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Abstract

This paper is a concise and painless introduction to the λ-calculus.
This formalism was developed by Alonzo Church as a tool for study-
ing the mathematical properties of effectively computable functions.
The formalism became popular and has provided a strong theoretical
foundation for the family of functional programming languages. This
tutorial shows how to perform arithmetical and logical computations
using the λ-calculus and how to define recursive functions, even though
λ-calculus functions are unnamed and thus cannot refer explicitly to
themselves.

1 Definition

The λ-calculus can be called the smallest universal programming language
in the world . The λ-calculus consists of a single transformation rule (vari-
able substitution, also called β-conversion) and a single function definition
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scheme. It was introduced in the 1930s by Alonzo Church as a way of for-
malizing the concept of effective computability. The λ-calculus is universal
in the sense that any computable function can be expressed and evaluated
using this formalism. It is thus equivalent to Turing machines. However,
the λ-calculus emphasizes the use of symbolic transformation rules and does
not care about the actual machine implementation. It is an approach more
related to software than to hardware.

The central concept in λ-calculus is that of “expression”. A “name” is an
identifier which, for our purposes, can be any of the letters a, b, c, etc. An
expression can be just a name or can be a function. Functions use the Greek
letter λ to mark the name of the function’s arguments. The “body” of the
function specifies how the arguments are to be rearranged. The identity
function, for example, is represented by the string (λx.x). The fragment
“λx” tell us that the function’s argument is x, which is returned unchanged
as “x” by the function.

Functions can be applied to other functions. The function A, for example,
applied to the function B, would be written as AB. In this tutorial, capital
letters are used to represent functions. In fact, anything of interest in λ-
calculus is a function. Even numbers or logical values will be represented
by functions that can act on one another in order to transform a string of
symbols into another string. There are no types in λ-calculus: any func-
tion can act on any other. The programmer is responsible for keeping the
computations sensible.

An expression is defined recursively as follows:

< expression > := < name >|< function >|< application >

< function > := λ < name > . < expression >

< application > := < expression >< expression >

An expression can be surrounded by parenthesis for clarity, that is, if E is an
expression, (E) is the same expression. Otherwise, the only keywords used in
the language are λ and the dot. In order to avoid cluttering expressions with
parenthesis, we adopt the convention that function application associates
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from the left, that is, the composite expression

E1E2E3 . . .En

is evaluated applying the successive expressions as follows(
. . .
(
(E1E2)E3

)
. . .En

)
As can be seen from the definition of λ-expressions, a well-formed example of
a function is the previously mentioned string, enclosed or not in parentheses:

λx.x ≡ (λx.x)

We use the equivalence symbol “≡” to indicate that when A ≡ B, A is just
a synonym for B. As explained above, the name right after the λ is the
identifier of the argument of this function. The expression after the point (in
this case a single x) is called the “body” of the function’s definition.

Functions can be applied to expressions. A simple example of an application
is

(λx.x)y

This is the identity function applied to the variable y. Parenthesis help to
avoid ambiguity. Function applications are evaluated by substituting the
“value” of the argument x (in this case the y being processed) in the body of
the function definition. Fig. 1 shows how the variable y is “absorbed” by the
function (red line), and also shows where it is used as a replacement for x
(green line). The result is a reduction, represented by the right arrow, with
the final result y.

Since we cannot always have pictures, as in Fig. 1, the notation [y/x] is used
to indicate that all occurrences of x are substituted by y in the function’s
body. We write, for example, (λx.x)y → [y/x]x → y. The names of the
arguments in function definitions do not carry any meaning by themselves.
They are just “place holders”, that is, they are used to indicate how to
rearrange the arguments of the function when it is evaluated. Therefore all
the strings below represent the same function:

(λz.z) ≡ (λy.y) ≡ (λt.t) ≡ (λu.u)

This kind of purely alphabetical substitution is also called α-reduction.
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(λx.x)y
→ y

(λ∇.∇)y
→ y

Figure 1: The same reduction shown twice. The symbol for the function’s
argument is just a place holder

1.1 Free and bound variables

If we only had pictures of the plumbing of λ-expressions, we would not have
to care about the names of variables. Since we are using letters as symbols,
we have to be careful if we repeat them, as shown in this section.

In λ-calculus all names are local to definitions (like in most programming
languages). In the function λx.x we say that x is “bound” since its occurrence
in the body of the definition is preceded by λx. A name not preceded by a
λ is called a “free variable”. In the expression

(λx.x)(λy.yx)

the x in the body of the first expression from the left is bound to the first
λ. The y in the body of the second expression is bound to the second λ,
and the following x is free. Bound variables are shown in bold face. It
is very important to notice that this x in the second expression is totally
independent of the x in the first expression. This can be more easily seen
if we draw the “plumbing” of the function application and the consequent
reduction, as shown in Fig. 2.

In Fig. 2 we see how the symbolic expression (first row) can be interpreted
as a kind of circuit, where the bound argument is moved to a new position
inside the body of the function. The first function (the identity function)
“consumes” the second one. The symbol x in the second function has no
connections with the rest of the expression, it is floating free inside the func-
tion definition.
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(λx.x)(λy.yx)
(λ   .  )(λ  .  x)
→ (λ  .  x)

Figure 2: In successive rows: The function application, the “plumbing” of
the symbolic expression, and the resulting reduction

Formally, we say that a variable <name> is free in an expression if one of
the following three cases holds:

• <name> is free in <name>.
(Example: a is free in a).

• <name> is free in λ<name1 >. <exp> if the identifier<name>6=<name1 >
and <name> is free in <exp>.
(Example: y is free in λx.y).

• <name> is free in E1E2 if <name> is free in E1 or if it is free in E2.
(Example: x is free in (λx.x)x).

A variable <name> is bound if one of two cases holds:

• <name> is bound in λ <name1 >. <exp> if the identifier<name>=<name1 >
or if <name> is bound in <exp>.
(Example: x is bound in (λy.(λx.x))).

• <name> is bound in E1E2 if <name> is bound in E1 or if it is bound
in E2.
(Example: x is bound in (λx.x)x).
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It should be emphasized that the same identifier can occur free and bound
in the same expression. In the expression

(λx.xy)(λy.y)

the first y is free in the parenthesized subexpression to the left, but it is
bound in the subexpression to the right. Therefore, it occurs free as well as
bound in the whole expression (the bound variables are shown in bold face).

1.2 Substitutions

The more confusing part of standard λ-calculus, when first approaching it,is
the fact that we do not give names to functions. Any time we want to apply
a function, we just write the complete function’s definition and then proceed
to evaluate it. To simplify the notation, however, we will use capital letters,
digits and other symbols (san serif) as synonyms for some functions. The
identity function, for example, can be denoted by the letter I, using it as
shorthand for (λx.x).

The identity function applied to itself is the application

II ≡ (λx.x)(λx.x).

In this expression, the first x in the body of the first function in parenthesis
is independent of the x in the body of the second function (remember that
the “plumbing” is local). Just to emphasize the difference we can in fact
rewrite the above expression as

II ≡ (λx.x)(λz.z).

The identity function applied to itself

II ≡ (λx.x)(λz.z)

yields therefore
[(λz.z)/x]x→ λz.z ≡ I,

that is, the identity function again.
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(λx.(λy.xy))y

(λx.(λy.xy))y
y	  bound	  in	  the	  subexpression	  	  

danger:	  a	  free	  y	  should	  not	  be	  mixed	  with	  bound	  y’s	  	  

Figure 3: A free variable should not be substituted in a subexpression where
it is bound, otherwise a new “plumbing”, different to the original, would be
generated

When performing substitutions, we should be careful to avoid mixing up free
occurrences of an identifier with bound ones. In the expression(

λx.(λy.xy)
)
y

the function on the left contains a bound y, whereas the y on the right is
free. An incorrect substitution would mix the two identifiers in the erroneous
result

(λy.yy).

Simply by renaming the bound y to t we obtain(
λx.(λt.xt)

)
y → (λt.yt)

which is a completely different result but nevertheless the correct one.

Therefore, if the function λx. < exp > is applied to E, we substitute all free
occurrences of x in < exp > with E. If the substitution would bring a free
variable of E in an expression where this variable occurs bound, we rename
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the bound variable before performing the substitution. For example, in the
expression

(λx.(λy.(x(λx.xy)))) y

we associate the first x with y. In the body

(λy.(x(λx.xy)))

only the first x is free and can be substituted. Before substituting though,
we have to rename the variable y to avoid mixing its bound with its free
occurrence:

[y/x] (λt.(x(λx.xt)))→ (λt(y(λx.xt)))

In normal order reduction we try to reduce always the left most expression of
a series of applications. We continue until no further reductions are possible.

2 Arithmetic

A programming language should be capable of specifying arithmetical calcu-
lations. Numbers can be represented in the λ-calculus starting from zero and
writing “successor of zero”, that is “suc(zero)”, to represent 1, “suc(suc(zero))”
to represent 2, and so on. Since in λ-calculus we can only define new func-
tions, numbers will be defined as functions using the following approach: zero
can be defined as

λs.(λz.z)

This is a function of two arguments s and z. We will abbreviate such expres-
sions with more than one argument as

λsz.z

It is understood here that s is the first argument to be substituted during the
evaluation and z the second. Using this notation, the first natural numbers
can be defined as

0 ≡ λsz.z

1 ≡ λsz.s(z)

2 ≡ λsz.s(s(z))

3 ≡ λsz.s(s(s(z)))
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and so on.

The big advantage of defining numbers in this way is that we can now apply
a function f to an argument a any number of times. For example, if we want
to apply f to a three times we apply the function 3 to the arguments f and
a yielding:

3fa→ (λsz.s(s(sz)))fa→ f(f(fa)).

This way of defining numbers provides us with a language construct similar
to an instruction such as “FOR i=1 to 3” in other languages. The number
zero applied to the arguments f and a yields 0fa ≡ (λsz.z)fa→ a. That is,
applying the function f to the argument a zero times leaves the argument a
unchanged.

Our first interesting function, after having defined the natural numbers, is
the successor function. This can be defined as

S ≡ λnab.a(nab).

The definition looks awkward but it works. For example, the successor func-
tion applied to our representation for zero is the expression:

S0 ≡ (λnab.a(nab))0

In the body of the first expression we substitute the occurrence of n with 0
and this produces the reduced expression:

λab.a(0ab)→ λab.a(b) ≡ 1

That is, the result is the representation of the number 1 (remember that
bound variable names are “dummies” and can be changed).

Successor applied to 1 yields:

S1 ≡ (λnab.a(nab))1→ λab.a(1ab)→ λab.a(ab) ≡ 2

Notice that the only purpose of applying the number 1 ≡ (λsz.sz) to the ar-
guments a and b is to “rename” the variables used internally in the definition
of our number.
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2.1 Addition

Addition can be obtained immediately by noting that the body sz of our
definition of the number 1, for example, can be interpreted as the application
of the function s on z. If we want to add say 2 and 3, we just apply the
successor function two times to 3.

Let us try the following in order to compute 2+3:

2S3 ≡ (λsz.s(sz)))S3→ S(S3)→ S4→ 5

In general m plus n can be computed by the expression mSn.

three	  applica+ons	  of	  s	  

a	  

a	   a	  a	  

(λsz.s(s(sz)))a

a	  applied	  three	  +mes	  

Figure 4: The number 3 applied to an argument a produces a new function
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2.2 Multiplication

The multiplication of two numberx x and y can be computed using the fol-
lowing function:

(λxya.x(ya))

The product of 3 by 3 is then

(λxya.x(ya))33

which reduces to
(λa.3(3a))

a	   a	  a	  

a	   a	  a	  

a	   a	  a	   b	  

a	  applied	  3	  by	  3	  +mes	  to	  b	  

3(3a)b = a(a(a(a(a(a(a(a(ab))))))))

Figure 5: The plumbing of the function 3 applied to 3a, and the result to b

In order to understand why this function really computes the product of 3
by 3, let us look at some diagrams. The first application (3a) is computed
in Fig. 4 . Notice that the application of 3 to a has the effect of producing a
new function which applies a three times to the function’s argument.
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Now, applying the function 3 to the result of (3a) produces three copies of
the function obtained in Fig. 4 , concatenated as shown in Fig. 5 (where
the result has been applied to b just for clarity). Notice that we have a
“tower” of three times the same function, each one absorbing the lower one
as argument for the application of the function a three times, for a total of
nine applications.

a	   a	  a	  

a	   a	  a	  

a	   a	  a	  

b	  
a	  applied	  3	  by	  3	  +mes	  to	  b	  

3(3a)b = a(a(a(a(a(a(a(a(ab))))))))

Figure 6: Alternative visualization for the plumbing of the function 3 applied
to 3a, and then to b

3 Conditionals

We introduce the following two functions which we call the values “true”

T ≡ λxy.x

and “false”
F ≡ λxy.y
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The first function takes two arguments and returns the first one. The second
function returns the second of two arguments.

3.1 Logical operations

It is now possible to define logical operations using this representation of the
truth values.

The AND function of two arguments can be defined as

∧ ≡ λxy.xyF

This definition works because given that x is true, the truth value of the
AND operation depends on the truth value of y. If x is false (and selects
thus the second argument in xyF) the complete AND is false, regardless of
the value of y.

The OR function of two arguments can be defined as

∨ ≡ λxy.xTy

Here, if x is true, the OR is true. If x is false, it picks the second argument
y and the value of the OR function depends now on the value of y.

Negation of one argument can be defined as

¬ ≡ λx.xFT

For example, the negation function applied to “true” is

¬T ≡ (λx.xFT)T

which reduces to
TFT ≡ (λcd.c)FT→ F

that is, the truth value “false”.

Armed with this three logic functions we can encode any other logic function
and reproduce any given circuit without feedback (we look at feedback when
we deal with recursion).
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3.2 A conditional test

It is very convenient in a programming language to have a function which is
true if a number is zero and false otherwise. The following function Z fulfills
this role:

Z ≡ λx.xF¬F
To understand how this function works, remember that

0fa ≡ (λsz.z)fa = a

that is, the function f applied zero times to the argument a yields a. On the
other hand, F applied to any argument yields the identity function

Fa ≡ (λxy.y)a→ λy.y ≡ I

We can now test if the function Z works correctly. The function applied to
zero yields

Z0 ≡ (λx.xF¬F)0→ 0F¬F→ ¬F→ T

because F applied 0 times to ¬ yields ¬. The function Z applied to any other
number N yields

ZN ≡ (λx.xF¬F)N→ NF¬F
The function F is then applied N times to ¬. But F applied to anything is
the identity (as shown before), so that the above expression reduces, for any
number N greater than zero, to

IF→ F

3.3 The predecessor function

We can now define the predecessor function combining some of the functions
introduced above. When looking for the predecessor of n, the general strategy
will be to create a pair (n, n − 1) and then pick the second element of the
pair as the result.

A pair (a, b) can be represented in λ-calculus using the function

(λz.zab)
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We can extract the first element of the pair from the expression applying this
function to T

(λz.zab)T→ Tab→ a,

and the second applying the function to F

(λz.zab)F→ Fab→ b.

The following function generates from the pair (n, n− 1) (which is the argu-
ment p in the function) the pair (n+ 1, n):

Φ ≡ (λpz.z(S(pT))(pT))

The subexpression pT extracts the firs element from the pair p. A new pair
is formed using this element, which is incremented for the first position of
the new pair and just copied for the second position of the new pair.

The predecessor of a number n is obtained by applying n times the function
Φ to the pair (λ.z00) and then selecting the second member of the new pair:

P ≡ (λn.(nΦ(λz.z00))F)

Notice that using this approach the predecessor of zero is zero. This property
is useful for the definition of other functions.

3.4 Equality and inequalities

With the predecessor function as the building block, we can now define a
function which tests if a number x is greater than or equal to a number y:

G ≡ (λxy.Z(xPy))

If the predecessor function applied x times to y yields zero, then it is true
that x ≥ y.

If x ≥ y and y ≥ x, then x = y. This leads to the following definition of the
function E which tests if two numbers are equal:

E ≡ (λxy. ∧ (Z(xPy))(Z(yPx)))

In a similar manner we can define functions to test whether x > y, x < y or
x 6= y.
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4 Recursion

Recursive functions can be defined in the λ-calculus using a function which
calls a function y and then regenerates itself. This can be better understood
by considering the following function Y:

Y ≡ (λy.(λx.y(xx))(λx.y(xx)))

This function applied to a function R yields:

YR ≡ (λx.R(xx))(λx.R(xx))

which further reduced yields

R((λx.R(xx))(λx.R(xx))

but this means that YR→ R(YR), that is, the function R is evaluated using
the recursive call YR as the first argument.

An infinite loop, for example, can be programmed as YI, since this reduces
to I(YI), then to YI and so ad infinitum.

A more useful function is one which adds the first n natural numbers. We
can use a recursive definition, since

∑n
i=0 i = n +

∑n−1
i=0 i. Let us use the

following definition for R:

R ≡ (λrn.Zn0(nS(r(Pn))))

This definition tells us that the number n is tested: if it is zero the result
of the sum is zero. In n is not zero, then the successor function is applied
n times to the recursive call (the argument r) of the function applied to the
predecessor of n.

How do we know that r in the expression above is the recursive call to R,
since functions in λ-calculus do not have names? We do not know and that is
precisely why we have to use the recursion operator Y. Assume for example
that we want to add the numbers from 0 to 3. The necessary operations are
performed by the call:

YR3→ R(YR)3→ Z30(3S(YR(P3)))
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Since 3 is not equal to zero, the evaluation is equivalent to

3S(YR2)

that is, the sum of the numbers from 0 to 3 is equal to 3 plus the sum of the
numbers from 0 to 2. Successive recursive evaluations of YR will lead to the
correct final result.

Notice that in the function defined above the recursion will be stopped when
the argument becomes 0. The final result will be

3S(2S(1S0))

that is, the number 6.

Caveat: For the sake of this tutorial I simplified some expressions without
following the normal reduction order, from left to right. For example, in
the reduction S(S3) → S4 → 5, actually the first successor function will be
evaluated before S3. The resulting reductions are rather messy, if done with
paper and pencil, but are easy to perform with a computer. The reader can
try to perform some of those reductions keeping to the left to right reduction
order.

5 Projects for the reader

1. Define the functions “less than” and “greater than” of two numerical
arguments.

2. Define the positive and negative integers using pairs of natural numbers.

3. Define addition and subtraction of integers.

4. Define the division of positive integers recursively.

5. Define the function n! = n · (n− 1) · · · 1 recursively.

6. Define the rational numbers as pairs of integers.
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7. Define functions for the addition, subtraction, multiplication and divi-
sion of rationals.

8. Define a data structure to represent a list of numbers.

9. Define a function which extracts the first element from a list.

10. Define a recursive function which counts the number of elements in a
list.

11. Can you simulate a Turing machine using λ-calculus?
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