConnectedTo: <URL>
2. _AddSlotIfAbsent: <slotname> ConnectedTo: <URL>

Argument <slotname> is a string, that specifies a lexically correct data slot
and <URL>> defines the location of the remote (e.g. ’//127.0.0.1:1099/myVM’).

1Tt is planned to extend this tutorial with an introduction section to dSelf in a future
release.

2This features were implemented in SELF in some earlier versions. In later releases (e.g.,
SELF 4.0) they were removed because of the bad experiences the authors made with it.

19

20 CHAPTER 3. THE DSELF LANGUAGE

The behavior of these primitives is similar to the built-in messages AddSlot:
and _AddSlotIfAbsent: of SELF, except that the slots will contain a refer-
ence to a remote lobby. By this slot one can access and modify each remote
object reachable from this lobby.

Once a connection to a remote lobby has been established, all its slots and its
contents are transparently accessible and modifiable like local ones. An example
from the dSelf console illustrates this:

lobby _AddSlot: ’remoteVM’ ConnectedTo: ’//127.0.0.2/remoteVM’

lobby remoteVM _AddSlots: (| x = 42 |[)
-> lobby(r)

lobby remoteVM _Print
lobby(r): (|stackBehavior = stackBehavior(r). x = 42 |)
-> nil

Here, a connection to a remote lobby is stored in a local slot called remoteVM
and a new slot x with content 42 is added to this remote lobby. After that, the
output of the primitive _Print shows that a slot x has been added on this other
machine. The trailing (r) after lobby or stackBehavior marks the reference
as remote. The lookup algorithm implemented in dSelf is the same as specified
in [2], except that remote references are followed across machine-boundaries.

3.2 Prioritized multiple inheritance

In [10] the authors of SELF introduced an extension for their language called
prioritized multiple inheritance. With this new concept, the user is able to order
the parent slots (ordered inheritance) of an object by declaring its name with
additional asterisks. When the lookup algorithm (an algorithm that realizes the
inheritance mechanism, see [2] for details) reaches an object with more than
one parent slot, it first visits the object contained in the parent slot with the
least trailing asterisks. If that search fails, it goes on with the second one
and so on until a matching slot was found. When two or more slots with the
same priority are found, each of them will be examined in an arbitrary order
(unordered inheritance).

object = (|
parentlx = (...).
parent2x*x = (...).
parent3x*x*x = (...).

1

In the example above, three parent slots with different priorities were declared.
If object would receive a message which one’s selector wouldn’t match with

3.3. METHOD-HOLDER-BASED PRIVACY SEMANTICS 21

the name of one of its slots, it has to delegate this message to its parent objects
which are available via its parent slots. When no priority would be given, then
it would be send to all parents and ambiguous situations could occur when more
than one matching slot would be found. To prevent such a situation, one can
prioritize the parent slots in order to the influence the inheritance semantics, so
in the example only the object in slot parentl would receive the message. If
this message was understood its corresponding slot would be evaluated and all
slots with similar names in parent2 and parent3 ignored.

This extention sounds simple, but in [5] Randall B. Smith and David Ungar
wrote:

Early in the evolution of Self we made three mistakes: prioritized
multiple inheritance, the sender-path tie-breaker rule, and method-
holder-based privacy semantics. [...] But each feature also caused us
no end of confusion. The prioritization of multiple parents implied
that Self’s “resend” (call-next-method) lookup had to be prepared to
backup down parent links in order follow lower-priority paths. The
resultant semantics took five pages to write down, but we preserved.
After a year’s experience with the features, we found that each of
the members of the Self group had wasted no small amount of time
chasing “compiler bugs” that were merely unforseen consequences of
these features. It became clear that the language had strayed from
its original path.

Because of the authors experiences, we decided not to support prioritized mul-
tiple inheritance in dSelf and other solutions are currently investigated.

3.3 Method-holder-based privacy semantics

Also in [10] the authors of SELF introduced an extension for their language
called method-holder-based privacy semantics. The language was extended with
a circumflex and an underscore symbol which describe the visibility of slots.
The circumflex declares a slot as public and the underscore a private slot that is
only accessible for the object that contains it. For assignment slot declarations
are combinations of this symbols possible where the one symbol declares the
accessibility of the assignment slot itself and the other one the accessibility of
its corresponding data slot.
For example:

object = (|
~ theAnswer = (= 42).
_ someText = ’I’m private’.

_ aNumber <- 1.
~ someSlot <- ’foo’

22 CHAPTER 3. THE DSELF LANGUAGE

The method slot the Answer represents a public slot that is accessible to all
other objects, while someText is a private data slot which is only visible to
object. aNumber declares a public data slot whoes corresponding assignment
slot aNumber: is a private member of this object. someSlot is assignable for
all objects but its content can only be read by object because it is private.

The reason, why we did not take on this concept the same as described in
the previous section.

3.4 Binary Methods

In SELF it is impossible to combine different operators in one expression without
parenthesizes. An expression like

X+y+z
is allowed, while
XxX+y-z

is not. If one wants to write such a formula, one has to embed x + y or y
- z into parenthesis because there is no build-in mechanism for dissolving the
priority of operators like in C or Java. In dSelf it is allowed to write such an
expression without parenthesizes and the associativity in left to right, i.e., x +
y in the example is evaluated first.

The reason for this behavior is of technical nature® and is described in [9] in
more detail.

3.5 Primitive Objects

As SELF, dSelf distinguished between ordinary and primitive objects, however,
possible performance gains are higher in the distributed case. Remote references
are created if and only if their target is an ordinary object. Primitive objects —
these are built-in types like integers and strings — are treated differently, because
their values are always copied during an access by a remote object.

| Type | Size | Declaration | min. Value | max. Value
Short | 16 Bit 0 sor0_S -32768 32767
Integer | 32 Bit 0 -2147483648 2147483647
Long | 64 Bit 0 lor0_L -9223372036854775808 9223372036854775807
Float | 32 Bit 0.0 +3.40282347E+38 +1.40239846E-45
Double | 64 Bit | 0.0 _dor 0.0_D | £1.79769313486231570E+308 | £4.94065645841246544E-324

3dSelf uses an LALR(1) parser generator for syntax analysis which is a context free gram-
mar while the parser of SELF is “handmade” without this limitations. For detecting such
dependencies one would need the power of Chomsky type 1 grammars (context sensitivity).

3.6. MIRROROBJECTS 23

The types listed in the above table are the different kinds of numbers im-
plemented in dSelf*. The underscore sign is necessary because of the radix
notations. As in SELF in dSelf one can specify a value by using bases from 2
to 36 followed by ’r’ or 'R’. For bases greater than 10 the characters ’a’ through
'z’ represent digit values 10 through 35. Some possible values are for example:

2r1001, 16rff12, 36rizl, 36rizl_1

Without an underscore it wouldn’t be possible to determine, if 36r1zl represents
the integer value 2577 or the long value 71.

The introduction of primitive objects is justified by efficiency considerations.
It is more efficient to access a local copy of an primitive object than operating
via a remote reference across the borders of a Virtual Machine. In contrast to
SELF, dSelf considers the booleans true and false and the initial value nil also
primitive objects.

Obviously, the disadvantage of introducing primitive objects in the dis-
tributed case is a loss of flexibility, as the possibility of inconsistency of the
parent objects primitive objects has to be dealt with. All primitive objects of
one kind (e.g. integers) have only one slot named parent that refers to one
ordinary object. This object, in turn, consists of slots that are shared by all
instances of the primitive objects (e.g. + or - for integers). But these slots can
differ from one Virtual Machine to another one.

To ensure consistency, the user either has to leave these objects untouched
or make its copies consistent by some extra code like this:

0 parent _AddSlots: remoteVM parents smalllnt

In this example the slots of the parent object (assumed to be accessible in
parents) of integers that are located on a remote Virtual Machine are copied
to the local integers by using the primitive message ~ AddSlots: that adds
all slots of the argument to its receiver. All slots whose names match with the
added slots are replaced by the new ones.

3.6 Mirrorobjects

In dSelf are no mirror objects implementet till now. Such objects are used in
SELF for examing and manipulating objects in a comfortable way. When mirror
objects will be also available in dSelf, one will have the capability to manipulte
local and remote objects.

3.7 Local Data Slots

Methods always consist of two parts. The first optional part consists of the local
slot declarations and the second one of its code:

4dSelf was implemented in Java, so the types correspond not only by chance.

24 CHAPTER 3. THE DSELF LANGUAGE

(| <local slots> | <code>)

The slots declared in a method are always evaluated in the context of the lobby
at declaration time and the code will be evaluated in the context of the calling
object when it is invoked.

In a distributed setting this means that ordinary objects created with the
slot declarations are always located at the dSelf Virtual Machine, where the
surrounding method was created. Instead, ordinary objects created during the
execution of code are always located at the dSelf Virtual Machine, where the
method was invoked. For example:

m = (| locall = (). local2| local2: ())

In this example two local slots are declared. Both contain an empty ordinary
data object, but their locations differ. locall is located on the dSelf-VM, where
m was declared and local2 is located on the dSelf-VM, where the object in-
voking m is located. The practical effect is that each access to locall causes
communication across the network, while each access to local2 is local.

3.8 Local Methods

Different from the original SELF version 4, dSelf supports local methods which

were first introduced in SELF version 3 but dropped from the language later.

Local Methods are methods whose declarations are nested in another method.?
For example:

stackBehavior <- (|
push: anObject = (top: top+l. stack at: top Put: anObject).
pop = (top: top-1).
getTop = (“stack at: top)
1.
stackInstance <- (|
parent* <- stackBehavior.
stack = array clone.
top = 0
.
dupStack <- (|
parent* = stackBehavior.
dup = (|push: anObject = (top: top+l. stack at: top Put: anObject) |
)
1.

In this example an object dupStack inheriting from stackBehavior is de-
clared. A new method slot dup is added for duplicating the top element of the

5Not to be confused with inner methods, those are nested in expressions.

3.9. THE PRIMITIVE MESSAGES 25

stack. dup has a local method slot push: that is identical to the method with
the same name at stackBehavior.

Local methods behave like ordinary methods, but are only accessible within
the context of the code of their surrounding method.

Local methods minimize network access in a distributed context. As parent
objects can be remote, calling methods inherited from them, causes network
traffic. Local methods can be used to transport and co-locate these methods
with an object, thus decreasing communication across the network.

3.9 The primitive Messages

The primitive messages described in this section are all available in dSelf. They
are declared with a leading underscore sign that signifies that they are build-in
messages and cannot be modified by the user. Some of these messages can fail
resulting in a runtime-error. Such errors can be caught by an additional IfFail:
keyword with a following block object that comprises some code that shall be
executed in case of such situation. This block can have two arguments with
information about the kind of error and the name of the failing message. For
example:

x _At: 4 IfFail: [
| :error. :namel
(name, ’failed with:’, error) print.

]
_At: failed with: badIndexError

Here, the primitive message _ At: failed with a badIndexError, because 4 was
out of vector bounds. Because of this, two strings with the necessary information
were generated and sent to the trailing IfFail: block for (simple) exception
handling. A IfFail: block can have one of three forms:

unary messages:

<object> <messagename>IfFail: <block>
(e.g. 12 _IntAsFloatIfFail: [...])

binary messages:

<object> <operator> <object> IfFail: <block>
(e.g. 12 + ’a’ IfFail: [...])

keyword messages:

<object> <keyword> <object> {<keyword> <object>}
(e.g. 12 _IntAdd: ’a’ IfFail: [...])

26

CHAPTER 3. THE DSELF LANGUAGE

Note that there is no separator between an unary message and the trailing

“IfFail:“keyword !

The following errors can occur:

| error name

kind of error

badTypeError The receiver of this message or one of its arguments
has a wrong type.
badIndexError The specified position in a vector was out of bounds.

divisionByZeroError

Occures when attempted to divided a number by
Zero.

ioError

An error occured when accessing a file.

primitiveFailedError

A primitive message failed, e.g. when a wrong
argument-value was given.

securityError

Occures when the current primitive has no permis-
sion to acces a demanded resource.

3.9.1 Primitive Messages for Objects of Type Integer

_IntAdd:

Adds the argument object of type integer to the receiver. Possible over- and

underflows are not checked.

_ IntAnd:

The receiver and argument objects (both of type integer) are combined by using
the the logical AND-operation.

_ IntArithmeticShiftRight:

The resulting object corresponds to the receiver, right-shifted by the number of
bits specified by the argument (an integer) while the sign bit is preserved.

_IntAsDouble

Returns the receiver as an object of type double.

_ IntAsFloat

Returns the receiver as an object of type float.

_IntAsLong

Returns the receiver as an object of type long.

3.9. THE PRIMITIVE MESSAGES 27

_IntAsShort

Returns the receiver as an object of type short. Possible over- and underflows
are not checked.

_ IntDiv:

Divides the receiver by the argument object, also of type integer. May fail with
divisionByZeroError.

_ IntEQ:

Checks the receiver and argument object for equivalence. When two objects are
__IntEQ: they are also _ Fq:.

_IntGE:

Returns true, if the receiver is greater or equal to the argument object of type
integer. Otherwise false is returned.

_IntGT:

Returns true, if the receiver is greater than the argument object of type integer.
Otherwise false is returned.

_IntLE:

Returns true, if the receiver is less or equal to the argument object of type
integer. Otherwise false is returned.

_IntLT:

Returns true, if the receiver is less than the argument object of type integer.
Otherwise false is returned.

_ IntLogicalShiftLeft:

The resulting object corresponds to the receiver, left-shifted by the number of
bits specified by the argument (an integer). There is no checking for overflow.

_ IntLogicalShiftRight:

The resulting object corresponds to the receiver, right-shifted by the number of
bits specified by the argument (an integer) while the sign bit is perserved.

_IntMod:

Calculates the receiver modulo the value of the argument object of type integer.
May fail with divisionByZeroError.

28 CHAPTER 3. THE DSELF LANGUAGE

_IntMul:

Multiplies the receiver with the argument object of type integer. Possible over-
and underflows are not checked.

_ IntNE:

Returns true, if the receiver is unequal to the argument object of type integer.
Otherwise false is returned.

_IntOr:

The receiver and argument objects (both of type integer) are combined by using
the the logical OR~operation.

_IntSub:

Subtracts the argument object of type integer from the receiver. Possible over-
and underflows are not checked.

_Inthr:

The receiver and argument objects (both of type integer) are combined by using
the the logical XOR-operation.

3.9.2 Primitive Messages for Objects of Type Short
__ ShortAdd:

Adds the argument object of type short to the receiver. Possible over- and
underflows are not checked.

_ Short And:

The receiver and argument objects (both short) are combined by using the the
logical AND-operation.

_ ShortArithmeticShiftRight:

The resulting object corresponds to the receiver, right-shifted by the number of
bits specified by the argument (a short) while the sign bit is preserved.

. Short AsDouble

Returns the receiver as an object of type double.

_ ShortAsFloat

Returns the receiver as an object of type float.

3.9. THE PRIMITIVE MESSAGES 29

_ ShortAsInt

Returns the receiver as an object of type integer.

_ ShortAsLong

Returns the receiver as an object of type long.

_ ShortDiv:

Divides the receiver by the argument object, also of type short. May fail with
divisionByZeroError.

_ ShortEQ:

Checks the receiver and argument object of type short for equivalence. When
two objects are _IntEQ: they are also _ Egq..

_ ShortGE:

Returns true, if the receiver is greater or equal to the argument object of type
short. Otherwise false is returned.

_ ShortGT:

Returns true, if the receiver is greater than the argument object of type short.
Otherwise false is returned.

_ ShortLE:

Returns true, if the receiver is less or equal to the argument object of type
short. Otherwise false is returned.

_ ShortLT:

Returns true, if the receiver is less than the argument object of type short.
Otherwise false is returned.

_ ShortLogicalShift Left:

The resulting object corresponds to the receiver, left-shifted by the number of
bits specified by the argument (a short). There is no checking for overflow.

_ ShortLogicalShiftRight:

The resulting object corresponds to the receiver, right-shifted by the number of
bits specified by the argument (a short) while the sign bit is preserved.

30 CHAPTER 3. THE DSELF LANGUAGE

_ ShortMod:

Calculates the receiver modulo the value of the argument object of type short.
May fail with divisionByZeroError.

_ ShortMul:

Multiplies the receiver with the argument object of type short. Possible over-
and underflows are not checked.

_ ShortNE:

Returns true, if the receiver is unequal to the argument object of type short.
Otherwise false is returned.

_ ShortOr:

The receiver and argument objects (both short) are combined by using the the
logical OR-operation.

_ ShortSub:

Subtracts the argument object of type short from the receiver. Possible over-
and underflows are not checked.

_ ShortXor:

The receiver and argument objects (both of type short) are combined by using
the the logical XOR-operation.

3.9.3 Primitive Messages for Objects of Type Long
_LongAdd:

Adds the argument object of type long to the receiver. Possible over- and
underflows are not checked.

_ LongAnd:

The receiver and argument objects (both long) are combined by using the the
logical AND-operation.

_ LongArithmeticShift Right:

The resulting object corresponds to the receiver, right-shifted by the number of
bits specified by the argument (a long) while the sign bit is preserved.

3.9. THE PRIMITIVE MESSAGES 31

_ LongAsDouble

Returns the receiver as an object of type double.

_ LongAsFloat

Returns the receiver as an object of type float.

_ LongAsInt

Returns the receiver as an object of type integer. Possible over- and underflows
are not checked.

_ LongAsShort

Returns the receiver as an object of type short. Possible over- and underflows
are not checked.

_ LongDiv:

Divides the receiver by the argument object, also of type long. May fail with
divisionByZeroError.

_LongEQ:

Checks the receiver and argument object of type long for equivalence. When
two objects are _ IntEQ: they are also _ Eq..

_ LongGE:

Returns true, if the receiver is greater or equal to the argument object of type
long. Otherwise false is returned.

_ LongGT:

Returns true, if the receiver is greater than the argument object of type long.
Otherwise false is returned.

_ LongLE:

Returns true, if the receiver is less or equal to the argument object of type long.
Otherwise false is returned.

_ LongLT:

Returns true, if the receiver is less than the argument object of type long.
Otherwise false is returned.

32 CHAPTER 3. THE DSELF LANGUAGE

_ LongLogicalShiftLeft:

The resulting object corresponds to the receiver, left-shifted by the number of
bits specified by the argument (a long). There is no checking for overflow.

_ LongLogicalShiftRight:

The resulting object corresponds to the receiver, right-shifted by the number of
bits specified by the argument (a long) while the sign bit is preserved.

_ LongMod:

Calculates the receiver modulo the value of the argument object of type long.
May fail with divisionByZeroError.

_ LongMul:

Multiplies the receiver with the argument object of type long. Possible over-
and underflows are not checked.

_ LongNE:

Returns true, if the receiver is unequal to the argument object of type long.
Otherwise false is returned.

_ LongOr:

The receiver and argument objects (both long) are combined by using the the
logical OR-operation.

_ LongSub:

Subtracts the argument object of type long from the receiver. Possible over-
and underflows are not checked.

_ LongXor:

The receiver and argument objects (both longs) are combined by using the the
logical XOR-operation.

3.9.4 Primitive Messages for Objects of Type Float
_ FloatAdd:

Adds the argument object of type float to the receiver. Possible over- and
underflows are not checked. Possible over- and underflows are not checked.
Maximum values are positive or negative infinity.

3.9. THE PRIMITIVE MESSAGES 33

_FloatAsDouble

Returns the receiver as an object of type double.

_FloatAsInt

Returns the receiver as an object of type integer.

_ FloatAsLong

Returns the receiver as an object of type long.

_ FloatAsShort

Returns the receiver as an object of type short. Possible over- and underflows
are not checked.

_ FloatCeil

Returns the greatest integral value greater or equal to the receiver object by
rounding towards positive infinity. The resulting object is of type float.

_ FloatDiv:

Divides the receiver by the argument object, which is also of type float. May
fail with divisionByZeroError.

_FloatEQ:

Checks the receiver and argument object of type float for equivalence. Different
to _Eq:, FloatEQ: distinct between 0.0 and -0.01i.e., 0.0 _ FloatEq: -0.0 returns
true and 0.0 _ Eq: -0.0 returns false.

_ FloatFloor

Returns the greatest integral value less or equal to the receiver object by round-
ing towards negative infinity. The resulting object is of type float.

_ FloatGE:

Returns true, if the receiver is greater or equal to the argument object of type
float. Otherwise false is returned.

_ FloatGT:

Returns true, if the receiver is greater than the argument object of type float.
Otherwise false is returned.

34 CHAPTER 3. THE DSELF LANGUAGE

_FloatLE:

Returns true, if the receiver is less or equal to the argument object of type float.
Otherwise false is returned.

_ LongLT:

Returns true, if the receiver is less than the argument object of type float.
Otherwise false is returned.

_ FloatMod:

Calculates the receiver modulo the value of the argument object of type float.
May fail with divisionByZeroError.

_ FloatMul:

Multiplies the receiver with the argument object of type float. Possible over- and
underflows are not checked. Maximum values are positive or negative infinity.
_ FloatNE:

Returns true, if the receiver is unequal to the argument object of type float.
Otherwise false is returned.

_ FloatPrintString

Returns the receiver as a string object.

_ FloatPrintStringPrecision:

Returns the receiver as a string object. The argument object of type integer
specifies the number of digits after the decimal point.

_ FloatRound

Rounds the receiver towards the nearest integral value. 0.5 is rounded towards
the next even number, e.g., 1.5 rounds to 2 and 2.5 rounds to 2. The resulting
object is also of type float.

_ FloatSub:

Subtracts the argument object of type float from the receiver. Possible over- and
underflows are not checked. Maximum values are positive or negative infinity.

3.9. THE PRIMITIVE MESSAGES 35

_Float’I‘runcate

Rounds the receiver towards the nearest integral value. Numbers are rounded
towards zero, e.g., 1.x is rounded to 1.0 and -1.x rounds to -1. The resulting
object is also of type float.

3.9.5 Primitive Messages for Objects of Type Double
_DoubleAdd:

Adds the argument object of type double to the receiver. Possible over- and
underflows are not checked. Possible over- and underflows are not checked.
Maximum values are positive or negative infinity.

_DoubleAsFloat

Returns the receiver as an object of type float.

_ DoubleAsInt

Returns the receiver as an object of type integer.

_ DoubleAsLong

Returns the receiver as an object of type long.

_DoubleAsShort

Returns the receiver as an object of type short.

_ DoubleCeil

Returns the greatest integral value greater or equal to the receiver object by
rounding towards positive infinity. The resulting object is of type double.

_DoubleDiv:
Divides the receiver by the argument object, which is also of type double. May

fail with divisionByZeroError.

__DoubleEQ:

Checks the receiver and argument object of type double for equivalence. Differ-
ent to _Fq:, FloatEQ: distinct between 0.0 and -0.0 i.e., 0.0 _ FloatEq: -0.0
returns true and 0.0 _ Fq: -0.0 returns false.

36 CHAPTER 3. THE DSELF LANGUAGE

_ DoubleFloor

Returns the greatest integral value less or equal to the receiver object by round-
ing towards negative infinity. The resulting object is of type double.
__DoubleGE:

Returns true, if the receiver is greater or equal to the argument object of type
double. Otherwise false is returned.

__DoubleGT:

Returns true, if the receiver is greater than the argument object of type double.
Otherwise false is returned.

__DoubleLE:

Returns true, if the receiver is less or equal to the argument object of type
double. Otherwise false is returned.

_ DoubleLT:

Returns true, if the receiver is less than the argument object of type double.
Otherwise false is returned.

_ DoubleMod:

Calculates the receiver modulo the value of the argument object of type double.
May fail with divisionByZeroError.

_ DoubleMul:

Multiplies the receiver with the argument object of type double. Possible over-
and underflows are not checked. Maximum values are positive or negative in-
finity.

__DoubleNE:

Returns true, if the receiver is unequal to the argument object of type double.
Otherwise false is returned.

_ DoublePrintString

Returns the receiver as a string object.

_ DoublePrintStringPrecision:

Returns the receiver as a string object. The argument object of type integer
specifies the number of digits after the decimal point.

3.9. THE PRIMITIVE MESSAGES 37

_DoubleRound

Rounds the receiver towards the nearest integral value. 0.5 is rounded towards
the next even number, e.g., 1.5 rounds to 2 and 2.5 rounds to 2. The resulting
object is also of type double.

_DoubleSub:

Subtracts the argument object of type double from the receiver. Possible over-
and underflows are not checked. Maximum values are positive or negative in-
finity.

_ DoubleTruncate

Rounds the receiver towards the nearest integral value. Numbers are rounded
towards zero, e.g., 1.x is rounded to 1.0 and -1.x rounds to -1. The resulting
object is also of type double.

3.9.6 Primitive Messages for Objects of Type String
_ BitSize

The receiver of this message is a string that contains the words ’short’, ’integer’,
float’, ’'long’ or ’double’. The result is an integer object that specifies the
number of bits for the corresponding data type.

_ RunScript

This primitive message causes the system to load and execute a script whose
name is specified by the receiver.

_ StringAsByteVector

Converts to receiver to an object of type bytevector. Note that the receiver is
an unicode string with 2 Bytes for each character, so the kind of conversion
towards a byte representation depends on the under laying platform !

_ StringAt:
Returns an object of type integer between 0 and 65535 that represents the
unicode character at the specified position (an integer).

_ StringConcatenate:

Returns the concatenation (a string) of the receiver of this message with its
argument object of type string.

38 CHAPTER 3. THE DSELF LANGUAGE

_ StringGetSubFrom:

Returns the suffix (also a string) of the receiver starting at the specified position
of type integer.

_ StringGetSubFrom:To:

Returns the substring of the receiver that is located between the specified posi-
tions (both of type integer).

_ StringPrint

Prints the content of the receiver on the standard output device.

_ StringSize

Returns the size of the receiver as an object of type integer.

3.9.7 Primitive Messages for Objects of Type ByteVector
__ ByteAt:

Returns an integer between 0 and 255 that represents the byte at the specified
position (an integer) of this bytevector. May fail with badIndexError.

_ ByteAt:Put:

Puts an integer at the specified position (an integer) of this bytevector. The
value must be a number between 0 and 255, otherwise an error will occur. May
fail with badIndexError.

_ ByteSize

Returns the size of the receiver as an object of type integer.

_ ByteVectorAsString

Converts this bytevector to a string object. Note that this conversion depends
on the underlying platform (the operating system).

_ ByteVectorCompare:

Compares two objects of type bytevector and returns an object of type integer
that represents the result of the comparison. The values can be -1 (less than), 0
(equal to) or 1 (greater than). When both bytevectors are identical 0 ibeginnings
returned, otherwise all bytes at the same index are compared, beginning from
the lowest index. When two bytes at the same index differ, then 1 is returned,
if the byte of the first bytevector is greater than the corresponding byte of the

3.9. THE PRIMITIVE MESSAGES 39

latter. Otherwise -1 is returned. When the first bytevector is a prefix of the
argument bytevector the valuel is returned, in opposite case -1.

_ ByteVectorConcatenate:

Returns the concatenation (a bytevector) of the receiver of this message with
its argument object of type bytevector.

_ CloneBytes:Filler:

Clones an prefix of the receiver up to the position specified by _ CloneBytes:
(an integer). When the specified position is greater than the size of the receiver,
the rest of the new bytevector is filled with the byte (an integer between 0 and
255) specified by Filler:.

_ CopyByteRangeDstPos:Src:SrcPos:Length:

Copies a number of bytes (specified by Length:, an integer) into the receiver
bytevector at the position specified by DstPos: (an integer) from the bytevector
at the position specified by SrcPos: (an integer). May fail with badIndezError.

_ StringPrint

Prints the content of the receiver as a string on the standard output device.
Note that this conversion depends on the underlying platform (the operating
system).

3.9.8 Primitive Messages for Objects of Type ObjectVec-
tor

At:

Returns the object at the specified position (an integer) of this vector. May fail
with a badIndexError.

__At:Put:

Puts an object at the specified position (an integer) of this vector. May fail
with badIndexError.

_ Clone:Filler:

Clones a prefix of the receiver up to the position specified by _ Clone: (an
integer). When the specified position is greater than the size of the receiver,
the rest of the new wvector is filled with the object specified by Filler:.

40 CHAPTER 3. THE DSELF LANGUAGE

_ CopyRangeDstPos:Src:SrcPos:Length:

Copies a number of objects (specified by Length:, an integer) into the receiver
vector at the position specified by DstPos: (an integer) from the vector at the
position specified by SrcPos: (an integer). May fail with badIndexError.

Size

Returns the size of the receiver as an object of type integer.

3.9.9 Primitive Messages for Ordinary Objects
__AddSlot:ConnectedTo:

Adds a new slot to the receiver that refers to the lobby of a remote dSelf Virtual
Machine. The name of this slot is specified by the first argument, which is a
string that represents a lexically correct dataslot name. The second argument
is also of type string and specifies the location of the remote dSelf Virtual
Machine. This URL has the following form: //hostname:port/vm_name, e.g.
//127.0.0.1:1099/myVM. The values for the hostname and port are optional
and set by default to the local host and port number 1099 (the default port of
the RMI-Registry).

__AddSlotIfAbsent:ConnectedTo:

Has the same effect as _ AddSlot:ConnectedTo:, except that this action is omit-
ted, if a slot with the same name already exists.

__AddSlots:

Adds the slots of the argument object to the receiver. New slots with the same
names replace old slots.

__AddSlotsIfAbsent:

Adds the slots of the argument object to the receiver. New slots with the same

names don’t replace old slots.

Clone

Returns a clone of the receiver by copying it with shallow-copy semantics.

_ Define:

Redefines the receiver of this message. All old slots are deleted an the slots of
the argument object are added.

3.9. THE PRIMITIVE MESSAGES 41

Describe

Returns a description of the receiver by printing all annotations of its slots.

Eq:

Returns true if both objects are identical, otherwise false is returned.

_ GetSlotNames

Returns an objectvector with the receivers slot names as string objects.

__ObjectID

Returns the ID (an integer) of the receiver that is unique within this dSelf
Virtual Machine. Note that two objects on different machines can have the
same ID by chance !

_ Perform:

Sends an unary message whose name is specified by the argument (a string)
to the receiver. E.g., z Perform: ’foo’ means the same like x foo. Primitive
messages (messages starting with an underscore) can’t be send in this way.

_ Perform:With:{With:}

Sends an keyword message whose name is specified by the arguments (strings)
to the receiver. Each argument is separated by up to 20 With: keywords. E.g.,
x _ Perform: ’foo:Bar:’ With: 1 With: nil is identical to x foo: 1 Bar: nil.
Primitive messages (messages starting with an underscore) can’t be send in this
way.

_ PerformResend:

Resends (indirected resend) an unary message whose name is specified by the
argument (a string) to the parents of the receiver. E.g., z PerformResend:
’foo’ is equivalent to resend.foo inside object z. Primitive messages (messages
starting with an underscore) can’t be resend in this way.

_ PerformResend:With:{With:}

Resends (indirected resend) a keyword message whose name is specified by the
arguments (strings) to the parents of the receiver. Each argument is separated
by up to 20 With: keywords.

E.g., x _PerformResend: ’foo:Bar:’ With: 1 With: nil has the same seman-
tics as resend.foo: 1 Bar: nil inside of object 2. Primitive messages (messages
starting with an underscore) can’t be resend in this way.

42 CHAPTER 3. THE DSELF LANGUAGE

_ Perform:DelegatingTo:

Resends (directed resend) an unary message whose name is specified by the ar-
gument (a string) to the parent of the receiver specified by the latter argument
(a string). E.g., © Perform: ’foo’ DelegatingTo: ’p’ has the same seman-
tics as p.foo inside of object z. Primitive messages (messages starting with an
underscore) can’t be resend in this way.

_ Perform:DelegatingTo:With:{ With:}

Resends (directed resend) a keyword message whose name is specified by the
arguments (strings) to the parent of the receiver specified by the second ar-
gument (a string). Each argument is separated by up to 20 With: keywords.
E.g., x _ Perform: ’foo:Bar:’ DelegatingTo: ’p’ With: 1 With: nil has the same
semantics as p.foo: 1 Bar: nil inside of object z. Primitive messages (messages
starting with an underscore) can’t be resend in this way.

_ Print

Prints a description for the receiver that consists of a list of all slot names.

_RemoveAllSlots

Removes all slots of the receiver.

_RemoveSlot:

Removes the slot that is specified by the argument (a string) of this message.

3.9.10 Primitive Messages for the Debugger
_ DebugCUPOn

With this message, the debugger of the parser (CUP) will be enabled. It will
print all actions (shift/reduce) that were done by the parser. For further infor-
mation about it refer to the documentation of [6]. This option is very useful in
combination with _ DebugScannerOn.

_ DebugCUPOff

Disables the debugger of the parser.

__DebugScannerOn

With this message, the debugger of the scanner will be enabled. It will print all
scanned tokens on the standard output stream.

3.9. THE PRIMITIVE MESSAGES 43

_ DebugScannerOff

Disables the debugger of the scanner.

_DebugSearchPathOn
Enables the lookup debugger of the lookup algorithm and shows the search path

for messages. For details about the inheritance mechanism in SELF/dSelf see
[2] or [9)].
_ DebugSearchPathOff

Disables the debugger of the lookup algorithm.

_ DebugFlatParseTreeOn

With this message the parser will generate a parse tree for each parsed input.
The structure of this tree is represented by using parenthesis.

_ DebugFlatParseTreeOff

Disables the parse tree debugger.

_DebugIndentedParseTreeOn

The previously mentioned message _DebugFlatParseTreeOn printed the parse
tree in a compact but not very readable way. This message prints the same tree
more attractive by using indention for displaying its structure.

_ DebugIndentedParseTreeOff

Disables the parse tree debugger.

3.9.11 Other primitive Messages
_ Credits

Returns a message about the copyright of dSelf.

_ CurrentTimeString

Returns a string with informations about the current time and date.

_ DirPath

Returns a string that contains the current directory path. The directory path
represents the root directory of all scripts that are executed by calling Run-
Script.

44 CHAPTER 3. THE DSELF LANGUAGE

_ DirPath:

Replaces the old directory path by the argument of type string.

_GarbageCollect

Advises the Virtual Machine to start the garbage collector now.

_ Memory

Returns the size of the currently available amount of memory. The result object
is of type long.

_ OperatingSystem

Returns a string that describes the underlying operating system and processor
type.

_ Quit

Exits dSelf.

_TimeReal

Returns the number of milliseconds since 1. January 1970 GMT. The result
object is of type long.

Chapter 4

The Grammar

expression -> constant | unary-message | binary-message | keyword-message
subexpression -> " [’ ’]’ ['\"{ }]] expression ’)’ | expression
constant -> self | number | string | object | nil | true | false

unary-message -> receiver unary-send | indirected-unary-send | directed-unary-
send

unary-send -> identifier

binary-message -> receiver binary-send | indirected-binary-send expression
directed-binary-send expression

binary-send -> operator expression

keyword-message -> receiver keyword-send | indirected-keyword-send expres-
sion { cap-keyword expression } | directed-keyword-send expression
{ cap-keyword expression }

keyword-send -> small-keyword expression { cap-keyword expression }

receiver -> [subexpression |

object -> data-object | block

data-object -> ‘C [] [‘{’ ‘}’ ‘= string | slot-list ‘|’ |)’

method-object -> ‘(" [’ [{’ ‘} ‘=’ string] slot-list ‘|’ | code ‘)’

block > L[slot-list |’ | [code] ‘]

slot-list ~ -> [unannotated-slot-list] {annotated-slot-list [unannotated-slot-list] }
annotated-slot-list -> ‘{’ string slot-list ‘}’

unannotated-slot-list -> { slot ‘.’} slot [" |

45

46 CHAPTER 4. THE GRAMMAR

code ->{ expression .’} [‘~’ | expression [¢ |

slot -> arg-slot | data-slot | binary-slot | keyword-slot | unary-slot
arg-slot ~ -> argument-name

data-slot -> slot-name | slot-name ‘<-’ expression | slot-name ‘=" expression

unary-slot -> identifier‘="method-object

binary-slot -> operator ‘=" method-object | operator [identifier] ‘=" method-

object

keyword-slot -> small-keyword {cap-keyword} ‘=" method-object | small-keyword
identifier {cap-keyword identifier} ‘=" method-object

slot-name -> identifier | parent-name

parent-name -> identifier ‘*’

Chapter 5

Further Information

If you want more information about dSelf, you should visit the homepage of
dSelf at: http://wuw.cs.tu-berlin.de/ tolk/dself/. There are some doc-
uments located about the basic principles of dSelf and my diploma thesis [9]
that describes dSelf in more detail, concerning its design and implementation.
T’m sorry, but it’s available only in German. But with this tutorial the most
important topics of the thesis are available in English now. The thesis might
still be useful for non German readers, who are looking for information about
the implementation of dSelf, as it contains many class-diagrams.

There are some diploma-theses that will extend dSelf concerning topics like
concurrency and progressive multiple-inheritance techniques, so visiting the
dSelf homepage occasionally will be worth it.

47

48

CHAPTER 5. FURTHER INFORMATION

Bibliography

[1] dSelf - A Distributed SELF, Robert Tolksdorf and Kai Knubben, KIT -
REPORT 144, ISSN 0931-0436, Fakultit IV, Projektgruppe KIT, Tech-
nische Universitdt Berlin, April 2001. Available at http://www.cs.tu-
berlin.de/ " tolk/dself/

[2] The SELF 4.0 Programmer’s Reference Manual, Ole Agesen, Lars Bak,
Craig Chambers, Bay-Wei Chang, Urs Holzle, John Maloney, Randall B.
Smith, David Ungar, Mario Wolczko. Published by Sun Microsystems, Inc.
and Stanford University, 1995

[3] Prototyped-Based Application Construction Using Self 4.0, Mario Wolczko
and Randall B. Smith. Published by Sun Microsystems, Inc. and Stanford
University, 1995

[4] SELF: The Power of Simplicity, David Ungar and Randall B. Smith. Lisp
and Symbolic Computation: An International Journal, Kluwer Academic
Publishers, 4. 3. 1991.

[5] Programming as an Experience: The Inspiration for Self, Randall B. Smith
and David Ungar, Sun Microsystems Laboratories

[6] CUP (v0.10k) LALR Parser Generator for Java by Scott E. Hudson, Graph-
ics Visualization and Usability Center, Georgia Institute of Technology,
July 1999. http://www.princeton.edu/~appel/modern/java/CUP /

[7] JFlex Version 1.3, The Fast Lexical Analyzer Generator for Java by Gerwin
Klein, October 2000. http://www.jflex.de

[8] JavaDeps version 1.0.4. Automatic Dependency Tracking for Java by Steven
Robbins, 1998. http://www.cs.mcgill.ca/~stever/software/JavaDeps/

[9] Verteilte Implementierung der objektorientierten Programmiersprache
SELF (in German), Kai Knubben, Technische Universitdt Berlin, 2000.
Available at http://www.cs.tu-berlin.de/ “tolk /dself/

[10] Parents are Shared Parts of Objects: Inheritance and Encapsulation in
SELF, Craig Chambers and David Ungar and Bay-Wei Chang and Urs
Holzle, Lisp and Symbolic Computation volume 4, number 3, pages 207-
222, 1991

49

50 BIBLIOGRAPHY

[11] Java Runtime Environment v 1.2, Sun Microsystems. Available at
http://java.sun.com/products/jdk/1.2/jre/index.html

[12] Java 2 SDK, Standard Edition, v 1.3, Sun Microsystems. Available at
http://java.sun.com/j2se/index.html

[13] GNU Make, Copyright (C) 1997, 1998, 1999, 2000 Free Software Founda-
tion, Inc., 59 Temple Place - Suite 330, Boston, MA 02111, USA. Available
at http://www.gnu.org/software /make/make.html

