86 BABBAGE, CHARLES

—. “On the Mathematical Powers of the Calculating
Engine.” In B. Randell, ed., The Origins of Digital
Computers: Selected Papers. Berlin: Springer-Verlag, 1973;
3rd ed., 1982.

Campbell-Kelly, Martin, ed. Horks of Babbage. 11 vols. New
York: New York University Press, 1989.

— ~ Babbage: Passages from the Life of a Philosopher.
Piscataway and New Brunswick, N.J: Rutgers University
Press, 1994

FURTHER READING

Babbage, Henry P, ed. Babbage'’s Calculating Engines: A
Collection of Papers. Los Angeles: Tomash, 1982.

Bromley, Alan G. “Charles Babbage’s Analytical Engine.”
Annals of the History of Cornputing, Vol. 4, No. 3, 1982.

Hyman, Anthony H. Charles Babbage: Pioneer of the Computer.
Cambridge and New York: Cambridge University Press, 1989.

—Martin Campbell-Kelly

Backbone

n networks of computer networks, such as the
Ilnternet, there are usually numerous possible paths
from sender to receiver. Some communication channels
are faster than others. If deployed properly, the set of
fastest channels can serve as a communication super-
highway to move information from one geographic
area to another, where 1t 1s further relayed to 1ts final
destination using slower links. The fastest channels
constitute the backbone of the network; they transmit
data gathered from the slower branches.

The Internet backbone originated from the
ARPANET'. Originally, ARPANET linked only a hand-
ful of research institutions on the west and east coasts
of the United States. As more universities with hetero-
geneous computer systems joined ARPANET, the range
of communication velocities differed. In 1986, the
National Science Foundation (INSF) started NSEnet,
which provided communication services between
major sites. The NSF funded the establishment of five
supercomputer centers, which were linked with high-
speed channels. The links between the most important
network nodes were upgraded periodically. Although
NSFnet consisted originally of slow 56-kilobit data
links, the backbone was upgraded to a 13-node T-1

(1.25-megabit per second [Mbps|) network in 1988 (see

figure). In 1991 the backbone was upgraded again to a
16-node T-3 (45 Mbps) network.

The acceptable use policy (AUP) of the original
NSFnet charter explicitly prevented the network from
being used commercially. This began to clash with the
reality of the Internet in 1990, since much of the traf-
fic through the backbone had commercial purposes. In
1992, the US. Congress passed a law—called the
Boucher Bill after its sponsor, Representative Rick
Boucher (D-Virginia)—revising the AUP to permit
commercial traffic on the Internet. As a result, in 1993,
NSF announced its decision to put the operation of the
backbone into the hands of private companies. The
NSFnet backbone was decommissioned at midnight on
30 April 1995.

Since the retirement of the old backbone, the archi-
tecture of the network has changed. A vBNS (very high
speed backbone network service), operated by the
telecommunications company MCL, is now in place, but
1ts use is restricted to organizations that require high
speeds. Network access points (NAPs) interconnect the
vBNS to other private backbone networks, domestic
and foreign. The NAPs are operated by several tele-
phone companies.

Internet backbones have been also installed in other
regions, most notably in Europe, following the model of
NSFnet. In Germany, for example, the German
Association for a Research Network manages the back-
bone, which was upgraded to gigabit links early in
2000. Umversities affiliated with the association pay a

subsidized fee for an access point to the backbone.

FURTHER READING

Abbate, Janet. Inventing the Internet. Cambridge, Mass.: MIT
Press, 1999.

Moschovitis, Christos J. P, Hilary Poole, Tami Schuyler, and
Theresa M. Senft. History of the Internet: 4 Chronology,
1843 to the Present. Santa Barbara, Calif.: ABC-CLIO, 1999.

—Frank Darius

Back Door

ﬁ back door is a secret way of breaking into a system,
either left behind by the original programmer or

created by someone who gained access illegally. A back

Back Door 87

' -_: d Nor \01th\\’eeret l
A/\ 1 Seattle, Washmgton ;

Merit : Cornell Theory Center,
University of Michigan, ; Ithaca, New York

Ann Arbor, Michigan

| MlDnet

ska

AN) —

1 meoln \ ebra

=

e e
4 Pittsburgh

BAREiiet . !
Palo AIlo California |

R — —

{ NCAR
| Boulder, Colorado 3

Wostnel
| Salt Lake City, Utah

San Diego Supercomputer_Ce;l;er
San Diego, California

NSEnetr backbone as of July 1988.

door 1s installed by crackers in order to regain access to
someone’s computer at a later date. In many cases, a
back door is just a user account with a password that is
not listed in the standard password file of the system.
Many sites on the World Wide Web have been
defaced by intruders using a back door. The method
used by the crackers is to start a program in a remote
machine using CGI (common gateway interface): CGI
1s a way of passing parameters to a program running
locally in a remote host computer. Normally, this is
done legitimately, to obtain a service from this host.
However, if the program script is poorly written or if
the cracker has access to the source code of the script, it
can be manipulated so that the intruder can start a
remote command in the server. The cracker can then
send the password file of the remote machine by e-mail
to himsell or herself, or even remove files from the
hard disk. This can be done because in many cases, the
Web administrator lets the CGI script mterpreter run
in privileged mode, which provides access to all files.

Once the intruder has the password file, he or she tries

NCSA
University of Illinois,
Champalgn 1l linos |

j ~ SESQUINET

Rice University, [Touston, Texas

Supercomputu Center, |
Pennsylvania

i ; Y

e / V4

V& : .
/- John von Neumann Center,
Princeton, New Jersey

SURANET
Georgia Tech, Atlanta, Georgia

to decrypt passwords in order to get a back door into the
system. In 1999, both the CIA and FBI Web sites were
defaced by crackers using back doors.

In his 1984 Turing Award lecture, Ken Thompson
(1943—) explained how an invisible back door can be
installed in a system like Unix. He wrote a version of
the C compiler (a standard component in the Unix dis-
tribution files) that would compile the code for gaining
access into the system in such a way that a special pass-
word, known only to him, would be recognized. This
already constitutes a back door into the system, but that
trick could be detected by any programmer who inspects
the source code of the C compiler. Thompson went fur-
ther, rewriting the compiler so that it would include the
offending code every time the source code for the com-
piler was recompiled. He then removed the back door
code from the source, recompiled it with the “infected”
compiler, and obtained a binary that would perpetuate
the back door, even with a clean source code. The moral
of all this is that you cannot trust any program that you

have not written yourself. You cannot even trust the

88 Back DooOR

compiler used to translate your program, and in general,
you cannot trust any executable program sent to you.
Computer emergency response teams (CERTs)
exist now in several countries, providing 24-hour advice
in the case of an attack. The first CERT was installed
by the Advanced Research Projects Agency (ARPA) in
1988, the same year that the Internet Worm infected

thousands of machines, mainly in the United States.

FURTHER READING

Denning, Peter J. Computers Under Attack: Intruders, Worms,
and Viruses. Reading, Mass.: Addison-Wesley, 1990.

Stoll, Clifford. The Cuckoo’s Eigg: Tracking a Spy Through the
Maze of Computer Espionage. New York: Pocket Books, 2000.

Thompson, Ken. “Reflections on Trusting Trust.”
Communications of the ACM, Vol. 27, No. 8, Aug. 1984, pp.
761-763.

—Rail Rojas

Backus, John
1924—
U.S. Computer Scientist

ohn Backus led the team of programmers at IBM
tho developed the Fortran language in 1954.
Fortran (Formula Translator) was the first popular
high-level programming language and compiler and is
still one of the most widely used languages for scien-
nfic, engineering, and mathematical problems.

Backus joined IBM in September 1950, soon after
completing his master’s degree in mathematics at
Columbia University. During his first three years at
IBM, he worked as a programmer for the IBM
Selective Sequence Electronic Calculator (SSEC).
This early computer contaimed 21,400 relays and 12,500
vacuum tubes. It used punched paper tape for input and
output, including storing the intermediate results of
calculations by punching them into paper tape, which
was then read back into the program for later reference.

Programming this device was extremely laborious
and required many hours of coding in machine lan-
guage. An early assignment had Backus teamed up with
Edgar Codd (1923~) later known as the originator of
the relational model for databases, to devise an auto-

matic method for locating the source of machine errors

during the running of programs on the SSEC. The
experience that Backus gained in automating SSEC pro-
gramming would prove helpful for his later work.

As IBM’s computers became more and more com-
plex, IBM and its customers became aware that much
more computer time was being spent on developing and
debugging programs than on running the applications
for which the programs were written. With the devel-
opment of the 701, IBM’s first large-scale electronic
computer, IBM realized that they had to solve the pro-
gramming bottleneck in order to make the machine jus-
tifiable economically to its customers. After Backus left
the SSEC group to join the group of 701 programmers,
he undertook the development of a method for making
programming the 701 more efficient.

Backus and a group of five colleagues developed a
coding system, which acquired the descriptive name of
Speedcoding, that substantially decreased the time nec-
essary for programming. However, as IBM began the
development of its next-generation computer, the 704,
1t became clear that Speedcoding would not be adequate
to meet the needs of this more powerful machine.
Backus decided that programming the 704 required
the use of a compiler, a program that would process
another program written in a user-oriented language
producing machine-executable code. He submitted a
proposal to his boss at IBM, Cuthbert Hurd (1911~),
recommending the development of a compiler and, in
1954, Hurd authorized him to assemble a team to
develop the language that came to be called Fortran.

Most computers of the time were used to perform
complex mathematical calculations for scientific or
engineering applications, so the logical choice for a user-
oriented language was one based on algebraic expres-
sions. The basic features of the language proposed were
established during 1954 by Backus and his colleagues
Harlan Herrick and Irving Ziller. By 1955, the long job
of writing the compiler, the program that would read
the algebralike instructions of Fortran and produce an
efficient machine-executable program, began. Backus
had expected the entire project to take about six months,
but like most programming efforts, it was more difficult
than anticipated. The 704 Fortran compiler was eventu-
ally released in April 1957, the result of the work and

ingenuity of eight very creative people.

