For this reason, the task switcher is carefully designed
and tuned for performance.

Multitasking should not be confused with multi-
threading. In multitasking, an operating system allows
a number of programs to run independent of each
other. Although these tasks may be able to communi-
cate through pipes and other interprocess communica-
tion methodologies, each task has a separate
environuxment, including its own memory space and
variables. Generally speaking, tasks can be started and
stopped independent of each other.

In multithreading, on the other hand, a single pro-
gram splits apart into two or more concurrently operat-
ing “threads,” which run as parts of the same program,
sharing memory space and variables. These threads can
communicate among themselves in ways that separate
programs cannot, including shared variables. Typically,
threads cannot be stopped by anything other than the
task that created them, and the operating system
assigns CPU time and priority to all of the threadsin a
task as a single unit rather than giving each thread its
own time slices.

Even simple single-tasking operating systems can
perform some basic multitasking through the use of
interrupts. In MS-DOS, for example, the hardware or
firmware in an I/O controller can be given a task to
perform, and it will interrupt the CPU when that task
is complete. This allows such programs as print queues
to run in the background while the foreground task

mteracts with the user.

FURTHER READING

Bach, Maurice J. Design of the Unix Operating System.
Englewood Cliffs, N.J: Prentice Hall, 1990.

Comer, Douglas, and Timothy V. Fossum. Operating System
Design. Englewood Cliffs, N.J.: Prentice Hall, 1988.

Nutt, Gary J. Kernel Projects for Linux. Boston: Addison-Wesley,
2000.

Stallings, William. Operating Systems: Internals and Design
Principles, 5rd ed. Upper Saddle River, N.I: Prentice Hall,
1997.

Tanenbaum, Andrew. Modern Operating Systerns. Englewood
Cliffs, N.J.: Prentice Hall, 1992.

Tanenbaum, Andrew, and Albert S. Woodhull. Operating
Systerns: Desygn and Implementation. Englewood Cliffs, N.J.:
Prentice Hall, 1987; 2nd ed., Upper Saddle River, N.J,, 1997.

—Gary Robson

&)
O
2

MULTITHREADED ARCHITECTURE

Multithreaded Architecture

A computer with a multithreaded architecture
usually has a single processor that executes
numerous Instruction streams (threads), switching
among them with the help of multiple register sets.
One can think of a multithreaded processor as a par-
allel execution unit based on a single processor. In the
late 1990s and early 2000s, several prototypes of mul-
tithreaded processors were built.

Computer architects are constantly looking for differ-
ent ways to extract more performance from the “transis-
tor budget” provided by modern VLSI (very large scale
integration) chips. Since the 1980s, pipelining, which 1s a
form of parallel execution, has been used and has become
almost universal in all current processors. In a pipelined
processor, the execution of each instruction is divided into
several stages and the instruction goes sequentially
through each. A common scheme, for example, consists of
using five stages, such as instruction fetch (retrieving the
instruction from memory), instruction decode, instruc-
tlon execution proper, memory access, and write back
(the result is stored in a register). Once the stages have
been defined, they are isolated electrically from each
other in such a way that when an instruction has gone
through the first stage, a new one can be inserted into the
pipeline, and so on. When the pipeline 1s full, up to five
mstructions are in the processor and have achieved dif-
ferent degrees of completion. Pipelined execution resern-
bles assembly lines in manufacturing plants—every
worker (every stage) recelves a new piece of work as soon
as the last one has been completed and passes the com-
pleted work on to the next worker in the line.

The advantage of pipelining is that instructions can
be started faster since each stage is shorter than the full
execution path. Under ideal conditions, a pipeline of five
stages provides a fivefold performance gain over a simi-
lar sequential processor without pipelining. The chal-
lenge of pipelining is keeping the pipeline full with
normal programs, which 1s very difficult. Conditional
branches in the code can lead to a situation where the
execution path has to be changed (retrieving instructions
from another place in memory) after other instructions
located below the branch have already been loaded into

the pipeline. In this case the pipeline has to be flushed,



558 MULTITHREADED ARCHITECTURE

clearing and restarting it with instructions from the new
instruction stream. Data hazards are another common
problem. These are conflicts between mstructions loaded
back to back into the pipeline. It could be the case that
the result of an instruction is needed by the next instruc-
tion, which has to stop the pipeline until the first mstruc-
tion writes back its result into the registers, so that 1t can
be used by the instruction waiting. Such waiting cycles
lead to pipeline bubbles, in which no useful work is done
in some pipeline stages.

An elegant solution to the problem of pipeline bub-
bles 1s to execute several threads simultaneously.
Threads can be thought of as programs running in par-
allel in a computer. The name thread is used because a
single program (e.g., the text processor) can start paral-
lel activities (checking grammar at the same time that
text 1s formatted); since these parallel pieces of code
belong to the same program, they are called threads of
execution of the mother program.

Consider again the example with a pipeline made of
five stages, and assume that five threads are running.
The first mstruction for the pipeline could be taken
from thread 1, the second instruction from thread 2,
and so on, until the pipeline 1s full. Then the loading
process 1s repeated cyclically (taking one instruction
from each thread) each time an instruction is complete
and abandons the pipeline. The advantage of this
scheme 1s that a new instruction from a thread 1is
fetched only after the previous instruction has finished
executing. There are no ambiguities, no problems with
conditional branches, and no conflicts between back-to-
back instructions in the code.

There is, however, a drawback: Switching between
the different threads can be done rapidly only if each
thread uses a different set of registers to hold informa-
tion temporarily in the processor. In our example, we
would need five sets of, say, 32 registers each. Hach
thread can manage 1its 32 registers as desired. The
processor then needs a grand total of 5 times 32 regis-
ters (l.e., 160 registers). Some other internal registers
also have to be replicated: for example, the program
counter, which keeps track of the position in memory
of the next instruction to be executed.

Multithreaded processors can therefore keep the

pipeline full and achieve the full performance gain of

the pipelined processor, under the assumption that
there are enough threads waiting for attention by the
processor. This requires new compilation techniques, in
order to make programs parallel automatically, even if
the programmer wrote sequential code.

The type of multithreading described above is called
interleaved multithreading. When a block of instruc-
tions (not a single instruction) is taken from each
thread, this is called block multithreading. The proces-
sor can switch between threads synchronously, accord-
ing to a clock, or asynchronously (i.e., only when a
conflict would generate a pipeline bubble).

One example of a commercial multithreaded system
1s the one being built by Tera Computers, a supercom-
puting company. In the Tera architecture, the central
processing unit switches context every 3 nanoseconds
among 128 different threads. The machine can contain
up to 256 processors. Sun Microsystem’s SPARC archi-
tecture, with up to 512 registers and several register
windows, has also been used experimentally to imple-

ment multithreaded systems.

FURTHER READING

Bokhari, Shahid H., and Dimitri J. Mavriplis. The Tera
Multithreaded Architecture and Unstructured Meshes.
Hampton, Va.: Institute for Computer Applications in
Science and Engineering, NASA Langley Research Center;
Springfield, Va.: National Technical Information Service, dis-
tributor, 1998.

lannuccy, Robert A, et al. Multithreaded Cormputer Architeciure:
A Sumrmary of the State of the Art Boston: Kluwer
Academic, 1994.

Moore, Sinon W. Multithreaded Processor Design. Boston:
Kluwer Academaic, 1996.

—Raul Rojas

Music, Computer

M usic has seen some of the most creative and
productive applications of computer technol-
ogy thus far. Computer-based synthesizers have
spawned previously unimaginable electronic orches-
tras; techniques such as virtual reality have blurred
the distinction between composer and performer,
mind and machine; and computer-inspired models

have enabled psychologists to better understand how



