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Fuzzy Logic

uzzy logic 1s a generalization of classical logic
Fintroduoed by Lotfi Zadeh (1921— ) in the mid-
1960s. Its purpose is to model those problems in which
imprecise data must be used, or in which the rules of
inference are formulated in a very general way, making
use of diffuse categories. In fuzzy logic, sometimes
called diffuse logic, there are not just two alternatives
but a whole continuum of truth values for logical
propositions. A proposition can have the truth value 0.4
and its complement the truth value 0.5. According to
the type of negation operator that is used, the two truth
values need not necessarily add up to 1.

Fuzzy logic has a weak connection to probability
theory. Probabilistic methods that deal with imprecise
knowledge are formulated in the Bayesian framework,
but fuzzy logic does not need to be justified using a
probabilistic approach. The common route is to gener-
alize the findings of multivalued logic in such a way
as to preserve part of the algebraic structure of this
type of logic.

Multiple-valued logic has a long history. Aristotle
raised the question of whether all valid propositions
can only be assigned the logical values true or false.
The first attempts at formulating a multiple-valued
logic were made by logicians such as the Scotsman
Hugh MacColl (1837-1909) and the American
Charles Sanders Pierce (1839—1914) at the end of the
nineteenth and beginning of the twentieth century.
However, the first well-known system of multiple val-
ued logic was introduced by the Pole Jan Lukasiewicz
(1878—1956) 1n the 1920s. By defining a third truth
value, Lukasiewicz created a system of logic which
was later axiomatized by other authors. From 1930
onward, renowned mathematicians such as Kurt

(Godel (1906-78), Luitzen Brouwer (1881—1966), and

Fuzzy LoGIC 327

John von Neumann (1903—57) continued work on
developing an alternative system of logic, which could
be used in mathematics or physics. In their investiga-
tions they considered the possibility of an infinite
number of truth values.

Fuzzy logic can be used for fuzzy control. An expert
in a certain field can produce a simple set of control
rules for a dynamical system with less effort than
when an analytical solution is needed. A classical
example, proposed by Zadeh, 1s developing a control
system to park a car. It is straightforward to formulate
a set of fuzzy rules for this task, but it is not immedi-
ately obvious how to write a standard computer pro-
gram for the same purpose. Fuzzy logic is now being
used 1n many products of industrial and consumer
electronics for which a good enough control system is
sufficient and where the question of optimal control
does not necessarily arise.

Fuzzy logic starts by defining a fuzzy set theory. The
difference between crisp (1.e., classical) and fuzzy sets
1s established by introducing a membership function.
For example, in classical logic, a person is either young
or old. If the person is young, we say that its member-
ship value regarding the set of young personsis 1, and
its membership value regarding the set of old persons
1s 0. But in fuzzy set theory we can distinguish grades
of membership. A person who is 10 years old would
recelve the same membership values as above, but a
person who 1is, say, 40 years old would belong with a
membership value of 0.5 to the young persons and
with a membership value of 0.5 to the old persons. A
person who 1s 70 years old would have membership
values of 0 and 1, respectively. Obviously, it is not pos-
sible to define a definite age that represents the
absolute threshold to become old. Aging can be inter-
preted as a continuous process in which the member-
ship of a person goes slowly from 0 to 1.

Consider now classical logic. In this framework, a
proposition is always either true (which we will code
using a 1) or false (coded as 0). There is no room for
ambiguity. However, in fuzzy logic we accept truth val-
ues between 0 and 1. For example, the proposition “this
room is cold” would be assigned a 1 or a 0 in classical
logic. But in fuzzy logic we would distribute the truth

values according to the temperature. A temperature of
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10 degrees Celsius (50 degrees Fahrenheit) would pro-
duce a truth value of 1 for the statement above. A tem-
perature of 30° Celsius (86° F) would have the truth
value 0. But a temperature of 20° C (68° F) would pro-
duce, for example, the truth value 0.5. Fuzzy logic
therefore tries to model the subjective meaning that
persons usually give to certain words. The statement
above can be made more complicated by saying “this
room is very cold,” or “this room is somewhat cold.”
Fuzzy logic tries to model these linguistic vartables by
assigning them a precise mathematical meaning.

The main complication when using fractionary
truth values is how to define the usual logical opera-
tions, such as AND, OR, and NOT. However, this can be
done just by generalizing these operations in the fol-
lowing way. Let us consider first the conjunction oper-
ation, AND. Given two propositions A and B, we can
find the truth value of “A AND B” by using a table.
The result 1s only 1 when both statements have the
truth value 1 (true); otherwise the result is 0 (false).
This can be considered to be the result of computing
the minimum of the two truth values because when-
ever one of the truth values is 0, the result is 0. Using
this insight, we can then define the conjunction of two
fuzzy truth values A and B as “minimum(A,B).” The
fuzzy AND (f-AND) of the truth values 0.7 and 0.5
would thus be minimum(0.7, 0.5) = 0.5.

We define the fuzzy OR (f-OR) in a similar way, as
the maximum of the truth values of the two proposi-
tions. In the case of negation, we observe that the
negation of 11s 0, and vice versa. That 1s, the negation
of a truth value 1s 1 minus the truth value. The fuzzy
negation (f-NOT) of a truth value A is therefore
defined as “1 — A”.

Having conjunction, disjunction, and negation,
arbitrarily complex propositions can be formed, such
as “the room 1s cold AND the person in the room is
old.” Although each of the two propositions alone has
a fractionary truth value, we can now assign a precise
value to the entire sentence (in this case, the mini-
murm of the truth values of every sentence by itself).

Now 1t 1s possible to explain how a fuzzy controller
works. Assume that we want to build a self-regulat-
ing heating unit. We distinguish two types of

temperatures, cold and warm. Assume that the mem-

bership functions for the temperatures (in parenthe-
ses, first for the class “cold,” then for the class
“warm”) are as follows: 10°C (1.0,0.0), 15°C (0.7,
0.3), 20°C (0.5,0.5), 25°C (0.3, 0.7), 30°C (0.0,1.0).
Now we formulate two simple control rules: (a) “If
the temperature is cold, increase the burning rate,”
and (b) “If the temperature is warm, decrease the
burning rate.” When the heater 1s started, the tem-
perature is measured. Assume that it 1s 10°C. Since
the membership of 10°C to the class of cold temper-
atures is 1.0, we apply rule (a) with weight 1. Since
the membership of 10°C to the class of warm tem-
peratures is 0.0, we also apply rule (b) but with a
weight of 0. The net effect 1s that the burning rate
will be increased. If the temperature is 30°C, the
opposite occurs: Rule (a) is valid with weight 0.0 and
rule (b) is valid with weight 1.0 (i.e., the burning
rate is decreased). However, consider the case of a
temperature of 20°C. In this case both rules are valid
with the same weight 0.5 (i.e., they cancel each
other) and the burning rate now remains constant.
The control unit brings the room to a comfortable
temperature starting from any given temperature.

It is possible to think of many other problems in
which we can formulate such fuzzy rules. Balancing a
pole vertically in the hand, for example, could be done
by formulating the two rules: (a) “If the pole is falling
forward, or 1f it is inclined forward, move the hand for-
ward”; (b) “If the pole is falling backward, or if it is
mclined backward, move the hand backward.” Notice
that the condition for the rule is now an OR combina-
tion of two conditions combining the inclination angle
with the angular velocity of the pole. Before applying
both rules, the fuzzy truth value of the composite con-
dition has to be computed.

These simple examples suffice to give an idea of
the type of linguistic rules used in the design of fuzzy
controllers. Of course, the same problem could be
solved by finding a formula that relates the heating
rate with the burning rate, or the angle of inclination
and angular velocity of the pole with the velocity of
the hand, but this is much more complicated than
providing linguistic rules. Also, the controller is easy
to understand and modify. Fuzzy controllers are more

“transparent” than analytical solutions, which can be



optimal but more difficult to develop in the case of
real-world problems.

In the 1970s the interest in fuzzy logic and its possi-
ble use in expert systems grew rapidly, so that the num-
ber of papers published on this topic increased almost
exponentially in the ensuing decades. Interest in fuzzy
controllers has also augmented dramatically. Some
companies already offer microchips with hardwired

fuzzy operators and fuzzy inference rules.
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