coples of software. However, the Internet also creates
an opportunity for a technological solution to the piracy
problem. With the Internet, many kinds of businesses
in addition to software companies have a need for a
secure, nonreplicable way to transfer digital files, such
as cash equivalent transactions or digital signatures.

In April 2000, Xerox and Microsoft announced that
they were creating a company to develop software that
would allow the electronic distribution of copyrighted
material such as software, music, videos, or documents
while protecting it against unauthorized copying.
Several other companies, including IBM and AT&T,
are also investing in research to develop a reliable
means of encoding digital files so that they cannot
readily be duplicated. Given the difficulty of enforcing
the current law, an effective technological solution that
would substantially reduce the dollars lost to piracy

would be a great boon to the software industry.

FURTHER READING

1999 Global Software Piracy Report: A Study Conducted by
International Planning and Research Corp. for the Business
Sofiware Alliance and the Software and Information Industry
dssociation. West Chester, Penn.: International Planning and
Research Corporation, May 1999.

Keet, Ernest E. Preventing Piracy: A Business Guide to Software
Protection. Reading, Mass.: Addison-Wesley, 1985.

Software and Information Industry Association. SPA Anti-
piracy, a Division of SITA. Washington, D.C.: SIIA, 2000.
http:/ fwww.sita.net [piracy /default.asp

Tetzlaff, David. “Yo-ho-ho and a Server of Warez: Internet
Software Piracy and the New Global Information
Economy.” Talk delivered at the World Wide Web and
Contemporary Cultural Theory Conference, Drake
University, Des Moines, Iowa, 7 Nov. 1998.
hitp:/ fwwwdrake.edu /swiss [webconference [tetzlaffhtml

—Luanne Johnson
PGP see Pretty Good Privacy.

Plankalkiil

Plankalkiﬂ {calculus of programs) was the first
high-level programming language ever conceived.
It was designed by Konrad Zuse (1910-95), the German

PLANKALKOL 633

inventor, between 1943 and 1945, a time when the
first computers were being built in the United States,
United Kingdom, and Germany. It represents one of
the major contributions to the history of ideas in the
computer field, although it was never implemented for
any kind of machine.

Plankalkiil corresponds to Zuse’s mature conception
of how to build a computer and how to allocate the
total computing work to the hardware and software of
a machine. Zuse called the first computers he con-
structed (the 7.1, 7.2, 7.3, and 74) algebraic machines, in
contrast to logistic machines. The first were specially
built to handle scientific computations, the latter could
deal not only with scientific but alse with symbolic pro-
cessing. Zuse’s logistic machine was never built, but its
design called for a one-bit word memory and a proces-
sor that could compute only the basic logic operations
AND, OR, and NOT. Tt was a sort of minimal machine.
Since the memory consisted of a long chain of bits,
they could be grouped in any desired form to represent
numbers, characters, arrays, and so on.

Plankalkiil was to be the software counterpart of
the logistic machine. Complex structures could be
built from elementary ones, the simplest being a sin-
gle bit. Sequences of instructions could be grouped
into subroutines and functions, so that the user had
only to deal with a very abstract instruction set that
masked the complexity of the underlying hardware.
Plankalkiil exploited the concept of modularity, so
important today in computer science, almost in an
extremist way: Several layers of software would make
the hardware transparent for the programmer. The
hardware itself was able to execute only the absolutely
minimal instruction set.

In Plankalkiil, the programmer uses variables to per-
form computations. The notation is such that interme-
diate results are labeled 21, 22, 23, and so on. Input
variables are labeled V1, V2, V3 and so on, and results
are labeled R1, R2, R3, and so on. To describe a variable

and 1ts type, Zuse used the row notation:

N~ N

634 PLANKALKUL

These four lines define the variable Z1 (note that the
index is written in the next line, the V line), with
structure 5.0, that 1s, five times structure “o,” which
represents a single bit. The K line tells us which
component 1s being referred to. In this case we refer
to the second bit of the five-bit field Z1. Therefore,
the notation is two-dimensional, although it could be
compressed on a single line. In a modern program-
ming language, we would write Z1[2]. There are no
separate variable declarations; any variable can be
used in any part of the program and its type 1s writ-
ten together with the name.

The type of a variable could be selected in a very
flexible way. The only primitive type was “0” (a bit).
A group of 7 bits was denoted as n.0, a group of m n-
bit numbers as m.n.0, and so on. Any kind of primi-
tive data type (characters, integers, reals), as well as
vectors and matrices, could be defined in this way. A
data type could be abbreviated using another letter,
and this letter could be used as a building block for
another composite type.

Variable assignment was to be done as in modern
programming languages: The new value overwrites
the old value of a variable. There are several opera-
tions that are also used 1n ways similar to other pro-
gramming languages (addition, subtraction, etc.).
The addition of two variables V1 and V2 (eight bits
each) can be stored in an intermediate variable 71

using the following piece of code:

+

oy e <
oW o<
Ul R P N

In Pascal, we would just write Z1[1=V 1[1]4+V2[3].
Note that the variables V1, V2, and 71 have the same
type: an array of five numbers of eight bits. The pro-
grammer has to see to it that the assignments refer to
variables of the same type, since there 1s no type
checking.

Arrays of objects can be indexed by using an auxil-
lary variable. The use of the index variables is shown

using a line:

<l

=
I R S
o = = N

In this example, the second component of the array V2
contains the index for the array V1. The number is
copied to the first component of 71. In Pascal we would
write Z1{1]:=V1[V2[2]].

Boolean operations produce results that are single
bits. The zero is interpreted as FALSE and the 1 as
TRUE. Boolean results can be used in conditional
mstructions. Plankalkiil could work with conditional
instructions of the If-Then-Else type, which would be
written as guarded lunstructions of the form A — B. If
the guard A 1s true, the command B is executed. Blocks
of instructions could be written in Plankalkil by sepa-
rating each instruction with a vertical line or by writ-
ing the instructions one under the other. A block is
enclosed in parentheses. A block counts later as a single
imstruction and can be made part of another block.

There is also an iterative operator W, which repeats
the execution of a sequence of instructions until all

guards 1n the body of the loop fail:

W A e B
c - D
E - F

Here, the scope of the W covers the three guarded
mnstructions, which form a block. The loop 1s repeated
if any of the guards are true. Mxecution of the loop is
terminated when the three guards A, C, and E fail
within the same iteration.

The elementary Boolean and arithmetic operations,
guarded commands, and the W control structure
formed the basis of Plankalkiil. Other control struc-
tures and commands could be built using them. There
was, for example, a W1 control structure that would
correspond to the FOR command in a modern pro-
gramming language—that is, an iteration that is per-
formed a certain number of times. There were also
other more specialized constructions that employ quan-

tors (there exists an z such that, for all z, etc.) but they

could be expressed also using the basic elements men-
tioned above. Zuse never built a compiler or interpreter
for Plankalkil, but it seems that he was well aware that
the more complex portions of Plankalkiil could be writ-
ten using the basic commands.

Subroutines and functions could be written in
Plankalkul. A declaration was put in front of the code
to make it clear which variables were the arguments
and which the results. This declaration was the bound-
ary summary (Randauszug) of the procedure. It was
also possible to give operators as arguments. A subrou-
tine could be written, for example, that received as
argument the operator “+” or the operator “X,” so that
the same general code could be compiled with a differ-
ent operator in the body of the routine. One complica-
tion of this scheme was the absence of a clear
distinction between local and global variables. Most of
Zuse’s draft of 1945 deals only with global variables,
but he also indicates that variables in different pro-
grams can have the same name but refer to different
mermory localities. However, subroutines could also be
used as functions: Kla(x), in an example given by Zuse,
was a function that checks if a character x is an open-
ing parenthesis and returns a Boolean value.

Although Zuse published some small papers about
the Plankalkil and tried to make 1t known in Germany,
the language never was implemented. The main obsta-
cles were 1ts ambitious scope, the large variety of
Instructions that it contained, its modular architecture,
which called for incremental compilation, and the
availability of dynamical structures and functionals.
Also, some aspects of the semantics are not quite clear
and the absence of type checking would have made it
extremely difficult to debug. A practical implementa-
tion of Plankalkill would certainly require a major
revision of Zuse’s draft of 1945. However, Plankalkiil
was way ahead of its time and many of the concepts on
which 1t was based were only rediscovered much later.
In the case of Plankalkiil, Konrad Zuse suffered the
same fate as Charles Babbage (1791-1871) and the
Analytical Engine: Babbage had the right concepts but
the wrong hardware. After 1945, many more years
would be needed until programming languages could

achieve the level of sophistication of Plankalkiil.

PL/1 635

FURTHBER READING

Zuse, Konrad. Der Plankalkiil. Technical Report 63. Bonn,
Germany: Gesellschaft fiir Mathematik und
Datenverarbeitung, 1972.

—Rail Rojas

PL/1

rogramming Language 1 (PL/1) was developed by
PIBM in the early 1960s. It was first released as an
application development language for the System /360
operating system in 1964. IBM promoted PL/1 as a
general-purpose language—a successor and replace-
ment for Fortran and COBOL.

PL/1 was designed to be an ideal match for struc-
tured programming, a programming paradigm based
on hierarchical decomposition that was to exert great
influence on programming practices throughout the
1970s and early 1980s. Fach of the control flow con-
structs used in structure code design are represented
directly by PL/1 statements: loops, conditionals, and
case selection. PL/1 also supports the GOTO statement,
although use of GOTO was discouraged in many PL/1
programming texts.

Because 1t was intended for a wide varlety of pro-
gramming tasks, PL./1 is an extensive language. It is
block structured and supports packages, procedures, and
functions. It also supports many different data types and
structures: numeric types, arrays, records, character
strings, bit strings, and references. Most of the PL/1 con-
cepts were drawn from other languages: block structure
and recursive subroutines from ALGOL, common blocks
and parameter transmission from Fortran, and formatted
I/0 and records from COBOL. The PL./1 features are
more comprehensive and flexible than those in the orig-
mal languages. For example, PL/1 supports a very
extensive complement of record- and text-oriented input
and output facilities, with provision for Fortran-style for-
mats and COBOL-style picture specifications. Like APL,
also developed at IBM, P1./1 supports applying arith-
metic operations to entire arrays. In this case, however,
the facilities in PI./1 fall far short of those in APL.

New concepts introduced in or sibstantially refined

by PL/1 include type-parameterized (generic)

