344 GOPHER

Gopherspace. Gopher Archies enabled searching for
specific stored or archived files. Similar to F'TP Archies,
Gopher found and listed all locations of a desired file.
However, instead of just giving computer addresses for
these sites, Gopher provided menu selections for
retrieval. Another tool, Veronica, allowed searches for
specific strings within Gopher menus.

Despite the rapid acceptance and widespread use of
Gopher, invention of the World Wide Web and subse-
quent browser technologies incorporating text, graphics,
audio, and video contributed to Gopher falling into dis-
use. By the late 1990s, few active Gopher sites remained
on the Internet. Popular browsers such as Netscape’s
Navigator and Microsoft’s Internet Explorer added fea-
tures that enabled Gopher servers to be accessed without
needing additional software. However, Gopher clients are

unable to access Web sites.

FURTHER READING

Gopher Development Team. “The Internet Gopher: An
Information Sheet.” Electronic Networking, Vol. 2, No. 1,
1992, pp. 69-71.

Moschovitis, Christos J. P., Hilary Poole, Tami Schuyler, and
Theresa Senft. History of the Internet: A Chronology, 1843 to
the Present. Santa Barbara, Calif.: ABC-CLIO, 1999.

—Roger McHaney

Gordon Bell Prizes for
Parallelism

he Gordon Bell Prizes for Parallelism were

created in 1987 to recognize advances in high-
performance scientific computing through parallelism.
The prizes are awarded at the annual IEEE/ACM
Supercomputing Conference and administered by a
special group of the program committee. Bell, the first
director for computing at the National Science
Foundation, wanted to recognize and chronicle the
progress of application programmers of newly created
and evolving parallel computers.

In the early 1980s, the US. Defense Department’s
Advanced Research Projects Agency (ARPA) funded
the Strategic Computing Initiative (SCI), aimed at
achieving a teraops (1 million million operations per

second) of computing power by the mid-1990s.

Similarly, in 1994, the Department of Energy created
the Advanced Strategic Computing Initiative (ASCI) to
develop a computation facility aimed at a petaops (1
billion million operations per second).

Three prizes are awarded for actual application pro-
grams: total performance measured in operations per
second; degree of parallelism (the number of inde-
pendent operations being carried out simultaneously);
and cost-effectiveness (cost per operation per second).

The 1988 prize was awarded to three researchers at
the Sandia National Laboratory using an Ncube multi-
computer with 1024 computing nodes for running
three different applications. This demonstrated that
parallelism was feasible. Furthermore, even greater
performance could be obtained with larger computing
nodes. The same year, a researcher at the National
Center for Atmospheric Research (NCAR) introduced a
global weather model program that used all four
processors of the Cray XMP vector supercomputer.

With the exception of a prize awarded using the
Thinking Machines Corporation’s CM2, a single-
instruction-stream, multiple-parallel-data-stream
computer, all winners have used clusters of comput-
ers connected by high-speed switching networks. In
1999, over 1 teraflops was reached on each of three
machines with 5000 to 10,000 processors at Los
Alamos National Laboratory (SGl), Lawrence
Livermore National Laboratory (IBM), and Sandia
National Laboratory (Intel).

FURTHER READING

Kumayx, Vipin, et al. Introduction to Parallel Computing: Design
and Analysis of Algorithms. Redwood City, Calif.:
Benjamin/Cummings, 1994.

Hwang, Kai, and Zhiwhei Xu. Scalable Parallel Cornputing:
Technology, Architecture, Prograrmming Boston:
WCB/McGraw-Hill, 1998.

—Gordon Bell

“GO TO Statement Considered
Harmful”
by Edsger W. Dijkstra

I n 1968 Edsger W. Dijkstra (1930 ), a professor at

the Technological University of Eindhoven in



the Netherlands, wrote a letter to the editor of
Communications of the ACM that would become a
classic statement of programming philosophy. His
letter, published under the title “GO TO Statement
Considered Harmful,” forcefully made the case for the
abolition of the GO TO statement from all high-level
languages. The GO TO statement is used when the
programmer wants the code to continue executing at
another line of code somewhere else in the program.

According to Dijkstra, since the GO TO statement
15 so flexible and allows any kind of branch in the

¢

code, it 1s an “invitation to make a mess of one’s pro-
gram.” Sometimes programs written with many GO
TOs and an extraordinarily tangled structure are
referred to as spaghettt code. Dijkstra noted: “For a
number of years I have been familiar with the obser-
vation that the quality of programmers is a decreasing
function of the density of GO TO statements in the
programs they produce.”

In a sense, Dijkstra’s main argument was a psycho-
logical observation about human cognitive abilities.
In his view, brains are geared toward the analysis and
recognition of static relationships and not of dynamic
processes. In other words, the programmer can better
understand his creations when he or she does not
have to mentally follow the evolution of the execu-
tion path. A more declarative style of programming
would therefore make programming less error-prone.

Out of this and similar discussions about entan-
gled code emerged the structured programming
movement of the early 1970s. Languages such as
Fortran and ALGOL, which were very popular at the
time, made heavy use of the GO TO statement.
Structured programs should avoid 1it; only three
kinds of high-level structures should be present:
sequencing of instructions (meaning that elemen-
tary instructions can be written one after the other),
case selection (a condition picks up one of two or
more alternatives), and iteration (an action is per-
formed repetitively as long as a condition is true, e.g.,
the WHILE statement in some programming lan-
guages). Many programming languages designed
after the 1970s eliminated GO TO from the instruc-
tion set, so that nowadays the programmer is forced

to write structured code.

GRAPHICAL USER INTERFACE 345

FURTHER READING

Dijkstra, Edsger W. “GO TO Statement Considered Harmful.”
Communications of the ACM, Vol. 11, No. 3, Mar. 1968, pp.
147—148.

Dijkstra, Edsger W, and Edward W. Dijkstra. A4 Discipline of
Programming. Upper Saddle River, N.J.: Prentice Hall,
1976.

—Rail Rojas

Graphical User Interface

graphical user interface (GUI) is a method of dis-

playing text and graphics on a computer screen.
GUIs are considered to be more user friendly than a
text-based interface because picture icons displayed on
the screen help users develop a mental model of the
operation of the computer. This style of computer
interaction is called direct manipulation because it
replaces complex command language syntax with
direct manipulation of visual objects.

The first GUI was developed in the 1970s by Alan
Kay (1940— ) and his team at Xerox’s Palo Alto
Research Center. Kay’s model for interface design is
based on the work of Jerome Bruner (1915— ), who
suggested that there are three ways in which human
beings translate experience into a model of the
world: enactive or learning through action, iconic or
visual learning, and symbolic or linguistic represen-
tation. Kay combined these learning mentalities
together into a model called “Doing with Images
Makes Symbols.” The slogan refers to the idea that
people should start learning how to use a computer
with concrete images that are represented on the
computer screen and then be carried into the more
abstract level of programming.

However, the Macintosh and Windows implemen-
tation of the Desktop GUI were not meant to be easily
programmable machines, as in Kay’s original design. In
contrast, the goal of Macintosh and Windows is to
make personal computers easy to operate without
learning complicated commands. In 1982, Microsoft
began developing Windows, but it was not until
Windows 3.0 and Windows 95 that GUI technology
fully replaced the command-line interfaces found on

Intel-based machines.



