The users of this new language were so enthusiastic
about it that IBM developed Fortran compilers for all its
stored-program computers, and most of its competitors
did the same within only a few years. Applications pro-
grammed in Fortran for one machine could readily be
converted for use on another, and thus Fortran became
the common computer language by which scientists and
engineers shared programs and computational processes.

Based on his experience with Fortran, Backus
became interested in methods for expressing the syn-
tax, or grammatical rules, of programming languages.
He developed a language for this which he introduced
at a Unesco conference in 1959. These concepts were
improved by Peter Naur (1928—), and the resulting
Backus Naur Form became the primary methodology

for specifying syntax.

BIOGRAPHY

John Backus. Born 3 December 1924 in Philadelphia,
Pennsylvania. Received B.S. in mathematics from Columbia
University, 1949; A.M. in Mathematics, 1950. Served in U.S.
Army, 1942—46. Developed Fortran while employed by IBM,
1954-57. Presented initial concept for Backus Naur Form at
Unesco conference on ALGOL 68 in Paris, France, 1959,
Named an IBM Fellow, 1963. Recipient of numerous awards
and honorary degrees, including National Medal of Science,
1975; ACM Turing Award, 1977; IEEE Computer Society
Pioneer Award, 1980; D. Univ., University of York (England),
1985; and Docteur Honoris Causa de I’Université, Université
de Nancy, 1989.

SELECTED WRITINGS

Backus, John. “Can Programming Be Liberated from the von
Neumann Style? A Functional Style and Its Algebra of
Programs.” Communications of the ACM, Vol. 21, 1978,

- “The History of Fortran I, I, and II1.” IEEE Annals
of the History of Computing, Vol. 20, No. 4, 1998, pp.
68-78.

Backus, John, and Harlan Herrick. “IBM 701 Speedcoding and
Other Automatic-Programming Systems.” ONR Syrnposium
on Autormatic Prograrming for Digital Computers, ONR,
Washington, D.C., 1954.

FURTHER READING

Lee, J. A. N, and Henry Trop, eds. “25th Anniversary of
Fortran.” Special Issue, dnnals of the History of Comnputing,
Vol. 6, No. 1, 1984.

Pugh, Emerson W. Building IBM: Shaping an Industry and Its
Technology. Cambridge, Mass.: MIT Press, 1995.

BACKUS NAUR FORM 89

Shasha, Dennis, and Cathy Lazevre. Qut of Their Minds:
The Lives and Discoveries of 15 Great Computer Scientists.
New York: Springer-Verlag, 1997.

—Luanne Johnson

Backus Naur Form

T he Backus Naur Form (BNF) is a formal anno-
tation method used to describe the syntax of
programming languages. Originally called the Backus
Normal Form, the BNF was first used for the defini-
tion of the programming language ALGOL in the
late 1950s. John Backus (1924—), creator of Fortran,
served on the ALGOL development committee with
Peter Naur (1928—), a European representative. The
notation first proposed by Backus was extended and
refined by Naur and served as the metalanguage used
to describe ALGOL.

Programming languages are built of strings of sym-
bols, in the same way that sentences in a natural lan-
guage are built of words, and words are built of
characters. But in the case of programming languages,
the syntax, or possible combinations of words, must be
specified precisely so that a computer can later execute
an unambiguous program. In the BNT, the possible
combinations of words are described by expansion
rules. To describe the syntax for a valid U.S. postal
address, for example, there would be a name part, a
street address, and a zip code part. In BNF this would be
expressed by the following rules:

<postal -address> <name-part> <street-address>

<zlp-part>
<name-parts ;1= <name> | <initials>
<street-address> ::= [<apt>] <house-nums

<street-name>
<zip-parts> (1= <town-name> “," <state-code>

<ZIP-code>

The first line explains that the postal address will
consist of a concatenation of name part, street address,
and ZIP part. The “name-part” is a syntactic category
that can be expanded further using the second line.

The characters “::=” indicate that this is a definition.

90 BACKUS NAUR FopM

The name part can be a plain name or initals: the

2

symbol “|” means that only one of these alternatives
is used. The “street-address” (third rule) can contain
an apartment number followed by a house number
and a street name. The enclosing square parenthe-
ses—*“| |"—denote an optional element in the syntax,
in this case the apartment number. The “zip-part”
(fourth rule) consists of a town name, comma, state
code, and ZIP code. Words inside double quotes repre-
sent literal words themselves, like the comma above.
Additional rules in this example would allow us to
refine the syntactic elements further, up to the level of
individual letters and digits.

Using this simple method, it is possible to describe
any context-free language——that is, one in which the
syntactic expansion of any element (every line in the
BNF) does not depend on extra variables. Many com-
puter languages can be described in this way. There are
several variations and extensions of the BNE including
extended BNF and augmented BNF, which differ only
in the types of constructs allowed and therefore the
expressiveness of the metalanguage.

—Rail Rojas

Baldwin—Odhner Calculators

he innovations of the nineteenth century

Baldwin—Odhner mechanical calculators the
allowed smaller machines to be built. They were all
based on the introduction of variable pimwheels.
Frank S. Baldwin (1838-1925) and Willgodr T.
Odhner developed their calculators from 1872 to
1878. Baldwin’s machine used variable-tooth wheels
(often referred to as pinwheels). He filed a caveat in
the U.S. Patent Office in 1872, completed the first
machine in 1873, and obtained a patent 1n 1375.
Odhner, who was born in Sweden, invented his own
pinwheel calculator in 1874, He produced machines
in St. Petersburg, Russia, starting in 1886. The
Russian company then sold German production
rights to Grimme, Natalis and Co. of Braunschweig,
Germany, which went on to produce the famous
Brunsviga calculators and sell them on a worldwide
basis. Descendants of Willgodt T. Odhner later estab-

lished the Original Odhner firm in Sweden, which
also produced calculators and sold them on a world-
wide basis.

The Baldwin—Odhner calculators use a pinwheel for
each digit. A simplified drawing of a pinwheel is shown
in the figure. As the lever is moved, the number of pins
that protrude from the wheel varies from zero to nine.
Several of these pinwheels are placed on a common
shaft. By setting the various levers, pins representing a
multidigit number are raised. Rotating the assembly
can advance the wheels of an accumulator by the value
of the multidigit number. Multiple rotations advance
the accumulator by multiples of the multidigit number.
The number of rotations is tracked by a counter regis-
ter. Two large numbers can be multiplied by shifting
the accumulator mechanically.

Rotating the assembly of pinwheels in the opposite
direction is used to perform division. In division, the
dividend 1s entered into the accumulator. Then multi-
ples of the divisor are subtracted from the accumulator
until the result 1s approximately zero. The counter reg-
ister contains the quotient, and the final value in the
accumulator 1s the remainder.

Most desktop electromechanical calculators of the
1940s to the 1960s can be viewed as derived from the
Baldwin—Odhner concept. Later versions added a key-

board to enter the operands and a motor.

Simplified illustration of the variable toothed gear.

