Oporation7Arguments 0,0 0,1 1,0 1,1
0 Consta_nt_zéro 0 - 0 0_— 0 -
1 Conj_unction (AND) 0 0 0o 1
2 Greater than > 0 0 1 0
3 Left side 0 0 L 1
_: Less than < O— 1 0 —O
5 Right side 0 1 0 1
6 Exclusive OR o 1t 1 0
7 Disjunction (OR) 0 1 1 1
8 Not-OR (NOR) 1 0 0o 0
9 Equivalent & t 0 0 1
10 Not right side 10 1 0
11 Reverse implication &< | _O 1 1
12 Not left side 1 1 0 0
13 Implication = 1 1 0 1
14 Not-AND (NAND) 1t 10
15 Constant 1 R

gate may be implemented using two switches in series.
Similarly, an OR gate may be implemented using two
switches in parallel. Each iput wire to the logic gate
controls one of the switches. In each case, if the current
1s flowing, the switch is closed. For an AND gate, both
switches must be closed before a current may flow. For
an OR gate, closing either switch allows current to flow.

Typically, the logic gates used in implementing cen-
tral processing units (CPUs) and memory (ram or
rom) are connected together in fixed patterns; how-
ever, in programmable logic arrays, the interconnec-
tions are specified by programs and thus can change.
Understanding logic gates will remain an essential
part of computer science, since they are the ultimate

building blocks of information processing systems.

FURTHER READING

Gajski, Dantel D. Principles of Digital Destgn. Upper Saddle
River, N.J.: Prentice Hall, 1997.

Knuth, Donald. Art of Computer Programming, Vol. 1:
Fundamental Algorithms. Reading, Mass.: Addison-Wesley,
1973.

May, Mike. “How the Computer Got into Your Pocket.” Armerican
Heritage of Invention and Technology, Vol. 15, No. 4, 2000.

Schroder, Ernst. Yorlesungen iiber die Algebra der Logik.
Leipzig: Teubner, 1890; 2nd ed., Bronx, N.X.: Chelsea, 1966.

Sloan, M. E. Computer Hardware and Organization. Chicago:
Science Research Associates, 1973; 2nd ed., 1983.

LOGIC PROGRAMMING 475

Sowa, . ¥. Knowledge Representation: Logical, Philosophical, and
Compurational Foundations. Pacific Grove, Calif.:
Brooks/Cole, 1999.

—David Whitten

Logic Programming

n conventional programming languages, a program
Iconsists of a lmear sequence of direct commands that
set the values of variables or establish the program flow.
The programmer has to imagine, in advance and in
detail, how the program will behave and keep in mind
the values stored in the variables at any given execution
stage. Logic programming uses a different approach:
Logic programs can be considered to consist of purely
logical assertions about the problem at hand and its
solution. The programmer does not have to consider the
exact sequence of operations, only the relations between
the variables and objects. He or she concentrates on the
logical problem at hand, and not on the coding details.

There are several languages for logic programming,
but the best known is Prolog (Programming in
Logic). This language derives from work done by
Alain Colmerauer (1941— ) in France and Robert
Kowalski (1941— ) at Edinburgh University in the
early 1970s. Simple examples of actual code in Prolog
are a good way of grasping the essential difference
between programs written in, for example, Fortran
and logic programming.

Consider the problem of defining a database of
genealogical relations. In Prolog, facts can be stated by

writing them followed by a point, as in:

father(adam,abel).

father(adam,cain).

In Prolog the strings “adam,” “abel,” and “cain” are
called atoms and are used to identify individual objects.
The structure “father(adam,abel)” states that Adam is
the father of Abel. Lowercase letters are used, because
uppercase letters are reserved for variables.

Apart from facts, rules can be also defined in Prolog.
If two persons have the same father, they are related.

This rule can be formulated in Prolog by writing:



476 LOGIC PROGRAMMING

related(X,Y) :- father(Z,X), father(Z,Y).

The rule states that the variable X (any person) is
related to the variable Y if there is a Z that is the father
of both X and Y. Of course, there are other possibilities
for two persons to be related, but the rule above can be
complemented with additional rules that cover the
other cases. The syntax of Prolog is so simple that even
without knowing the language, the examples given
above can be understood immediately. Writing equiva-
lent information using Fortran would be rather cum-
bersome, because Prolog 1s geared toward symbolic and
Fortran toward numeric processing.

In logic programming, once the facts and rules have
been stated, queries can be started using the logic pred-
icates defined in the program. It is possible to ask
whether Abel and Cain are related by querying the sys-
tem with: “related(abel, cain).” In this case the system
responds with “yes.” In other cases, when the answer is
negative, the system responds with “fail.” The pro-
grammer does not have to code the exact internal oper-
ations that the machine uses to arrive at the answer; he
is interested only in the logical relations (in this case,
the genealogical facts and the rules). Logic program-
ming languages always provide logical inference
machinery to fill that gap.

Logic prograrmming is based in the language of pred-
icate logic. The whole of mathematics can be developed
in this framework. However, predicate logic is too com-
plex for the computer, because when proving a statement,
many alternative logical steps can be followed (i.e., there
are many different roads toward a logical proof). In Jogic
programming a query is always handled as an assertion
that 1s either proved or refuted. If proved, the values of
the variables that make the assertion true are returned to
the user. In our biblical example above, we could ask the
system “father(X,abel)”—if there is an X that is the
father of Abel. The system responds with “yes” and
“X=adam?”; that is, it gives back the instantiation of X
that makes the assertion true. However, efficiency can be
guaranteed only when predicate logic is restricted to a
simple subset of logic called Horn logic. In this formal-
1sm, not all predicate logical formulas can be written.
However, Horn logic is a large enough subset of predicate

logic so that interesting applications are still possible.

The types of statements that can be formulated in -
Horn logic are of the form “A and B and C imply D.”

This is written in Prolog using the inverted notation:
D:ABC

The commas between A and B, and B and C represent
logical conjunction. The colon and the hyphen repre-
sent the inverted implication symbol (this combination
1s used because there 1s no symbol on the keyboard for
an inverted arrow).

In Horn logic, therefore, statements such as the fol-
lowing can be written directly: “IF (person A is old)
AND (person A worked) THEN (person A is retired).”
However, a statement such as “IF (person A is human)
THEN (person A is a man OR person A Is a woman)”
cannot be formulated, because in Horn logic the impli-
cation cannot lead to a disjunction. Horn logic is there-
fore incomplete, but proving assertions is much simpler
than with the full predicate logic because there is a
simple automated procedure that can be used to reduce
Horn formulas, called resolution.

The resolution rule 1s more general than other logi-
cal inference mechanisms. The proposition Modus

ponens, for example, 1s based on the inference scheme
(IF A'is B) AND (IF B is C) THEN (A is C)

For example, if Aristotle 1s human, and humans are
mortal, then Aristotle is mortal.

The resolution rule consists of observing that two
logical formulas can sometimes be reduced to a simpler
form. Assume that the formula (A OR B) is true, and
also the formula (C OR NOT(B)). Then, if B is true,
necessarily G 1s true, because NOT(B) is false and we
said that (C OR NOT(B)) is true. But if B is false, then
necessarily A is true, because we said that (A OR B) is
true. In one case C must be true, in the other A. We con-
clude, therefore, that the formula (A OR C) is true
regardless of the truth value of B. We have thus derived
a new formula out of the original two, at the same time
suppressing the statement B.

The resolution rule can thus be stated as follows:
Given two disjunctive clauses, if one statement 7

appears in both, once negated and once not, we can



combine all other statements disjunctively, suppressing
7. It can be proved that resolution includes modus
ponens and other inference rules used by logicians.
However, the resolution rule 1s more general and can be
applied mechanically, just as computers do. Using reso-
lution, Horn formulas can be proved or refuted, and
therefore resolution can be used as the sole inference
engine for logic programming.

Another important ingredient of logic programming
1s unification, which 1s used to instantiate variables and
match queries with rules. In logic programming vari-
ables can be assigned a value only once, not repetitively,
as In imperative languages such as Fortran and Pascal.

When we pose the query “father(X,abel),” what
Prolog does is to look for a matching rule or fact (ie.,
one with the same name [functor] and the same num-
ber of arguments). Then it “unifies” the query with
the rule or fact. In our example the only matching fact
is “father(adam,abel).” Both query and fact are made
equal by instantiating the variable X with the value
“adam.” Once assigned this value, X cannot be assigned
any other value.

Now it should be clear how logic programming
works: The programmers write a set of rules and facts
and then query the system. A matching rule or fact is
sought, and resolution i1s used to match the query to
one of them. If a matching rule or fact 1s found, the
query is processed further using the resolution rule,
until the query is proved or disproved. The entire
process is completely automatic.

The dream of the logic programming community
has always been to reach the stage where a programmer
only “declares” what he or she wants, not how to do it
(declarative programming). Prolog uses a special mech-
anism, called backtracking, to look for all possible ways
of proving or disproving a query. The programmer
states the problem, then the system looks for an answer.
This can be very inefficient when the system has to test
every possible answer before finding the correct one.

Other languages for logic programming are Godel
and Funl.og. The latter tries to incorporate functions
into the logic programming framework. Other logic
programming schemes work with constraints (special
conditions on the variables) and the result is called con-

straint logic programming.

“LOOK AND FEEL” LAWSUIT 477

After a surge during the 1980s, the interest in logic
programming subsided in the 1990s. However, it
remains, together with functional and imperative pro-
gramming, one of the principal computational para-

digms for high-level programming languages.

FURTHER READING

Hill, Patricia, and John W. Lloyd. The Gédel Programming
Language. Cambridge, Mass.: MIT Press, 1994.

Kowalski, Robert. Logic for Problem Solving New York: North-
Holland, 1985.

Lloyd, John W. Foundations of Logic Programming Berlin:
Springer-Verlag, 1993.

Shapiro, Ehud, and Leon Sterling. The Art of Prolog.
Cambridge, Mass.: MIT Press, 1994.

—Rail Rojas

“Look and Feel” Lawsuit

he expression look and feel refers to the overall
T gestalt of a computer or computer program: how
the interfaces work, how the user interacts with the
machine or software, and so on. The appropriation of
one program’s look and feel by another has been the
subject of multiple lawsuits over the years. By far the
most famous 1s the lawsuit brought by Apple Computer
against Microsoft, which attempted to prevent
Microsoft Windows from copying the “look and feel” of
Apple’s graphical user interface (GUI). Microsoft’s
eventual victory left that company free to continue
using and improving the GUI of its popular Windows
family of personal computer operating systems.

In the 1980s, Apple introduced its Lisa and
Macintosh computers with, in the words of the U. S.
Court of Appeals that ruled against Apple, a GUI that
was “a user-friendly way for ordinary mortals to com-
municate with the Apple computer.” This GUI, based
at least in part on 1deas developed at Xerox Palo Alto
Research Laboratory, gave Apple an advantage in the
efforts to expand the group of people who were com-
fortable working with a computer.

Apple’s lawsuit was based on copyright law, a claim
the Court of Appeals made clear was not about the pos-
sibility that the program code could be registered as a

literary work. Instead, this case was about a claim of



