192 CONCURRENCY AND PARALLELISM

X =1
X: = 0; X: = X+ 1;

The first fragment sets X directly to 1; the second sets
1t to zero first and then increments X by 1. Both
should lead to X being 1, but only as long as there 1s
no interference between them. If they execute con-
currently and interfere, the following may happen:
Thread 2 executes and sets X to O; then 1t is inter-
rupted and thread 1 executes setting X to 1; then
thread 2 continues and increments X by 1, so that it
becomes 2! Due to concurrency, the memory that 1s
holding variable X 1s serving two masters, which can
lead to undesired effects.

To define the meaning of concurrent programs and
to understand their behavior, researchers invented
calculi for concurrent systems in the late 1980s.
Two well-established approaches are Milner’s CCS
(Calculus for Communicating Systems) and C. Antony
Hoare’s CSP (Communicating Sequential Processes).

The idea of CCS 1s to capture the behavior and
structure of concurrent systems. The notion of an
observer is the key: Two systems are considered equiv-
alent 1f an observer cannot distinguish them. To for-
malize this idea, CCS contains the notion of
bisimulation: Two systems, 4 and B, are equivalent 1f
whenever A4 1s able to carry out an action « and then
becomes A, B can also carry out a and becomes B, and
A and B are equivalent. In short, 4 and B can “simu-
late” each other—hence the name bisimulation.
Another important property underlying CCS 1s the
idea of a congruence (i.e., structure-preserving equiv-
alence): If two systems 4 and B are considered equiva-
lent and A is part of C, we can safely replace A in C by
B without changing the observable behavior of C.

Bisimulation and congruence define the notion of
equivalence of systems, but how does CCS capture
the essentials of concurrent systems? CCS comprises
two types of actions: sending a message and receiv-
ing a message. Furthermore, it comprises five basic
operations: sequential composition allows one to
define that statements execute one after another,
parallel composition allows one to define that two
processes execute concurrently, nondeterministic
choice allows one to define that the process has two

alternatives to execute, renaming allows one to

rename actions, and restriction allows one to forbid
the occurrence of actions.

The main motivation of CCS is to capture the struc-
ture and behavior of concurrent systems i order to
reason about them. One 1s interested in verifying the
and safety properties of programs. A safety property
states that some property holds eventually in all states
the system may get to. A liveness property states that
the systemn can reach a state in which some property
holds. Checking such properties enables system design-
ers to verify that a system guarantees some properties,

which is essential in safety-critical applications.

FURTHER READING

Hoare, C. A. R. Communicating Sequential Processes. Upper
Saddle River, N.J.: Prentice Hall, 1987.

Milner, Robin. Communication and Concurrency. Upper Saddle
River, N.I.: Prentice Flall, 1995.

—Michael Schroder

Conference on Data Systems
and Languages

he Conference on Data Systems and Languages

(CODASYL) was an organization founded in the
late 1950s by the US. Department of Defense. Its
purpose was to propose and develop programming
languages for computers. It later evolved into several
committees of volunteers and eventually disappeared
in the mid-1990s. Largely remembered today for its
definition of COBOL (Common Business Oriented
Language), CODASYL, was also involved in other
activities, most notably in the database area. The
term CODASYL 1s sometimes used as a synonym for
a specific database model.

CODASYL’s mamn contribution to the field of
programming languages was COBOL., a highly suc-
cessful language for business processing. Some pro-
grammers had been developing interpreters or
compilers for programming languages in the early
1950s, when an industrywide team led by Joe
Wegstein 1nitiated the effort that would lead to
COBOL.. Grace Hopper Murray (1906—92) was one
of the contributors to the definition of the language.

She had developed Flowmatic, a language that used



natural language-like phrases to describe computer
operations. COBOL 1tself is rather verbose and uses
natural language-like constructs.

With the advent of large data repositories, database
programs became necessary. COBOL was useful for this
purpose, because the definition of the data is contained
in a section separated from the routines that access the
data. CODASYL proposed an extension for COBOL to
deal with databases. The Data Description Language
(DDL) and the Data Manipulation Language (DML)
formed the basis of the CODASYL database model.
The DDL 1s used for specifying the structure and
integrity conditions on the database schema (e.g., the
type of data contained in each field, 1.e, numeric,
alphanumeric, etc.) The DML is used for creating
(inserting), updating, and deleting data. A. query lan-
guage 1s used for retrieving a subset of the database
that satisfies user-specified search conditions.

The basic CODASYL concept was a “network” view
of the database. Records of data could be linked in one-
to-many relationships: For example, a department
record that points to many linked records of employees.
This makes the database very useful, since many differ-
ent kinds of relations can be expressed. It 1s sometimes
difficult to retrieve the information when the current
links do not map well to the query, but there 1s always
a way of telling the computer how to retrieve the infor-
mation needed. Therefore, the CODASYL model is a
procedural database model rather than a declarative
one like SQL (Structured Query Language), which is
based in the relational model. In a procedural database
model, the programmer tells the computer explicitly
how to retrieve the information needed, that 1s, which
links 1t has to follow.

—Radil Rojas

Connection Machine

he Connection Machine 1s a high-performance
Tcomputer developed in the 1980s at the
Massachusetts Institute of Technology (MI1l) that
incorporates a very large number of simple processors.
It 1s one of the most radical departures from the classic

von Neumann architecture in computing history.

CONNECTION MACHINE 193

Computers following the von Neumann architecture
have one central processor, connected to a separate
memory. Although this concept offers important
advantages that have made it the predominant con-
struction paradigm, it has several shortcomings as well.
The processor, which is always busy, makes up just a
small portion of the available transistors, while the rest,
the memory, is accessed one memory cell at a time: This
means that a large percentage of the hardware is
always 1dle. Also, when enlarging a von Neumann com-
puter, onie enlarges more or less only the memory, mak-
ing the inefficiency even worse. Computing time
becomes dominated by memory accesses.

In the 1980s, Daniel Hillis (1958— ), a Ph.D. candi-
date at MIT, started studying how to avoid the ineffi-
clency created by the processor memory split. Hillis
believed this von Neumann bottleneck, as 1t 1s often
called, to be the reason for the inferiority of machines
to human brains on problems like image recognition
and knowledge retrieval.

The Connection Machine was his answer. Hillis
designed a computer that should consist of a great
number (at least in the range of tens of thousands) of
simple independent processing cells, each with its own
memory and connected by a very general network. The
sheer number of cells should make it possible to
achieve very high parallelism-—assigning, for example,
one processor to each pixel in an image-processing
application or one processor to a transistor in a very
large scale integration (VLSI) simulation. Hillis con-
celved his machine ininially as a vehicle for artificial
intelligence research.

The first prototype was called CM-1. It contained
65,536 processors, each with 4096 bits of memory. The
processors, a custom-made type, 16 to a chip, were
extremely simple. Their basic operation was to take 2
bits from memory and a flag, combine them as
requested, and output one bit to memory and a flag. The
choice of operation was as general as possible, allowing
any of the 256 possible Boolean functions with three
variables to be applied to the input. Rather than guess-
ing which operations would be important, Hillis
decided to offer them all. On their chips, the processors
were connected to a router, which controlled the access

to the network. Additionally, the processors were



